JPH0221573A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH0221573A
JPH0221573A JP63170105A JP17010588A JPH0221573A JP H0221573 A JPH0221573 A JP H0221573A JP 63170105 A JP63170105 A JP 63170105A JP 17010588 A JP17010588 A JP 17010588A JP H0221573 A JPH0221573 A JP H0221573A
Authority
JP
Japan
Prior art keywords
cut
cooler
insulating material
insulating
dielectric breakdown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63170105A
Other languages
Japanese (ja)
Inventor
Takashi Harada
孝 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63170105A priority Critical patent/JPH0221573A/en
Publication of JPH0221573A publication Critical patent/JPH0221573A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To cut off a short-circuit current passing through a feeder in order to suppress expansion of an accident due to a leakage current by providing cut-off resistance in series on the connecting wires as an electric connecting circuit conductively connecting conductive structures such as laminated cells, a feed and discharge device of reaction gas and a cooler. CONSTITUTION:A cooler 9 and a reaction gas manifold 8 are insulated from a laminated cell (generation part) 1 by an insulating material 31 and a seal material made of the insulating material, while being insulated from earthing potential of an enclosed container 7 by insulating couplings 91 and 81. Then, the potential of an optical unit cell 2A of the laminated cell 1 is given by a connecting wire 18 and a connecting wire 19, where cut-off resistance 21 is arranged. Thereby, when any one part of the insulating material 31 or the seal material 41 causes dielectric breakdown, the laminated cell 1 is short- circuited through the dielectric breakdown part, the connecting wires 18, 19, the cooler 9 and the reaction gas manifold 8 but a current is cut-off by a cut-off resistance 21 so that expansion of an accident is suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は積層型の燃料電池、ことに積層電池等と導電
性構造材とを絶縁する絶縁材の絶縁異常の拡大防止手段
を備えた燃料電池に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a stacked fuel cell, particularly a fuel cell equipped with a means for preventing the expansion of an insulation abnormality in an insulating material that insulates a stacked battery, etc. and a conductive structural material. Regarding batteries.

〔従来の技術〕[Conventional technology]

第14図は従来装置を単線で簡略化して示す断面図を含
む構成図である。図において、1は積層電池であシ、単
位電池2の積層体には複数単位電池ごとに冷却板3が介
装され、かつ積層端部には一対のガスシール板4および
絶縁板5が設けらへ上下一対の締付板6Aが連結部材6
Bにより連結されて積層面に所定の締付荷重が加えられ
ることによシ一体化した積層電池1が形成される。積層
電池1は接地された金属製の密閉容器Z内に絶縁支持台
7Aによって絶縁支持され、締付板6Aおよび締結部材
6Bからなる締結装置6は接続線16によって密閉容器
11に導電接続される。積層電池1の四方の側面には反
応ガスとしての燃料ガス、反応空気をそれぞれ積層電池
1に給排する反応ガスの給排装置としてそれぞれ一対の
マニホールド8がガスシールを兼ねた絶縁材4工を介し
て積層電池に気密に固定され、マニホールド8に絶縁継
手8It介して連結された一対の給排配管8A、8Bを
介して反応ガスが供給、排出される。
FIG. 14 is a configuration diagram including a cross-sectional view showing a conventional device simplified with a single line. In the figure, 1 is a stacked battery, a stack of unit batteries 2 is provided with a cooling plate 3 for each unit battery, and a pair of gas seal plates 4 and an insulating plate 5 are provided at the end of the stack. A pair of upper and lower tightening plates 6A are attached to the connecting member 6.
By connecting them by B and applying a predetermined tightening load to the stacked surfaces, an integrated stacked battery 1 is formed. The stacked battery 1 is insulated and supported in a grounded metal sealed container Z by an insulating support stand 7A, and a fastening device 6 consisting of a clamping plate 6A and a fastening member 6B is conductively connected to the sealed container 11 by a connecting wire 16. . On the four sides of the stacked battery 1, a pair of manifolds 8 each serve as a reactant gas supply/discharge device for supplying and discharging fuel gas and reaction air as reactive gases to the stacked battery 1, respectively, and four insulating materials that also serve as gas seals are installed. The reactant gas is supplied and discharged through a pair of supply/discharge pipes 8A and 8B, which are airtightly fixed to the stacked battery via the manifold 8 and connected to the manifold 8 via an insulating joint 8It.

また、9は積層電池1の冷却器であシ、絶縁継手9Iに
よって外部配管系統と絶縁された給排一対の果合管9A
と、果合管9Aから冷却板3に向けて分岐し冷却板3を
沿層方向に貫通して反集合管側でUターンし、再び集合
管に戻る複数の冷却パイプ9Bとで構成される。冷却パ
イプ9Bは第16図にその断面図を示すように1導電材
からなる冷却板6に形成された溝3A内に収納され、冷
却板3との間が絶縁材3Iによって絶縁される。
Further, 9 is a cooler for the laminated battery 1, and a pair of supply/discharge pipes 9A are insulated from the external piping system by an insulating joint 9I.
and a plurality of cooling pipes 9B that branch from the fruit pipe 9A toward the cooling plate 3, pass through the cooling plate 3 in the longitudinal direction, make a U-turn on the anti-collecting pipe side, and return to the collecting pipe again. . The cooling pipe 9B is housed in a groove 3A formed in a cooling plate 6 made of a single conductive material, as shown in a cross-sectional view in FIG. 16, and is insulated from the cooling plate 3 by an insulating material 3I.

このよう釦、筐閉容器7.積層電池1と電気的に絶縁さ
れ九反応ガスの給排装置としてのマニホールド8および
冷却器9は電気的接続回路としての接続線18によシ積
層電池1のはt丁中央に位置する単位電池2Aに導電接
続され、また冷却器9も接続819によりマニホールド
8を介して単位[池2人に導電接続されることKよシ、
第15図にその等価回路の模式図を示すように、積層電
池1とマニホールド8および冷却器944の導電性構造
物との最大電位差が積層電池1の出力電圧Eの約%に低
減される。
Like this button, closed container7. A manifold 8 and a cooler 9, which are electrically insulated from the stacked battery 1 and serve as a reactant gas supply/discharge device, are connected to a connecting wire 18 serving as an electrical connection circuit. 2A, and the cooler 9 is also conductively connected to the unit 2A through the manifold 8 by connection 819.
As shown in a schematic diagram of the equivalent circuit in FIG. 15, the maximum potential difference between the stacked battery 1 and the conductive structures of the manifold 8 and the cooler 944 is reduced to about % of the output voltage E of the stacked battery 1.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように構成された従来装置において、マニホール
ド8を積層電池1と絶縁するガスシールを兼ねた絶縁材
4工、−ffiたは冷却器9を積層電池1と絶縁する絶
縁材3工のいずれか1箇所にでも絶縁破壊が生ずると、
絶縁破壊個所と単位電池2人との間が給電!18または
19を介して短絡されることKなシ、大きな短絡電流が
流れて絶縁破壊個所の損傷が拡大するとともに1燃料電
池やガスシールに損傷が及ぶ事故えの進展が懸念される
In the conventional device configured as described above, either four pieces of insulating material that also serves as a gas seal to insulate the manifold 8 from the stacked battery 1, -ffi or three pieces of insulating material that insulates the cooler 9 from the stacked battery 1 are used. If dielectric breakdown occurs in even one place,
Power is supplied between the insulation breakdown point and the two unit batteries! If short-circuiting occurs through 18 or 19, a large short-circuit current will flow, increasing damage to the dielectric breakdown area, and there is a concern that an accident may occur in which the fuel cell or gas seal is damaged.

ifc、絶R7ランジ8工、9工が絶縁破壊した場合に
は単電池2人が給電線18.19を介して直接接地され
ることKなシ、積層電池1およびその出力回路の対地電
位が変化し、時には地絡を流が発生するという事故にま
で発展する。
If there is dielectric breakdown in the R7 lunges 8 and 9, the two cells must be directly grounded via the power supply line 18 and 19, and the ground potential of the laminated battery 1 and its output circuit is This can sometimes lead to accidents such as ground faults and currents.

この発明は、燃料電池中の絶縁破壊により生じる短計電
流または漏れ電流を燃料電池の運転に支障のない値まで
限流し、又漏れ電流による事故の拡大を抑制すること、
または絶縁異常を早期に検出して保護対策を構じられる
ようにすることにある。
This invention aims to limit the short-term current or leakage current caused by dielectric breakdown in the fuel cell to a value that does not interfere with the operation of the fuel cell, and to suppress the spread of accidents due to the leakage current.
Alternatively, it is possible to detect insulation abnormalities at an early stage and take protective measures.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため釦、この発明によれば、複数段
に積層された単位電池からなる積層電池が、この積層電
池を収納する金属製の密閉容器と、この密閉容器および
積層電池のいずれかに?J縁材を介して結合された導電
性構造物を具備し、この導電性構造物および密閉容器に
前記積層電池の任意の単位電池の電位または接地電位を
与える電気的接続回路を有するものにおいて、この電気
的接続回路に直列接続された限流抵抗を備えてなるもの
、または電気的接続回路に漏れ電流検出装置が限流抵抗
に代えて直列接続されてなるものとする。
In order to solve the above problems, according to the present invention, a stacked battery consisting of unit batteries stacked in multiple stages is provided with a metal sealed container for storing the stacked battery, and either the sealed container or the stacked battery. To? A battery comprising a conductive structure connected via a J edge material, and an electrical connection circuit that provides the conductive structure and the sealed container with the potential of any unit cell or ground potential of the laminated battery, The electrical connection circuit may be provided with a current limiting resistor connected in series, or the electrical connection circuit may be provided with a leakage current detection device connected in series instead of the current limiting resistor.

〔作用〕[Effect]

上記手段において、積層電池と反応ガスの給排装fi!
(マニホールド)、冷却器等の導電性構造物とを導電接
続する電気的接続回路としての接続線に直列に限流抵抗
を設けたことにより、絶縁材が絶縁破壊することによっ
て給電線を通る短絡電流が所定レベル以下に限流され、
したがって事故の拡大が阻止ちれる。また、給i1f!
Aに直列に漏れ電流検出装置を設けたことによシ、短絡
の早期検出が可能となシ、シたがって事故が拡大する前
に燃料電池の発電を停止するなどの保護処置を容易に実
施することができる。
In the above means, the stacked battery and the reactant gas supply/discharge system fi!
(manifold), a short circuit through the power supply line due to dielectric breakdown of the insulation material by providing a current limiting resistor in series with the connection line as an electrical connection circuit that conductively connects it to a conductive structure such as a cooler. Current is limited to below a predetermined level,
Therefore, the spread of the accident is prevented. Also, pay i1f!
By installing a leakage current detection device in series with A, it is possible to detect short circuits early, making it easy to take protective measures such as stopping the fuel cell's power generation before the accident escalates. can do.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図はこの発明の第1実施例を示す装置の構成図、第
2図は実施例装置の等価回路の模式図であシ、以下従来
装置と同じ部分には同一参照符号を用いることによシ詳
細な説明を省略する。図において、冷却器9及び反応ガ
スマニホールド8は絶縁材3I又は絶縁材で作られたシ
ール材4I建よシ積層電池(発電部)1と絶縁され、又
絶縁継手9工、8:[Kよシ密閉容器7の接地電位よシ
も絶縁されており、限流抵抗21を配した接続線1日及
び接続線19によシ槓層!池1のなかの任意の単位電池
2人の電位を与えられている。このような構成において
、いま絶縁材3工又はシール材4工のどこか一部が絶縁
破壊をおこすと積層電池1は絶縁破壊部と接続線18.
19.冷却器9゜反応ガスマニホールド8等を介して短
絡されるが限流抵抗21によシ1!流は限流され、事故
の拡大が抑制される。
Fig. 1 is a block diagram of a device showing a first embodiment of the present invention, and Fig. 2 is a schematic diagram of an equivalent circuit of the embodiment device. Hereinafter, the same reference numerals will be used for the same parts as in the conventional device. A detailed explanation will be omitted. In the figure, a cooler 9 and a reaction gas manifold 8 are insulated from an insulating material 3I or a sealing material 4I made of an insulating material and a laminated battery (power generation section) 1, and insulating joints 9, 8:[K] The ground potential of the airtight container 7 is also insulated, and the connecting wire 19 and the connecting wire 19 with the current limiting resistor 21 are connected to each other. Two arbitrary unit batteries in pond 1 are given the potential. In such a configuration, if any part of the insulation material 3 or the sealing material 4 causes dielectric breakdown, the stacked battery 1 will break down between the dielectric breakdown part and the connecting wire 18.
19. The cooler 9° is short-circuited through the reaction gas manifold 8, etc., but the current limiting resistor 21 prevents it! The current is limited and the spread of accidents is suppressed.

第3図、第4図は本発明の第2実施例を示す構成図およ
び模式図であシ、冷却器9及び反応ガスマニホールド8
は絶縁材3■又は絶縁材で作られたシール材4工によシ
積層電池(発電部)1と絶縁され、又絶縁継手91,8
工によシ接地電位よりも絶縁されている。気密端子29
Bおよび接続線29Aからなる電気的接続回路29には
漏れ電流検出装置61が配され、接続線29及び接続線
19によシ積層電池1のなかの任意の単位電池2人の電
位を与えられている。このような構成において、いま絶
縁材3工又はシール材4工のどこか一部が絶縁破壊をお
こすと、積層電池1は絶縁破壊部と接続線29A、19
.冷却器91反応ガスマニホールド8等を介して短絡さ
れるが漏れ電流検出装fi131によシ漏れ電流が検出
され、この検出11を流に基づいて燃料電池の発電運転
を停止するなどの処置が可能となるので、事故が早期に
検出され装置の保護が行われることによシ事故の拡大全
未然に防止することができる。
3 and 4 are configuration diagrams and schematic diagrams showing a second embodiment of the present invention, in which a cooler 9 and a reaction gas manifold 8 are shown.
is insulated from the laminated battery (power generation section) 1 by an insulating material 3 or a sealing material 4 made of an insulating material, and insulating joints 91 and 8.
It is electrically insulated from ground potential. Airtight terminal 29
A leakage current detection device 61 is disposed in the electrical connection circuit 29 consisting of the connection line 29A and the connection line 29A, and the potential of two arbitrary unit cells in the laminated battery 1 is applied to the connection line 29 and the connection line 19. ing. In such a configuration, if any part of the insulation material 3 or the sealing material 4 causes dielectric breakdown, the stacked battery 1 will break down between the dielectric breakdown part and the connecting wires 29A, 19.
.. Although the cooler 91 is short-circuited through the reaction gas manifold 8, etc., leakage current is detected by the leakage current detection device fi131, and based on this detection 11, it is possible to take measures such as stopping the power generation operation of the fuel cell. Therefore, by detecting an accident early and protecting the equipment, it is possible to completely prevent the accident from expanding.

第5図、第6図はこの発明の第6実施例を示す構成図お
よび模式図であり、第1図と相違する点は接続線18が
なく、替わりに限流抵抗41を配した接続線39により
、冷却器9反応ガスマニホールド8が上部締付板6Aに
導電接続され、接続線39を介して接地電位が給電され
ている点で、絶縁材3工又はシール材4工の絶縁破壊の
際の対地漏れ電流を限流することができる。
5 and 6 are a configuration diagram and a schematic diagram showing a sixth embodiment of the present invention, and the difference from FIG. 1 is that there is no connection line 18, and instead a connection line with a current limiting resistor 41 is provided. 39, the cooler 9 reaction gas manifold 8 is electrically conductively connected to the upper clamping plate 6A, and the ground potential is supplied via the connection wire 39, which prevents dielectric breakdown of the insulation material 3 or the seal material 4. It is possible to limit the current leakage current to the ground.

第7図、第8図はこの発明の第4実施例を示す構成図お
よび模式図であシ、第5図と相違する点は接続線49A
、気密端子49Bよりなる電気的接続回路に接続された
漏れ電流検出装置51により、冷却器9反応ガスマニホ
ールド8には接地電位が給電されている点で、絶縁材3
工又はシール材4工の絶縁破壊の際の対地漏れ電流が検
出される。
7 and 8 are configuration diagrams and schematic diagrams showing a fourth embodiment of the present invention, and the difference from FIG. 5 is a connection line 49A.
, the insulating material 3
Leakage current to ground is detected when dielectric breakdown occurs in the insulation or sealing material.

第9図および第10図は第5実施例を示す構成図および
模式図であり、前述の各実施例と異なる点は密閉容器7
を絶縁材7エによって大地から絶縁し、密閉容器Z全接
続線(接地線)59により限流抵抗61を介して接地し
た点にある。この実施例装置においては、絶縁材81.
9工や絶縁板5等対地絶縁材の絶縁破壊を含むすべての
地絡電流を限流することができる。
FIG. 9 and FIG. 10 are configuration diagrams and schematic diagrams showing the fifth embodiment, and the difference from each of the above-mentioned embodiments is that the airtight container 7
is insulated from the earth by an insulating material 7D, and grounded via a current limiting resistor 61 by a connection line (grounding line) 59 for the closed container Z. In this example device, the insulating material 81.
It is possible to limit the current of all ground fault currents, including dielectric breakdown of ground insulating materials such as 9-wires and insulating plates 5.

第11図は第6実施例を示す構成図であシ、第9図と異
なる点は絶縁材7エによって大地から絶縁された密閉容
器7の接地線59に直列に漏れ電流検出装置71を設け
た点にあシ、地絡電流を漏れ電流の段階で早期に検出し
て保護処置をとることができる。
FIG. 11 is a configuration diagram showing the sixth embodiment, and the difference from FIG. 9 is that a leakage current detection device 71 is provided in series with the grounding wire 59 of the closed container 7, which is insulated from the earth by an insulating material 7. In addition, it is possible to detect earth fault current at an early stage when it is a leakage current and take protective measures.

第12図は第7実施例を示す構成図であシ、積層を池1
の電圧計測標73.熱電対72が密閉容器7を貫通する
部分に設けられた気密端子74を支持する金属製の端子
板75を絶縁板76によジ密閉容器7と絶縁し、端子板
75t−接続線79および限流抵抗81を介して接地さ
れた密閉容器7に導電接続した点が前述の各実施列と異
なっておシ、気密端子74または熱電対72の絶縁異常
による地絡を流がVi流される。
FIG. 12 is a block diagram showing the seventh embodiment.
Voltage measurement mark 73. A metal terminal plate 75 supporting an airtight terminal 74 provided at the portion where the thermocouple 72 penetrates the sealed container 7 is insulated from the sealed container 7 by an insulating plate 76, and the terminal plate 75t-connecting wire 79 and limit This differs from the above-described embodiments in that it is conductively connected to the grounded sealed container 7 via a flow resistance 81, and a ground fault caused by an insulation abnormality in the airtight terminal 74 or the thermocouple 72 is caused by the flow Vi.

第13図は第8実施fpIUを示す構成図であシ、第1
2図に示す実施例と異なる点は、端子板75を接続線7
9および電流検出装置91を介して接地した点にあシ、
気密端子74および熱電対72の絶縁異常−taれ電流
の段階で早期に検出して燃料電池を保護できる。なお漏
れ電流検出装置としては直流電流継電器等が使用される
FIG. 13 is a configuration diagram showing the eighth implementation fpIU.
The difference from the embodiment shown in FIG. 2 is that the terminal plate 75 is connected to the connecting wire 7.
9 and the grounded point via the current detection device 91,
Insulation abnormalities in the airtight terminal 74 and the thermocouple 72 can be detected early at the stage of leakage current, and the fuel cell can be protected. Note that a direct current relay or the like is used as the leakage current detection device.

以上この発明の実施例を対象部位ごとに詳しく説明した
が、第1実施例から第8実施例を組合わせて実施するこ
とKよシ、すべての絶縁部材の絶縁破壊や絶縁不良を短
絡電流の限流、あるいは漏れ電流の早期検出によシ事故
の拡大を防止することができる。
Although the embodiments of the present invention have been described in detail for each target part, it is possible to combine the first to eighth embodiments to prevent dielectric breakdown and insulation defects of all insulating members from short-circuit current. Current limiting or early detection of leakage current can prevent the spread of accidents.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、積層電池あるいは密閉容器に
絶縁材を介して結合された導電性構造物または密閉容器
に積層電池の任意の単位電池の電位または接地電位を与
える電気的接続回路(接続巌ンに、限流抵抗または漏れ
電流検出装fItを接続するよう構成した。その結果、
絶縁材のいずれか−1(2)所で絶縁破壊事故が生じた
場合、電気的接続回路を介して積層を池の一部短絡回路
あるいは地絡回路が形成されて事故が拡大するという従
来技術の問題点が、限流抵抗による事故電流の限流作用
によって事故の拡大が抑制されるとともに、漏れ電流検
出装R全配し之場合には漏れ電流の段階で絶縁異常を早
期に検出して燃料電池の保護を行うことができるので、
絶縁の信頼性の高い燃料電池を提供できるとともに、事
故の拡大が抑制されることによる燃料電池の損傷の戦域
およびその修復の各易化に貢献できる利点が得られる。
As described above, the present invention provides an electrical connection circuit (connection circuit) that provides the electrical potential or ground potential of any unit cell of a stacked battery to a conductive structure or sealed container that is connected to the stacked battery or sealed container via an insulating material. A current limiting resistor or a leakage current detector fIt was connected to the Iwaon.As a result,
Conventional technology: If an insulation breakdown accident occurs at any of the points 1 and 2 of the insulating material, a short circuit or ground fault circuit is formed in a part of the laminated layer through an electrical connection circuit, and the accident expands. The problem is that the current limiting action of the fault current by the current limiting resistor suppresses the spread of the fault, and if the leakage current detection device R is fully installed, insulation abnormalities can be detected early at the leakage stage. Because it can protect the fuel cell,
In addition to being able to provide a fuel cell with highly reliable insulation, the present invention has the advantage of contributing to the field of damage to fuel cells and the ease of repair thereof by suppressing the spread of accidents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の第1実施例を示す構成
図および等価回路の模式図、第6図および第4図は第2
実施列を示す構成図および模式図、第5図および第6図
は第3実施列を示す構成図および模式図、第7図および
第8図は第4実施例を示す構成図および模式図、第9図
および第10図は第5実施91を示す構成図および模式
図、第11図は第6実施列を示す構成図、第12図は第
7実施例を示す構成図、第13図は第8実施例を示す構
成図、第14図および第15図は従来装置を示す構成図
および模式図、第16図は第14図の要部を示す拡大断
面図である。 1・・・積層電池、2,2人・・・単位!池、7・・・
密閉容器、8・・・マニホールド(反応ガスの給排装置
)9・・・冷却器、3工、41,5,81,9I、7エ
、76・・・絶縁材、1<518.19,29,39 
、49 、59 ・’Ifi的接続回M (接続#)、
21.41.61.81・・・限流抵抗、31,517
1.91・・・漏れ電流検出装置、75・・・端子板。 \1 Qo  o−+ YIS図
1 and 2 are block diagrams and schematic diagrams of equivalent circuits showing a first embodiment of the present invention, and FIGS. 6 and 4 are
5 and 6 are block diagrams and schematic diagrams showing the third embodiment row; FIGS. 7 and 8 are block diagrams and schematic diagrams showing the fourth embodiment; 9 and 10 are block diagrams and schematic diagrams showing the fifth embodiment 91, FIG. 11 is a block diagram showing the sixth embodiment row, FIG. 12 is a block diagram showing the seventh embodiment, and FIG. 13 is a block diagram showing the sixth embodiment 91. FIGS. 14 and 15 are block diagrams showing the eighth embodiment, FIGS. 14 and 15 are block diagrams and schematic diagrams showing conventional devices, and FIG. 16 is an enlarged sectional view showing the main parts of FIG. 14. 1...Laminated battery, 2, 2 people...unit! Pond, 7...
Sealed container, 8... Manifold (reactant gas supply/discharge device) 9... Cooler, 3 pieces, 41, 5, 81, 9I, 7E, 76... Insulating material, 1<518.19, 29,39
, 49 , 59 ・'Ifi connection times M (connection #),
21.41.61.81...Current limiting resistance, 31,517
1.91... Leakage current detection device, 75... Terminal board. \1 Qo o-+ YIS diagram

Claims (1)

【特許請求の範囲】 1)複数段に積層された単位電池からなる積層電池が、
この積層電池を収納する金属製の密閉容器と、この密閉
容器および積層電池のいずれかに絶縁材を介して結合さ
れた導電性構造物を具備し、この導電性構造物および密
閉容器に前記積層電池の任意の単位電池の電位または接
地電位を与える電気的接続回路を有するものにおいて、
この電気的接続回路に直列接続された限流抵抗を備えて
なることを特徴とする燃料電池。 2)請求項1記載のものにおいて、電気的接続回路に漏
れ電流検出装置が限流抵抗に代えて直列接続されてなる
ことを特徴とする燃料電池。
[Claims] 1) A stacked battery consisting of unit batteries stacked in multiple stages,
A metal sealed container for storing the laminated battery, and a conductive structure coupled to either the sealed container or the laminated battery via an insulating material, In a battery having an electrical connection circuit that provides the potential or ground potential of any unit cell,
A fuel cell characterized by comprising a current limiting resistor connected in series to this electrical connection circuit. 2) The fuel cell according to claim 1, characterized in that a leakage current detection device is connected in series to the electrical connection circuit instead of the current limiting resistor.
JP63170105A 1988-07-08 1988-07-08 Fuel cell Pending JPH0221573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63170105A JPH0221573A (en) 1988-07-08 1988-07-08 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63170105A JPH0221573A (en) 1988-07-08 1988-07-08 Fuel cell

Publications (1)

Publication Number Publication Date
JPH0221573A true JPH0221573A (en) 1990-01-24

Family

ID=15898728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63170105A Pending JPH0221573A (en) 1988-07-08 1988-07-08 Fuel cell

Country Status (1)

Country Link
JP (1) JPH0221573A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301376A (en) * 1991-03-29 1992-10-23 Toshiba Corp Fuel cell generating system
JP2005011797A (en) * 2003-05-22 2005-01-13 Nissan Motor Co Ltd Insulating structure for mounting fuel cell
JP2006501601A (en) * 2002-04-30 2006-01-12 ゼネラル・モーターズ・コーポレーション Compact fuel cell configuration
JP2008252997A (en) * 2007-03-29 2008-10-16 Mitsubishi Materials Corp Wire lead-out structure
WO2010091952A1 (en) * 2009-02-16 2010-08-19 Siemens Aktiengesellschaft Fuel cell assembly and method for operating a fuel cell assembly
JP2010238434A (en) * 2009-03-30 2010-10-21 Mitsubishi Materials Corp Fuel battery module
JP2016103349A (en) * 2014-11-27 2016-06-02 トヨタ自動車株式会社 Inspection method for fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639618A (en) * 1979-09-07 1981-04-15 Denki Kogyo Kk Automatic tuner for long-wave antenna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639618A (en) * 1979-09-07 1981-04-15 Denki Kogyo Kk Automatic tuner for long-wave antenna

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301376A (en) * 1991-03-29 1992-10-23 Toshiba Corp Fuel cell generating system
JP2006501601A (en) * 2002-04-30 2006-01-12 ゼネラル・モーターズ・コーポレーション Compact fuel cell configuration
JP2005011797A (en) * 2003-05-22 2005-01-13 Nissan Motor Co Ltd Insulating structure for mounting fuel cell
JP4696447B2 (en) * 2003-05-22 2011-06-08 日産自動車株式会社 Fuel cell insulation structure
US8034511B2 (en) 2003-05-22 2011-10-11 Nissan Motor Co., Ltd. Insulating mount structure, insulation monitoring system, and insulation monitoring method for fuel cells
JP2008252997A (en) * 2007-03-29 2008-10-16 Mitsubishi Materials Corp Wire lead-out structure
WO2010091952A1 (en) * 2009-02-16 2010-08-19 Siemens Aktiengesellschaft Fuel cell assembly and method for operating a fuel cell assembly
US9203099B2 (en) 2009-02-16 2015-12-01 Siemens Aktiengesellschaft Fuel cell assembly and method for operating a fuel cell assembly
JP2010238434A (en) * 2009-03-30 2010-10-21 Mitsubishi Materials Corp Fuel battery module
JP2016103349A (en) * 2014-11-27 2016-06-02 トヨタ自動車株式会社 Inspection method for fuel cell
US9791516B2 (en) 2014-11-27 2017-10-17 Toyota Jidosha Kabushiki Kaisha Inspection method of fuel battery

Similar Documents

Publication Publication Date Title
US10340688B2 (en) Modular overvoltage protection units
CN101750529A (en) Capacitive divider device, voltage sensor, trip device module and electrical protection apparatus provided with such a device
JPH0221573A (en) Fuel cell
US20240088649A1 (en) Surge protective device assembly modules
JP4255105B2 (en) Electricity detection and deterioration diagnosis device
JP2001511633A (en) On-site failure detection device for container storage type energy storage device
JP2000243435A (en) Battery system
US11791611B2 (en) Arc mitigation devices
JP3120145B2 (en) Fuel cell
JP2728982B2 (en) Fuel cell generator
JPH04301376A (en) Fuel cell generating system
JPH01177823A (en) Protection of solar cell circuit
JPS6335381Y2 (en)
JP3400170B2 (en) Gas pressure monitoring equipment for gas insulation equipment
CN107887549A (en) It is a kind of can six faces connection integrated, building block system electrokinetic cell submodule
JP2823613B2 (en) Cylindrical sodium-sulfur battery stack
JPH0382327A (en) Gas insulation type electric facility
US20240127991A1 (en) Surge protective devices
JPS636698Y2 (en)
JPH0237208Y2 (en)
JP3457366B2 (en) Lightning arrester monitoring device
Ernst Fuseless capacitor bank protection
JPH11133096A (en) Cable end sealing part abnormality monitor
JP2508391B2 (en) Gas insulation switchgear fault location method
JPH0436166Y2 (en)