JPH02214726A - Polypeptide thin film and production of material carrying same - Google Patents

Polypeptide thin film and production of material carrying same

Info

Publication number
JPH02214726A
JPH02214726A JP3587089A JP3587089A JPH02214726A JP H02214726 A JPH02214726 A JP H02214726A JP 3587089 A JP3587089 A JP 3587089A JP 3587089 A JP3587089 A JP 3587089A JP H02214726 A JPH02214726 A JP H02214726A
Authority
JP
Japan
Prior art keywords
film
polymerization
monomolecular
thin film
monomolecular film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3587089A
Other languages
Japanese (ja)
Inventor
Tsutomu Miyasaka
力 宮坂
Mitsunori Ono
光則 小野
Naoyuki Nishikawa
尚之 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3587089A priority Critical patent/JPH02214726A/en
Priority to US07/480,699 priority patent/US5138026A/en
Publication of JPH02214726A publication Critical patent/JPH02214726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyamides (AREA)

Abstract

PURPOSE:To obtain the title material having peptide linkage-carrying thin film of good biocompatibility by polymerizing monomolecular film or build-up film containing a specific amphipatic compound having in one molecule hydrophobic domain and hydrophilic one carrying amino acid ester structure followed by carrying. CONSTITUTION:A monomolecular film is formed on gas/liquid interface. This film contains an amphipatic compound having in one molecule hydrophobic domain and hydrophilic one carrying amino acid ester structure with the pKa of the conjugate acid for the elimination group in this ester being <=14. This monomolecular film is then polymerized on the interface followed by transferring the resultant polymer in the form of either monomolecular or build-up film onto a substrate, and further polymerization is made, thus obtaining the objective material carrying a polypeptide thin film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は分子集合体からなる薄膜とそれを担持した材料
の製造方法に関するものであり、特に生体適合性の点で
優れたペプチド結合を有する光学活性アミノ酸の重合体
の薄膜とそれを担持した材料の製造方法に関するもので
ある。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing a thin film composed of a molecular assembly and a material supporting the same, and in particular a thin film comprising a peptide bond that is excellent in biocompatibility. The present invention relates to a method for producing a thin film of an optically active amino acid polymer and a material supporting the thin film.

(背景技術) 分子配列を持った単分子膜軸onolayer)および
単分子膜が複数積層されてなる累積膜(g+onola
yers=s+ultilayer)などの分子集合体
(molecularassembly)はその超薄性
とち密性を利用し、エレクトロニクスデバイス用素材や
表面保護用素材の他、気体分子やイオンの選択的透過性
を利用したセンサー用機能性薄膜やマテリアルデリバリ
−用透過制御膜としての広範囲な応用が期待されている
(Background technology) A monolayer film with molecular alignment (onolayer) and a cumulative film (g+onolayer) formed by laminating multiple monolayers
Molecular assemblies such as yers=s+ultilayer) take advantage of their ultra-thinness and compactness to be used as materials for electronic devices, surface protection materials, and sensors that utilize selective permeability of gas molecules and ions. It is expected to have a wide range of applications as functional thin films and permeation control membranes for material delivery.

気−液界面に形成される両親媒性分子の単分子膜を支持
体上に累積する方法としてはラングミュア−プロジェッ
ト法が一般に知られ、この方法で作製された各種のLB
IIlは有機超薄膜として近年用途が広がっている〔固
体物理17 (12)45(1982)等参照〕。
The Langmuir-Prodgett method is generally known as a method for accumulating a monomolecular film of amphiphilic molecules formed at the gas-liquid interface on a support.
The use of IIl as an organic ultra-thin film has expanded in recent years [see Solid State Physics 17 (12) 45 (1982), etc.].

LB膜を含む分子集合体は分子の配向と超薄性に基づ(
様々な機能性を発揮するものの、一方で物理的にデリケ
ートなため膜構造が破壊されやすく、また化合物によっ
ては膜の構造欠陥が多く高密度性が得られないといった
欠点を持っている。
Molecular assemblies including LB films are based on molecular orientation and ultra-thinness (
Although they exhibit a variety of functionalities, they also have the disadvantage that they are physically delicate, so the membrane structure is easily destroyed, and some compounds have many structural defects in the membrane, making it difficult to achieve high density.

これらの分子集合体の膜構造を物理的に強化し、均一で
高密度な膜を提供することはあらゆる目的に要求される
課題である。
Physically strengthening the membrane structure of these molecular assemblies and providing a uniform, high-density membrane is a challenge required for all purposes.

分子集合体の膜構造を物理的に強化するための有効な手
段の一つは分子の架線または重合である。
One of the effective means for physically reinforcing the membrane structure of molecular assemblies is crosslinking or polymerization of molecules.

LB膜などの重合については従来の重合性化合物と重合
様式がH,Baderら、Advances in P
olymerSCIeIIle6+  第64巻、1頁
(1985年)およびR、B”IIa c h lら、
Macromol、 Chew、 5upp1.+ 第
6巻、245頁(1984年)にまとめられている。
Regarding the polymerization of LB films, conventional polymerizable compounds and polymerization modes are described by H. Bader et al., Advances in P.
olymerSCIeIIle6+ Vol. 64, p. 1 (1985) and R, B"IIa ch l et al.
Macromol, Chew, 5upp1. + Summarized in Volume 6, page 245 (1984).

重合性の両親媒性化合物の研究が活発となったのは19
80年代に入ってからであり、当初は重合性化合物とし
てビニル系及びジエン、ジアセチレン系の不飽和化合物
を用い、紫外線(UV)あるいはT線等の放射線によっ
て重合する方法が広く採用された。しかしこれらの方法
による重合では堅牢な重合体は得られるものの、不飽和
結合の開裂後に分子配列の秩序を維持させることが困難
であった。
Research on polymerizable amphiphilic compounds became active in 19
This started in the 1980s, and initially a method was widely adopted in which vinyl, diene, and diacetylene-based unsaturated compounds were used as polymerizable compounds, and polymerization was performed using radiation such as ultraviolet rays (UV) or T-rays. However, although polymerization by these methods yields robust polymers, it is difficult to maintain the order of the molecular arrangement after the unsaturated bonds are cleaved.

^ルaschewskyとH,Ringsdorb著、
Macromoleculc+第21巻、1936頁(
1988年)に指摘されるように、膜の配向はアルキル
鎖の長さと末端親木基の種類に大きく影響される結果、
秩序性の良好な重合性化合物は少数に限られるのである
By Le Aschewsky and H. Ringsdorb,
Macromolecule+ Volume 21, page 1936 (
(1988), the film orientation is greatly influenced by the length of the alkyl chain and the type of terminal parent group;
Polymerizable compounds with good orderliness are limited to a small number.

A、LaschewskyらはまたJ、Am、Ches
、Soc、 、  第109巻、788v1.(198
7年)において、放射線重合等に有用な各種の不飽和結
合を有する両親媒性化合物について、秩序性維持のため
に重合基がスペーサーグループを介して担持されている
こ、との必要性を開示している。さらに特開昭57−1
59506号には、放射線重合による不飽和化合物(界
面活性剤)の単分子膜および累積膜の重合フィルムを超
濾過膜として利用する例が示されている。
A. Laschewsky et al. also J. Am. Ches.
, Soc, , Volume 109, 788v1. (198
7) disclosed the necessity for the polymerizable group to be supported via a spacer group in order to maintain order in amphiphilic compounds having various unsaturated bonds useful for radiation polymerization, etc. are doing. Furthermore, JP-A-57-1
No. 59506 discloses an example of using a polymerized film of a monomolecular film and a cumulative film of an unsaturated compound (surfactant) by radiation polymerization as an ultrafiltration membrane.

これらの不飽和結合をもつ化合物放射線によって重合さ
せる従来の技術では次のような諸問題が欠点となる。す
なわち、第1に重合による配列構造の乱れあるいは分子
の無秩序な凝集・析出が起こりやすく、これを避ける目
的でスペーサー基の挿入などの特殊な分子設計を必要と
する。第2に紫外線やT線の照射は重合性両親媒性分子
としばしば共存する種々の添加物質の分解や変成をもた
らすことが問題となる。第3にこの種の重合で得られた
膜は通常生体適合性に極めて乏しく薬物等の透過制Va
等としての生体組織への応用は制限される。
Conventional techniques for polymerizing compounds having these unsaturated bonds by radiation have the following disadvantages. That is, first, disorder of the arrangement structure or disordered aggregation/precipitation of molecules is likely to occur due to polymerization, and special molecular design such as insertion of a spacer group is required to avoid this. A second problem is that irradiation with ultraviolet rays or T-rays causes decomposition or denaturation of various additive substances that often coexist with polymerizable amphiphilic molecules. Thirdly, membranes obtained by this type of polymerization usually have extremely poor biocompatibility and have a high resistance to permeability of drugs, etc.
The application to biological tissues as such is limited.

そこで放射線を用いない重合法として例えばジチオール
の酸化重合によってジスルフィド結合を形成する方法が
例えばJ、^置、Chem、Soc、、  第109@
、4419頁(1987年)に示されてより、あるいは
上述の不飽和結合をもつ化合物を開始剤存在下でラジカ
ル重合させる方法が有用である。
Therefore, as a polymerization method that does not use radiation, for example, a method of forming disulfide bonds by oxidative polymerization of dithiol is proposed, for example, in J.
, p. 4419 (1987) or the method of radically polymerizing the above-mentioned compound having an unsaturated bond in the presence of an initiator is useful.

しかしながらこれらの方法では、重合時に開始剤を必要
とするため、これを重合完了後に膜系から除去する工程
を必要とするほか、酸化還元剤などを含める開始剤が共
存物質へ与える影響も問題となる。
However, these methods require an initiator during polymerization, which requires a step to remove it from the membrane system after the polymerization is complete, and there is also the problem of the effect of initiators, including redox agents, on coexisting substances. Become.

さらに重合形態を改善し生体適合性を向上させたものと
してアミノ酸誘導体の分子膜をカルボジイミドの共存下
で縮合重合させる方法がJ、Am。
J, Am describes a method in which a molecular membrane of an amino acid derivative is subjected to condensation polymerization in the coexistence of a carbodiimide to improve the polymerization form and biocompatibility.

Chew、Soc、+  第108@、487頁(19
86年)において試みられているが、この方法でも縮合
剤や副生物の残存が問題となりまた縮合反応の効率を制
御する必要が伴うため扱いは容品でない。
Chew, Soc, + No. 108 @, page 487 (19
(1986), but this method also poses a problem of residual condensing agents and by-products and requires control of the efficiency of the condensation reaction, making it difficult to handle.

〔発明が解決しようとするLl!l1l)従って本発明
の目的は以上の従来法の問題点を解決し、第1に放射線
や重合開始剤を用いることな(重合される分子配列性の
良い重合薄膜およびそれを担持した材料の製造方法を提
供することを目的とし、第2に重合が自己重合によって
自然自発的に高収率で進行する重合薄膜とそれを担持し
た材料の製造方法を提供することを目的とし、第3には
生体適合性の点でも優れた重合性薄膜を提供することを
目的とするものである。
[Ll that the invention tries to solve! Therefore, the purpose of the present invention is to solve the problems of the above-mentioned conventional methods, and firstly, to produce a thin polymer film with good molecular alignment and a material supporting it without using radiation or a polymerization initiator. Second, the purpose is to provide a method for producing a polymerized thin film in which polymerization proceeds spontaneously and in high yield through self-polymerization, and a material supporting the same. The purpose of this invention is to provide a polymerizable thin film that is also excellent in biocompatibility.

(課題を解決するための手段〕 本発明の目的は、一分子中に疎水部とアミノ酸エステル
構造を持つ親木部を有し、該エステルの離脱基の共役酸
のpKaが14以下である両親媒性化合物を含む単分子
膜またはその累積膜を重合することによって得られるポ
リペプチド薄膜および一分子中に疎水部とアミノ酸エス
テル構造を持つ親水部を有し、該エステルの離脱基の共
役酸のpKaが14以下である両親媒性化合物を含む単
分子膜を気−液界面に形成し、該界面において重合させ
た後で支持体上に移しとるか、または前記単分子膜を支
持体上に単分子膜または累積膜として移しとった後で重
合させることを特徴とするポリペプチド薄膜を担持する
材料の製造方法によって達成された。
(Means for Solving the Problems) An object of the present invention is to provide a parent xylem having a parent xylem having a hydrophobic part and an amino acid ester structure in one molecule, and having a pKa of the conjugate acid of the leaving group of the ester being 14 or less. A polypeptide thin film obtained by polymerizing a monomolecular film containing a medium compound or a cumulative film thereof, and a polypeptide having a hydrophobic part and a hydrophilic part having an amino acid ester structure in one molecule, and the conjugate acid of the leaving group of the ester. A monomolecular film containing an amphipathic compound having a pKa of 14 or less is formed at the gas-liquid interface, polymerized at the interface, and then transferred onto a support, or the monomolecular film is transferred onto a support. This was achieved by a method for producing a material carrying a polypeptide thin film, which is characterized in that it is transferred as a monomolecular film or a cumulative film and then polymerized.

本発明の重合単分子膜または累積膜は Lanqs+uir−Blodgett法を含む単分子
膜被覆法によって支持体上に担持された超薄膜であり重
合の主鎖がポリペプチドすなわちアミノ酸のアミド結合
の連鎖によって構成されることを特徴とする。すなわち
、本発明の重合膜は下記の反応によって反応活性すなわ
ち求電子性のエステル基を有する両親媒性アミノ酸誘導
体が縮合重合しアミド結合の骨格を形成したものである
The polymerized monolayer or cumulative film of the present invention is an ultra-thin film supported on a support by a monolayer coating method including the Lanqs+uir-Blodgett method, and the main chain of polymerization is composed of a polypeptide, that is, a chain of amide bonds of amino acids. It is characterized by being That is, the polymer membrane of the present invention is obtained by condensation polymerization of an amphipathic amino acid derivative having a reactive, that is, electrophilic, ester group through the following reaction to form an amide bond skeleton.

1?              R ここでnは2以上の整数を表わす、R,R’Xについて
は後述する。
1? R Here, n represents an integer of 2 or more. R and R'X will be described later.

本発明の重合薄膜の形成方法について説明する。The method for forming the polymerized thin film of the present invention will be explained.

重合薄膜の形成には気−液界面での重合と支持体上での
重合の2種のいずれも用いることができる。
For forming a polymerized thin film, either of two types of polymerization, polymerization at the gas-liquid interface and polymerization on a support, can be used.

気−液界面で重合を行うためには、本発明の両親媒性の
アミノ酸エステル誘導体モノマー(前記式(I))の単
分子膜を単分子膜製造用トラフの水相(subphas
e)上に適当な有機溶媒より展開して作製し、水面上で
適当な時間、好ましくは30分〜数時間の間装置してお
けばよい、水相は純水もしくは緩衝液等の塩溶液が使用
でき、好ましくはそのpHを用いるモノマーのエステル
分解の平衡定数に依存し5〜9の範囲内で制御する。
In order to perform polymerization at the gas-liquid interface, a monolayer of the amphiphilic amino acid ester derivative monomer of the present invention (formula (I) above) is placed in the aqueous phase (subphas) of a trough for monolayer production.
e) The aqueous phase can be prepared by developing it with an appropriate organic solvent and leaving it on the water surface for an appropriate period of time, preferably 30 minutes to several hours.The aqueous phase is pure water or a salt solution such as a buffer. can be used, and the pH is preferably controlled within the range of 5 to 9 depending on the equilibrium constant of ester decomposition of the monomer used.

水相の温度は室温から60℃までの範囲が好ましく、反
応を促進するためには高い温度が選ばれる0反応中の単
分子膜の表面圧力は5〜40dyne/cmに保つこと
が好ましく、10〜25 dyne/ c:mに保つこ
とがより好ましい0表面圧力は通常一定値に制御される
が、反応の進行とともに増加もしくは減少させてもよい
0反応終了後に水面上の重合膜をLaffgs+uir
−Blodgett法(垂直浸漬法)、水平付着法など
の方法によって親水性もしくは疎水性の支持体上に1層
ないし多数層を順次移し取ることにより、重合単分子膜
は重合累積膜が形成される。
The temperature of the aqueous phase is preferably in the range from room temperature to 60°C, and a high temperature is selected to promote the reaction.The surface pressure of the monomolecular film during the reaction is preferably maintained at 5 to 40 dyne/cm; It is more preferable to keep it at ~25 dyne/c:m. The surface pressure is usually controlled at a constant value, but may be increased or decreased as the reaction progresses. After the reaction is completed, the polymer film on the water surface is
- By sequentially transferring one layer or multiple layers onto a hydrophilic or hydrophobic support by a method such as the Blodgett method (vertical dipping method) or horizontal deposition method, a polymerized monomolecular film is formed into a polymerized cumulative film. .

第2の方法は前記両親媒性のアミノ酸エステル誘導体モ
ノマー(1)の単分子膜を水面上に形成しこれを上述の
方法で支持体上に移し取った後、この支持体上で累積膜
を放置することにより重合を進行させる方法である。こ
の方法において単分子膜を反応に先立って支持体上に累
積するためには、水相を重合反応を抑制するような条件
、例えば低いpHや低温の条件に保つことが必要となる
The second method is to form a monomolecular film of the amphipathic amino acid ester derivative monomer (1) on the water surface, transfer it onto a support by the method described above, and then form a cumulative film on this support. This is a method of allowing polymerization to proceed by leaving it to stand. In order to accumulate a monolayer on the support prior to reaction in this method, it is necessary to maintain the aqueous phase at conditions that inhibit the polymerization reaction, such as low pH and low temperature conditions.

支持体上に累積されたモノマーは、重合を促進させる条
件、例えば加熱やアルカリ性ガス(例えばNH,など)
へさらしたりアルカリ性水溶液に浸漬することによって
重合させることができる。
The monomers accumulated on the support are subjected to conditions that promote polymerization, such as heating and alkaline gas (such as NH, etc.).
It can be polymerized by exposure to water or immersion in an alkaline aqueous solution.

これらの2種の重合方法のうち、反応の許容性の点で好
ましいのは前者の気−液界面上重合の方法である。しか
しながら反応の効率の点では必ずしもこの限りでなく、
用いるモノマーの安定性によって使い分けることができ
る。
Of these two polymerization methods, the former method, polymerization on the gas-liquid interface, is preferred in terms of reaction tolerance. However, this is not necessarily the case in terms of reaction efficiency.
It can be used depending on the stability of the monomer used.

本発明で用いる両親媒性のアミノ酸エステルは下記の一
般式(I)で表わされる。
The amphipathic amino acid ester used in the present invention is represented by the following general formula (I).

(I)0 HEN−CHCXR’ 占 式中、Rは長鎖アルキル基(好ましくは炭素数12〜2
0の直鎖状アルキル基)を含む有機基であり、XR+は
その共役酸のpKaが14以下の離脱基である。Xは一
〇−−3−または−N (R” )−を表わす(R1は
水素原子、アルキル基、アリール基、RzはR1と互い
に連結して環を形成してもよい、この環は更に窒素など
のへテロ原子を含んでいてもよく、また不飽和結合を有
していてもよい)、Xとしては一〇−が好ましい、RI
としては、例えばアリール基(置換アリール基を含む0
例えばフェニル、ナフチル、置換基としては例えばニト
ロ基、ハロゲン原子)、ハロアルキル基(例えばモノク
ロルメチル、ジクロルメチル、トリクロルメチル)、ア
シルアミノ基(例えばN−メチルアセチルアミノ基、N
−メチルベンゾイルアミノ5) 、−N−CR”  (
R’ )(ここでR1、R4は水素原子、アルキル基、
了り−ル基を表わす、このアルキル基、アリール基は置
換基を有するものを含む)、アルケニル基、アルキニル
基が挙げられる。中でも置換アリール基を含むアリール
基が好ましい。
(I)0 HEN-CHCXR' In the formula, R is a long-chain alkyl group (preferably 12 to 2 carbon atoms
XR+ is a leaving group whose conjugate acid has a pKa of 14 or less. X represents 10--3- or -N (R'')- (R1 is a hydrogen atom, an alkyl group, an aryl group, Rz may be linked with R1 to form a ring, this ring may further be may contain a hetero atom such as nitrogen, and may have an unsaturated bond), X is preferably 10-, RI
For example, aryl groups (including substituted aryl groups)
For example, phenyl, naphthyl, substituents such as nitro group, halogen atom), haloalkyl group (e.g. monochloromethyl, dichloromethyl, trichloromethyl), acylamino group (e.g. N-methylacetylamino group, N
-Methylbenzoylamino5), -N-CR" (
R' ) (where R1 and R4 are hydrogen atoms, alkyl groups,
Examples of the alkyl group and aryl group (including those having a substituent), alkenyl group, and alkynyl group, which represent an aryl group. Among these, aryl groups containing substituted aryl groups are preferred.

Rの直鎖状アルキル基としては、炭素数は16〜20で
あることが好ましく、該アルキル基がアミノ酸残基と連
結基を介して結合する場合は、連結基は−NHCO−−
NHCOO− −NHCON)I−−NHCO−3−−0−−3−−C
oo−−0PO3e*たはこれらとアルキル基の組合せ
などが好ましい。
The linear alkyl group for R preferably has 16 to 20 carbon atoms, and when the alkyl group is bonded to an amino acid residue via a linking group, the linking group is -NHCO--
NHCOO- -NHCON)I--NHCO-3--0--3--C
Preferably, oo--0PO3e* or a combination of these and an alkyl group is preferred.

次に本発明のアミノ酸エステル(モノマー)の好ましい
具体例を挙げるがこれらに限定されるものではない。
Next, preferred specific examples of the amino acid ester (monomer) of the present invention will be listed, but the invention is not limited thereto.

NH。N.H.

■−4 X=C1,Br、 Iまたは !−10 X諺Cj!、 Br+ 1またはF しUS HJ  CC−OR’ 以下にR= Cls Hs t (n)である場合の合
成例を挙げ化合物1′ (化合物1においてR−Ctm
Hzv(n))は T、Folda、  L、Gros
、  H,Ringodorf  Makromol。
■-4 X=C1, Br, I or! -10 X proverb Cj! , Br+ 1 or F US HJ CC-OR' Below, synthesis examples when R= Cls Hs t (n) are given and compound 1' (R-Ctm
Hzv(n)) is T, Folda, L, Gros
, H. Ringodorf Makromol.

N11゜ CI!。N11° CI! .

■−2O H1 C+Jst  CHC0−CH震−CI = CHzH
I CtmHzv  CHC0−CHg  c=cu前記の
アミノ酸エステルは下記の合成経路によって合成するこ
とができる。
■-2O H1 C+Jst CHC0-CH earthquake-CI = CHzH
I CtmHzv CHC0-CHg c=cu The above amino acid ester can be synthesized by the following synthetic route.

Chew、  Rapid  Commun、  3 
巻 167  頁 (1982年)に記載の方法に準じ
て合成した。化合物1′の■、pは94°〜98℃、こ
の化合物のrRスペクトル(Nujol)は1760C
I−’ (エステルカルボニル) 3200cm−’、
1640cm−’、1550CIIす(アンモニウム塩
)を示した。
Chew, Rapid Commun, 3
It was synthesized according to the method described in Vol. 167 (1982). ■, p of compound 1' is 94° to 98°C, rR spectrum (Nujol) of this compound is 1760C
I-' (ester carbonyl) 3200 cm-',
1640 cm-', 1550 CII (ammonium salt).

化合物1’ 35g (0,093モル)をテトラヒド
ロフラン200dに溶かし、EhN21g(0,19モ
ル)を加え室温で10分間攪拌した。
35 g (0.093 mol) of Compound 1' was dissolved in 200 d of tetrahydrofuran, 21 g (0.19 mol) of EhN was added, and the mixture was stirred at room temperature for 10 minutes.

その中に、ジーtart−ブチルカーボネート(東京化
成品)243g (0,14モル)を加えそのまま室温
にて10時間攪拌した0反応終了後テトラヒドロフラン
を減圧留去して、酢酸エチルエステル20(ldと水2
00dを加え抽出した。これを2回繰り返し、得られた
有機層を飽和NaC1水にして1回洗浄しNa1SO,
にて乾燥する。有機溶媒を減圧留去すると白色結晶が得
られた。これをエタノール/ヘキサン系で再結晶すると
化合物2′〔化合物2においてR=l+J3?(n))
が41g得られた。
243 g (0.14 mol) of di-tart-butyl carbonate (Tokyo Kasei product) was added thereto, and the mixture was stirred at room temperature for 10 hours. After completion of the reaction, tetrahydrofuran was distilled off under reduced pressure, and ethyl acetate 20 (ld) was added. water 2
00d was added and extracted. This was repeated twice, and the resulting organic layer was washed once with saturated NaCl water, NaSO,
Dry at. White crystals were obtained by distilling off the organic solvent under reduced pressure. When this is recrystallized with ethanol/hexane system, compound 2' [R=l+J3 in compound 2? (n))
41g of was obtained.

m、p、     85〜886 I R3350cm−’ (NH) (Nujol)  1760cm−’ (エステル)1
720cm−’ (ウレタ7) 化合物2’  log (0,024モル)をテトラヒ
ドロフラン: CH3OH怠2:1の混合溶液200d
に溶解しその中に水酸化ナトリウム2g(0゜05モル
)の水溶液10mを滴下した。室温にて12時間攪拌し
、水浴にて冷却しながら希塩酸によりpH−4付近に酸
性化した。水を200d加え、酢酸エチル100dにて
3回抽出し、有機層を水洗してNatSO4にて乾燥し
た。有a溶媒を減圧留去すると結晶が得られた。酢酸エ
チル/ヘキサンにて再結晶を行なうと化合物3′ 〔化
合物3においてR=C+5Hit(n))が7.2g得
られた。
m, p, 85-886 I R3350cm-' (NH) (Nujol) 1760cm-' (ester) 1
720 cm-' (Ureta 7) Compound 2' log (0,024 mol) was dissolved in 200 d of a 2:1 mixed solution of tetrahydrofuran and CH3OH.
10 m of an aqueous solution of 2 g (0.05 mol) of sodium hydroxide was added dropwise into the solution. The mixture was stirred at room temperature for 12 hours and acidified to around pH-4 with dilute hydrochloric acid while cooling in a water bath. 200 d of water was added, and the mixture was extracted three times with 100 d of ethyl acetate, and the organic layer was washed with water and dried over NatSO4. When the aqueous solvent was distilled off under reduced pressure, crystals were obtained. Recrystallization from ethyl acetate/hexane yielded 7.2 g of compound 3' (R=C+5Hit(n) in compound 3).

11、G1.  121〜1241 1 R3400cm−’ (NH) (Nujol) 2800〜2600cm−’ (カル
ボン酸OF+)1720cm−’ (カルボン酸カルボ
ニル)1700Cm−’(ウレタン) 本特許に記載されている長鎖アルキルを有する活性エス
テル類は、化合物1に種々のアルコール体とジシクロへ
キシルカルボジイミドという縮合剤を用いることにより
合成された。
11, G1. 121-1241 1 R3400cm-' (NH) (Nujol) 2800-2600cm-' (Carboxylic acid OF+) 1720cm-' (Carboxylic acid carbonyl) 1700Cm-' (Urethane) Activity with long chain alkyl described in this patent The esters were synthesized by using Compound 1 with various alcohols and a condensing agent called dicyclohexylcarbodiimide.

以下にフェノールを用いた場合を代表例として記す。The case where phenol is used is described below as a representative example.

化合物3’  1.8g (0,0042モル)とフェ
ノール0.4g (0,0043モル)を酢酸エチルエ
ステル100d中に溶解し、ジシクロへキシルカルボジ
イミド(東京化成品)0.95g(0,0046モル)
を加えた。そのまま12時間室温で攪拌した後、水浴に
て冷却し、沈澱物を濾去した。母液をfi縮し、残渣を
シリカゲルカラムクロマトグラフィーにより精製すると
(溶離液ヘキサン:酢酸エチル:8:1)化合物4a(
化醜、p、     125〜129゜ I R3360CII−’ (NH) (NuJol)  1780 C1−’ (エステル)
1695cm−’(ウレタン) 1600cm−’(−置換ベンゼン) 化合物4a  Igを無水クロロホルム10aeに溶解
し水浴にて0℃まで冷却しその中にCFsCOz)Iを
51d加えて0℃で30分間攪拌した。溶媒を減圧留去
し、得られた白色結晶を再度クロロホルム20idに溶
解し5%NaHCO,水溶液lO−を用いて2回クロロ
ホルム層を洗浄した。クロロホルム層を水洗後、Naz
SOaにて乾燥し、溶媒を水浴を用いて減圧留去すると
目的の化合物1−3が0.7g白色結晶として得られた
Compound 3' 1.8 g (0,0042 mol) and phenol 0.4 g (0,0043 mol) were dissolved in 100 d of ethyl acetate, and 0.95 g (0,0046 mol) of dicyclohexylcarbodiimide (Tokyo Kasei Products) was dissolved. )
added. After stirring at room temperature for 12 hours, the mixture was cooled in a water bath and the precipitate was filtered off. The mother liquor was condensed and the residue was purified by silica gel column chromatography (eluent: hexane: ethyl acetate: 8:1) to yield compound 4a (
Ugly, p, 125-129゜I R3360CII-' (NH) (NuJol) 1780 C1-' (Ester)
1695 cm-' (urethane) 1600 cm-' (-substituted benzene) Compound 4a Ig was dissolved in 10 ae of anhydrous chloroform and cooled to 0°C in a water bath. 51 d of CFsCOz)I was added thereto and stirred at 0°C for 30 minutes. The solvent was distilled off under reduced pressure, and the obtained white crystals were dissolved again in chloroform 20id, and the chloroform layer was washed twice with 5% NaHCO and an aqueous solution of lO-. After washing the chloroform layer with water, Naz
After drying over SOa, the solvent was distilled off under reduced pressure using a water bath to obtain 0.7 g of the target compound 1-3 as white crystals.

この化合物は、室温に放置すると分解するのでIRスペ
クトル(第4回に示した)にて構造を確認後精製するこ
となく膜製造工程に供した。
Since this compound decomposes when left at room temperature, the structure was confirmed by IR spectrum (as shown in the 4th section) and then subjected to the membrane manufacturing process without purification.

同様の方法をもって他の化合物を合成した。Other compounds were synthesized using similar methods.

化合物は不安定なのでその中間体4b〜4eの繭、p、
を示す。
Since the compound is unstable, the cocoon of its intermediates 4b to 4e, p,
shows.

本発明において単分子膜または累積膜を被覆する支持体
(基板)は親水性または疎水性の表面をもつ各種の有機
樹脂材や無機材料が用いられる。
In the present invention, various organic resin materials and inorganic materials having hydrophilic or hydrophobic surfaces are used for the support (substrate) covering the monomolecular film or the cumulative film.

これらは平坦なものであってもよいし、多孔性あるいは
繊維状の三次元網目構造をもつものであってもよい。
These may be flat or may have a porous or fibrous three-dimensional network structure.

平坦な材料としては、各種金属等の導電材料ガラス状無
機物(ガラス、石英など)やその他の無機絶縁体、各種
の無機および有機の結晶、無機半導体(S n Ox 
、I nz Os 、Z n Os T iOx、WO
,、GaAs、S Lなど)、有機半導体、有機伝導体
、有機重合体、および上記素材の複合材料など各種の材
料が用いられる。材料は外部の電気的回路に接続された
電橋やその他のセンサー(電界効果トランスジューサー
など)であってもよい。
Flat materials include various metals and other conductive materials, glassy inorganic materials (glass, quartz, etc.), other inorganic insulators, various inorganic and organic crystals, and inorganic semiconductors (S n Ox
, I nz Os , Z n Os T iOx, WO
, GaAs, SL, etc.), organic semiconductors, organic conductors, organic polymers, and composite materials of the above materials. The material may be a bridge or other sensor (such as a field effect transducer) connected to an external electrical circuit.

多孔質の材料は主に透過膜やフィルターとして用いると
きの支持体として有用であり、これらは例えば有機、無
機のミクロポーラスフィルターセルロース樹脂系のフィ
ルム、その他各種の多孔性ポリマーフィルムが含まれる
Porous materials are mainly useful as supports when used as permeable membranes or filters, and include, for example, organic and inorganic microporous filter cellulose resin films and various other porous polymer films.

本発明に使用する単分子膜用展開溶媒としては、クロロ
ホルム、ジクロルメタン、ベンゼン、トルエン、エーテ
ルなどの常用の揮発性非極性有機溶媒の他、これらとア
ルコール、水などの極性親水性溶媒との混合物も用いら
れる。
The developing solvent for monolayers used in the present invention includes commonly used volatile non-polar organic solvents such as chloroform, dichloromethane, benzene, toluene, and ether, as well as mixtures of these with polar hydrophilic solvents such as alcohol and water. is also used.

水面上の単分子膜を基板や支持体の表面上へ被覆するに
は、LB法を含める種々の累積方法を用いることができ
る。垂直式付着法であるLB法については例えば、ジャ
ーナル・オプ・アメリカン・ケミカル・ソサエテ4  
(J、A閣、Chem、Soc、)第57巻、1007
頁(1935年)、ゲインズ(G、L、Ga1ns、J
r)著「インソルブル・モル−ヤーズ・アット・リキッ
ド−ガス・インターフェイス」(Insoluble 
 Monolayers  at  Liquid−G
asInter4aces) J 、(Intersc
ience)、New York (1966年)、あ
るいは福田清成著、材料技術、第4巻、261頁(19
86年)などに説明されている。
Various deposition methods can be used to coat the monolayer on the water surface onto the surface of a substrate or support, including the LB method. Regarding the LB method, which is a vertical deposition method, see, for example, the Journal of the American Chemical Society 4.
(J, A, Chem, Soc,) Volume 57, 1007
Page (1935), Gaines, G.L., Ga1ns, J.
``Insoluble Mol-Yers at Liquid-Gas Interface'' by R)
Monolayers at Liquid-G
asInter4aces) J, (Intersc
New York (1966), or by Kiyonari Fukuda, Materials Technology, Vol. 4, p. 261 (19
1986), etc.

被覆の方法としては、この他水平付着法、回転付着法(
例えば特開昭60−189929号、同61−4239
4号など)等の様々な方法が適用される。累積膜は、単
分子膜を基板上に被覆する操作を繰り返し行うことによ
って得られる。
Other coating methods include horizontal deposition method and rotational deposition method (
For example, JP-A-60-189929, JP-A No. 61-4239
Various methods such as No. 4) are applied. A cumulative film is obtained by repeatedly performing the operation of coating a substrate with a monomolecular film.

効率のよい累積のためには特願昭63−54680号に
記載される改良型水平付着法や特開昭60−20924
5号などに記載の連続式累積法を用いることもできる。
For efficient accumulation, the improved horizontal adhesion method described in Japanese Patent Application No. 63-54680 and Japanese Patent Application Laid-Open No. 60-20924 are recommended.
It is also possible to use the continuous cumulative method described in No. 5 and the like.

以下に本発明の実施例を示すが、本発明の態様はこれら
に限られるものではない。
Examples of the present invention are shown below, but the embodiments of the present invention are not limited thereto.

〔実施例1〕 両親媒性のアミノ酸フェニルエステルとして例示化合物
1−1をジクロルメタン1mMの濃度に溶解して展開溶
液とした。ラングミエアフィルムバランスを用いこの溶
液をpH7,4の10−”Mリン酸緩衝溶液の水相上に
展開して単分子膜を作製した。ベルトドライブ式バリア
ーによってこの単分子膜を製膜直後に101:7分の速
度で圧縮し、単分子膜の20℃における表面圧−分子占
有面積(π−A)特性を測定し第1回のAの結果を得た
。π−A特性より良好な単分子膜を形成することが示さ
れた。この緩衝液水相上で15dyne/1の一定表面
圧のもとで単分子膜を約2時間室温で放置し、重合を進
行させた。この放置の後に改めてπ−A特性を測定した
結果、第1図のBの特性が得られた0重合によって分子
が高密化されて膜の収縮が起こり、破壊圧力も向上して
膜が強化されたことが明らかである。
[Example 1] Exemplary compound 1-1 as an amphipathic amino acid phenyl ester was dissolved in dichloromethane at a concentration of 1 mM to prepare a developing solution. A monomolecular film was prepared by spreading this solution on an aqueous phase of a 10-''M phosphate buffer solution at pH 7.4 using a Langmier film balance. Immediately after the film was formed, this monomolecular film was formed using a belt-driven barrier. The monomolecular film was compressed at a speed of 101:7 minutes, and the surface pressure-molecular occupied area (π-A) characteristics at 20°C were measured, and the results of the first A were obtained. Better than the π-A characteristics. The monomolecular film was left at room temperature for about 2 hours under a constant surface pressure of 15 dyne/1 on this buffer aqueous phase to allow polymerization to proceed. As a result of measuring the π-A characteristics again after leaving it, the characteristics shown in B in Figure 1 were obtained.Due to zero polymerization, the molecules became denser and the membrane contracted, and the bursting pressure also increased and the membrane was strengthened. That is clear.

この重合膜を30dyne/cmまで圧縮した後水平付
着法によって金蒸着ガラス基板上に40Mを累積した。
This polymer film was compressed to 30 dyne/cm, and then 40 M was deposited on a gold-deposited glass substrate by a horizontal deposition method.

累積膜のフーリエ変換赤外吸収スペクトルを全表面上で
反射吸収法によって測定した結果、フェニルエステルの
特性吸収帯が消失し、アミド結合の生成を示す吸収帯が
1650〜1700cm−’に出現し、重合によってポ
リペプチドの生成したことが示された。さらに、シリコ
ン基板上に累積した試料を透過法によって測矩した場合
のスペクトルと比較したところ反射法においては長鎖ア
ルキル基のC−H伸縮の吸収がアミドのC−0伸縮の吸
収に対し顕著に低下しており、長鎖アルキルの軸が基板
面に対し垂直に配向していることがわかり分子配列が維
持されていることが確かめられた。
As a result of measuring the Fourier transform infrared absorption spectrum of the cumulative film on the entire surface by reflection absorption method, the characteristic absorption band of phenyl ester disappeared, and an absorption band indicating the formation of amide bond appeared at 1650 to 1700 cm. It was shown that a polypeptide was produced by polymerization. Furthermore, when we compared the spectra obtained by measuring a sample accumulated on a silicon substrate using the transmission method, we found that in the reflection method, the absorption of C-H stretching of long-chain alkyl groups was more pronounced than the absorption of C-0 stretching of amide. It was found that the long-chain alkyl axes were oriented perpendicular to the substrate surface, confirming that the molecular alignment was maintained.

〔実施例2〕 アミノ酸フェニルエステルとして例示化合物■−3を用
いて実施例1に従って展開溶液を作製し、π−A特性を
20℃において測定した0重合前のモノマーについて第
2図のCの特性が得られた。
[Example 2] A developing solution was prepared according to Example 1 using Exemplary Compound ■-3 as the amino acid phenyl ester, and the π-A characteristics were measured at 20°C. The characteristics of C in Figure 2 for the monomer before polymerization were measured. was gotten.

この単分子膜を35℃で約80分間25 dyne /
 cmの一定表面圧のもとてp)!7.4の水面上に放
置して重合を行い、重合後に再びπ−A特性を測定した
結果、第2図りの特性が得られ重合によって膜の収縮と
強化が起こったことが明らかである。
This monomolecular film was heated at 35°C for about 80 minutes with 25 dyne/
Under a constant surface pressure of cm p)! 7.4 was allowed to stand on the water surface for polymerization, and after the polymerization, the π-A characteristics were measured again. As a result, the characteristics shown in Figure 2 were obtained, and it is clear that the membrane contracted and strengthened due to polymerization.

重合速度を測定するために単分子膜を任意の時間後にS
tウェハ基板上に水平付着法によって約40層累積し、
累積膜の赤外吸収スペクトルを透過法によって測定し、
フェニルエステルの特性吸収(〜1750CI−’)の
減少率を調べた。その結果、10分の反応後には約50
%、60分の反応後には約90%のエステルが消失して
アミド結合を形成したことが示された。
To measure the polymerization rate, the monolayer was stained with S after an arbitrary period of time.
About 40 layers are accumulated on a t-wafer substrate by horizontal deposition method,
The infrared absorption spectrum of the accumulated film was measured by the transmission method,
The rate of decrease in the characteristic absorption (~1750 CI-') of phenyl ester was investigated. As a result, after 10 minutes of reaction, approximately 50
%, it was shown that after 60 minutes of reaction, about 90% of the ester disappeared to form an amide bond.

〔比較例〕[Comparative example]

比較として下記の両親媒性のアミノ酸メチルエステルの
モノマーを用いて実施例1と同様な方法で水面上に形成
した単分子膜の重合を行った。
For comparison, a monomolecular film formed on a water surface was polymerized in the same manner as in Example 1 using the following amphipathic amino acid methyl ester monomer.

水相としてpH7,4の緩衝水溶液を用い、温度は20
°Cと35℃の2点で測定を実施した。上記モノマーの
20℃におけるπ−A特性は例示化合物!−3と類似の
特性を示し、破壊圧力は35dyne/cm付近にみら
れた。20℃および35°Cのそれぞれの水相上でこの
単分子膜を156yne/cmの一定表面圧に保持して
約2時間放置したが、膜の面積変化はほとんど起こらな
かった0次に、実施例2と同様にこれらの膜をSiウェ
ハ上に40層を累積してFT−I Rスペクトルを測定
した。
A buffer aqueous solution with pH 7.4 was used as the aqueous phase, and the temperature was 20
Measurements were carried out at two points: °C and 35 °C. The π-A characteristics of the above monomer at 20°C are exemplary compounds! It showed similar characteristics to -3, and the bursting pressure was around 35 dyne/cm. This monomolecular film was maintained at a constant surface pressure of 156 yne/cm on each of the aqueous phases at 20°C and 35°C for about 2 hours, but there was almost no change in the area of the film. As in Example 2, 40 layers of these films were accumulated on a Si wafer and the FT-IR spectra were measured.

その結果、いずれの温度の系とも累積膜のもつIRスペ
クトルにはエステルの強い吸収(〜1730C11−’
)が残存し、アミド結合の生成はほとんど認められなか
った。さらにこの単分子膜を15dyne/cmの表面
圧下でよりエステルの活性を高めるpH9の水相上で約
20時間室温で放置した後、同様に累積して吸収を測定
したことろ、1600〜1700CII−’にアミド結
合の生成によるとみられる弱いブロードな吸収が認めら
れたが、エステル基の鋭い吸収は依然として残存し、反
応の終結には至らなかった。このアルキルエステル誘導
体の重合速度は本発明のアリールエステル誘導体に比べ
少なくとも2桁以上小さいと考えられる。
As a result, the IR spectrum of the cumulative film in any temperature system showed strong ester absorption (~1730C11-'
) remained, and almost no amide bond formation was observed. Furthermore, after leaving this monomolecular film at room temperature for about 20 hours on an aqueous phase with a pH of 9, which further increases the ester activity, under a surface pressure of 15 dyne/cm, the cumulative absorption was measured in the same manner. A weak, broad absorption was observed in ', which was thought to be due to the formation of an amide bond, but the sharp absorption of the ester group still remained, and the reaction did not come to an end. It is thought that the polymerization rate of this alkyl ester derivative is at least two orders of magnitude lower than that of the aryl ester derivative of the present invention.

〔実施例3〕 実施例1で用いた化合物の重合膜を実施例1と同様な方
法で30 dyne/cm下でグラジ−カーボン電極の
表面に4層〜16層を累積し、電気化学測定にもとづく
透過性の評価を実施した。
[Example 3] A polymer film of the compound used in Example 1 was deposited in 4 to 16 layers on the surface of a grady carbon electrode under 30 dyne/cm in the same manner as in Example 1, and used for electrochemical measurement. Based on this, we conducted a permeability evaluation.

透過の対象として金属イオンを基質に選びKs Fe 
(CN)61mM、KNo、10mMから成る中性の電
解液中に上記の重合膜被覆グラジ−カーボン電極を浸し
て、重合膜を透過するFe3+イオンの速度をFe”/
Fe”の酸化還元電流のサイクリックポルタンメトリー
を行うことによって測定した。電極電位は飽和カロメル
電極に対して制御し、電解はNlガスバージ下で行った
。ポルタモグラムはおよそ30回のくり返し電位走査の
後に測定した。ポルタンメトリーは本発明の重合膜につ
いて行うとともに、重合前のモノマーの単分子膜を展開
直後に電極に累積したものについても行って、両者を比
較した。
Selecting a metal ion as a substrate for permeation, Ks Fe
(CN) 61mM, KNo, 10mM by immersing the above polymer membrane-coated Grazi-carbon electrode in a neutral electrolyte solution consisting of 61mM KNo, 10mM KNo.
The redox current of "Fe" was measured by cyclic portammetry. The electrode potential was controlled relative to a saturated calomel electrode, and the electrolysis was carried out under a Nl gas barge. The portamogram was obtained by performing approximately 30 repeated potential scans. Portammetry was performed on the polymerized film of the present invention, and also on a monomolecular film of the monomer before polymerization that was accumulated on the electrode immediately after spreading, and the two were compared.

第3図A、Bはこの結果を示す。Figures 3A and 3B show the results.

サイクリックポルタモグラムに示された電流値ピーク(
すなわちFe”″の膜透過量に相当)はモノマーの累積
膜の系(第3図A)では8層(曲線2)程度の暦数から
低下が目立ち、16層(曲線3)の累積によって約1/
7に低下したが、重合・膜すなわちポリペプチド膜の系
(第3図B)では既に4層(曲線5)の累積によって約
115の電流低下が起こり、8層(曲線6)では2桁ま
で低下した。
The current value peak shown in the cyclic portammogram (
In other words, the amount of Fe'' permeated through the membrane (corresponding to the amount of Fe'' permeated through the membrane) is noticeable in the monomer cumulative membrane system (Figure 3A), starting from about 8 layers (curve 2), and decreases to about 16 layers (curve 3) due to the accumulation of 16 layers (curve 3). 1/
However, in the polymerized membrane, i.e., polypeptide membrane system (Fig. 3B), the current decrease of about 115 already occurs due to the accumulation of 4 layers (curve 5), and in the case of 8 layers (curve 6), the current decreases to 2 digits. decreased.

すなわち、重合の結果、著しい透過抑制効果かえられた
ことが明らかである。比較例で用いたメチルエステル体
について同様なポルタモグラムを測ったところ、電流抑
制効果は8層累積で1/2〜1/3程度の低下と小さか
った。
That is, it is clear that as a result of polymerization, a significant permeation suppressing effect was obtained. When a similar portamogram was measured for the methyl ester used in the comparative example, the current suppressing effect was small, decreasing by about 1/2 to 1/3 in the case of 8 layers cumulatively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図 Aは例示化合物1のモノマーの単分子膜、Bは
重合後(室温で2時間)の単 分子膜の表面圧カー分子占有面積(π −A)の20℃での等温特性を示す。 第2図 Cは例示化合物3のモノマーの単分子膜、Dは
重合後(室温で2時間)の単 分子膜の20℃でのπ−A等温特性を 示す。 第3図 Aは例示化合物lのモノマーの累積膜に関する
ポルタモグラムであり、lは 膜なし、2は8層から成る膜、3は1 6層から成る膜である。 Bは例示化合物lの重合累積膜に関す るポルタモグラムであり、4は膜なし くlと同L;)、5は4層から成る膜、6は8層から成
る膜である。 第4図 化合物1−3の赤外吸収スペクトルを示すチャ
ートである。
Figure 1 A shows a monomolecular film of the monomer of Exemplary Compound 1, and B shows the isothermal characteristics of the surface pressure of the monomolecular film after polymerization (2 hours at room temperature) and the area occupied by molecules (π - A) at 20°C. . FIG. 2 C shows a monomolecular film of the monomer of Exemplified Compound 3, and D shows the π-A isothermal characteristics of the monomolecular film after polymerization (2 hours at room temperature) at 20°C. FIG. 3A is a portammogram of a cumulative film of the monomer of exemplified compound 1, where 1 is no film, 2 is a film consisting of 8 layers, and 3 is a film consisting of 16 layers. B is a portammogram of a polymerized cumulative film of exemplified compound 1, 4 is the same as 1 without a film;) 5 is a film consisting of 4 layers, and 6 is a film consisting of 8 layers. FIG. 4 is a chart showing the infrared absorption spectrum of Compound 1-3.

Claims (2)

【特許請求の範囲】[Claims] (1)一分子中に疎水部とアミノ酸エステル構造を持つ
親水部を有し、該エステルの離脱基の共役酸のpKaが
14以下である両親媒性化合物を含む単分子膜またはそ
の累積膜を重合することによって得られるポリペプチド
薄膜。
(1) A monomolecular film or a cumulative film thereof containing an amphipathic compound that has a hydrophobic part and a hydrophilic part with an amino acid ester structure in one molecule, and the pKa of the conjugate acid of the leaving group of the ester is 14 or less. A polypeptide thin film obtained by polymerization.
(2)一分子中に疎水部とアミノ酸エステル構造を持つ
親水部を有し、該エステルの離脱基の共役酸のpKaが
14以下である両親媒性化合物を含む単分子膜を気−液
界面に形成し、該界面において重合させた後で支持体上
に移しとるか、または前記単分子膜を支持体上に単分子
膜または累積膜として移しとった後で重合させることを
特徴とするポリペプチド薄膜を担持する材料の製造方法
(2) A monomolecular film containing an amphipathic compound that has a hydrophobic part and a hydrophilic part with an amino acid ester structure in one molecule, and the pKa of the conjugate acid of the leaving group of the ester is 14 or less, is attached to the gas-liquid interface. The method is characterized in that the monomolecular film is formed on a substrate, polymerized at the interface, and then transferred onto a support, or the monomolecular film is transferred onto a support as a monomolecular film or a cumulative film, and then polymerized. A method for producing a material supporting a peptide thin film.
JP3587089A 1989-02-15 1989-02-15 Polypeptide thin film and production of material carrying same Pending JPH02214726A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3587089A JPH02214726A (en) 1989-02-15 1989-02-15 Polypeptide thin film and production of material carrying same
US07/480,699 US5138026A (en) 1989-02-15 1990-02-15 Polypeptide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3587089A JPH02214726A (en) 1989-02-15 1989-02-15 Polypeptide thin film and production of material carrying same

Publications (1)

Publication Number Publication Date
JPH02214726A true JPH02214726A (en) 1990-08-27

Family

ID=12454029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3587089A Pending JPH02214726A (en) 1989-02-15 1989-02-15 Polypeptide thin film and production of material carrying same

Country Status (1)

Country Link
JP (1) JPH02214726A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218404A (en) * 2007-02-08 2008-09-18 Nippon Shokubai Co Ltd Ionic conductive material and usage of same
WO2022021705A1 (en) * 2020-07-30 2022-02-03 齐鲁工业大学 High-potential and super-hydrophilic polypeptide monolayer film, preparation method therefor and use thereof
WO2022021704A1 (en) * 2020-07-30 2022-02-03 齐鲁工业大学 High-potential hydrophobic polypeptide monolayer membrane, preparation method therefor, and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240524A (en) * 1988-03-22 1989-09-26 Mitsubishi Kasei Corp Polyamino acid and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240524A (en) * 1988-03-22 1989-09-26 Mitsubishi Kasei Corp Polyamino acid and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218404A (en) * 2007-02-08 2008-09-18 Nippon Shokubai Co Ltd Ionic conductive material and usage of same
WO2022021705A1 (en) * 2020-07-30 2022-02-03 齐鲁工业大学 High-potential and super-hydrophilic polypeptide monolayer film, preparation method therefor and use thereof
WO2022021704A1 (en) * 2020-07-30 2022-02-03 齐鲁工业大学 High-potential hydrophobic polypeptide monolayer membrane, preparation method therefor, and application thereof

Similar Documents

Publication Publication Date Title
JP4456604B2 (en) Method for forming a polymer film on a conductive or semiconductive surface by electrografting, the resulting surface and their use
JPS62143929A (en) Thin film made of polyimide precursor
US5138026A (en) Polypeptide thin film
US4740396A (en) Process for forming film
JPH02214726A (en) Polypeptide thin film and production of material carrying same
US5198224A (en) Polypeptide thin film
TWI508948B (en) Chemical film on substrate and method of forming the same, method of forming n-hydroxysuccinimide ester-functionalized paracyclophane
US5095090A (en) Polypeptide thin film from amphiphilic compounds
Puggelli et al. Langmuir-Blodgett monolayers and multilayers of stearic acid and stearyl amine
JPH02272034A (en) Polypeptide thin film and production of material carrying same thin film
JPH0157614B2 (en)
JPH02272035A (en) Polypeptide thin film and production of material carrying same thin film
JP6996049B2 (en) A method for producing a composition for forming an active layer of a gas separation membrane, a composition for forming an active layer of a gas separation membrane produced thereby, a method for producing a gas separation membrane, and a gas separation membrane.
US5071915A (en) Fluorine-containing polymeric compound and a method for the preparation thereof
JPH0616833A (en) Production of recycled polyglucan thin film
JPH02129216A (en) Polyurea and film comprising at least one monomolecular film of polyurea
JPH036222A (en) Thin film of optically active polypeptide
JP2003261622A (en) Dicholesteryl diacetylene derivative
JPH03197400A (en) Organic thin film
JPH03221504A (en) Synthesis of cyclodextrin polymer and production of cyclodextrin film
JPH0657306B2 (en) Fluorine-containing polymer compound having cyclodextrin residue, ultrathin film and method for producing the same
JPH03296516A (en) Solid substrate coated with cyclodextrin
JPH0560994B2 (en)
JPS63117003A (en) Cyclodextrin derivative, ultrathin organic film prepared therefrom and its production
JPH06166712A (en) Methanol-insoluble thin film consisting of fluorine-containing high molecular compound