JPH02214466A - Electromagnetic pump - Google Patents

Electromagnetic pump

Info

Publication number
JPH02214466A
JPH02214466A JP3270089A JP3270089A JPH02214466A JP H02214466 A JPH02214466 A JP H02214466A JP 3270089 A JP3270089 A JP 3270089A JP 3270089 A JP3270089 A JP 3270089A JP H02214466 A JPH02214466 A JP H02214466A
Authority
JP
Japan
Prior art keywords
duct
core
electromagnetic
pump
liquid metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3270089A
Other languages
Japanese (ja)
Inventor
Kazuhiro Utsunomiya
宇都宮 一博
Satoshi Sugawara
聡 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3270089A priority Critical patent/JPH02214466A/en
Publication of JPH02214466A publication Critical patent/JPH02214466A/en
Pending legal-status Critical Current

Links

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To simplify an atomic reactor cooling system by providing an outer duct enclosing an inner duct having an inner core, an outer core having an electromagnetic coil provided on its outer periphery, and an eddy current type electromagnetic current meter provided in the inlet or outlet of the outer duct. CONSTITUTION:An outer core 11 and an electromagnetic coil 12 are disposed on the outer periphery of an outer duct 10, an inner duct 14 containing an inner core 13 is disposed at a position axially opposite to the core 11 inside the duct 10, and an annular liquid metal passage is formed to the duct 10. An eddy current type electromagnetic current meter 15 is disposed at the center of the passage at a predetermined distance from the core 11 and the coil 12. Since it is rectified by the duct 10, the flow rate can be measured by measuring the flowing velocity at the center of the duct 14 to simplify the system configuration, thereby increasing the degree of freedoms of designing the disposition.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は冷却材として液体金属を使用する液体金属冷却
型高速増殖炉の冷却材移送・循環に好適した電磁ポンプ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an electromagnetic pump suitable for transporting and circulating coolant in a liquid metal cooled fast breeder reactor that uses liquid metal as a coolant.

(従来の技術) 冷却材としてナトリウムなどの液体金属を使用する高速
増殖炉では原子炉冷却材、すなわち−次冷却材が高いレ
ベルの放射能を帯びるので、−次冷却系は蒸気発生系か
ら隔離される。
(Prior art) In fast breeder reactors that use liquid metals such as sodium as coolants, the reactor coolant, that is, the sub-coolant, has a high level of radioactivity, so the sub-cooling system is isolated from the steam generation system. be done.

一方、タービン発電機を駆動する蒸気を発生するために
液体金属と水との熱交換設備が必要不可欠である。
On the other hand, heat exchange equipment between liquid metal and water is essential to generate the steam that drives the turbine generator.

一次冷却材であるナトリウムなどは空気または水と激し
く化合し易く、その化学反応熱が大きい。
The primary coolant, such as sodium, tends to combine violently with air or water, and the heat of the chemical reaction is large.

したがって、蒸気発生器の蒸気側配管が破損した際に水
と液体金属との反応の影響が炉心に波及しないようにす
るため、−次冷却系と蒸気発生系との間にさらに二次冷
却系が設置されている。
Therefore, in order to prevent the effects of the reaction between water and liquid metal from spreading to the core even if the steam side piping of the steam generator is damaged, a secondary cooling system is added between the secondary cooling system and the steam generation system. is installed.

従来の液体金属冷却型原子炉における冷却系について第
4図を参照して説明する。
A cooling system in a conventional liquid metal cooled nuclear reactor will be explained with reference to FIG.

原子炉容器1の中心には燃料集合体を装荷した炉心2が
配置され、この炉心2を冷却するための液体金属、例え
ばナトリウムなどの冷却材3が流動する。冷却材3は原
子炉容器1内に装備された一次主循環ボンブ4によって
循環される。−次冷却系はこの炉心2を冷却する一次冷
°却材3と、法主循環ポンプ4と、−次冷却材を二次冷
却材と熱交換させる中間熱交換器5とから構成される装
一方、二次冷却系は中間熱交換器5と、図示しないター
ビン発電機に供給する蒸気を生成する蒸気発生器6と、
二次冷却材を循環するための竪型有液面機械式二次主循
環ポンプ7と、これらの機器を接続する第1から第3の
配管8a、 8b、 8cとから構成されている。
A reactor core 2 loaded with fuel assemblies is disposed at the center of a reactor vessel 1, and a coolant 3 such as a liquid metal such as sodium flows to cool the reactor core 2. The coolant 3 is circulated by a primary main circulation bomb 4 installed inside the reactor vessel 1 . -The secondary cooling system is a system consisting of a primary coolant 3 that cools the core 2, a primary circulation pump 4, and an intermediate heat exchanger 5 that exchanges heat between the secondary coolant and the secondary coolant. On the other hand, the secondary cooling system includes an intermediate heat exchanger 5, a steam generator 6 that generates steam to be supplied to a turbine generator (not shown),
It is comprised of a vertical liquid surface mechanical secondary main circulation pump 7 for circulating secondary coolant, and first to third piping 8a, 8b, 8c connecting these devices.

また、二次主循環ポンプ7の出口と中間熱交換器5とを
接続する配管8Cには二次冷却材の循環流量を測定する
ための電磁流量計9が配設されている。
Further, an electromagnetic flowmeter 9 for measuring the circulating flow rate of the secondary coolant is disposed in the pipe 8C connecting the outlet of the secondary main circulation pump 7 and the intermediate heat exchanger 5.

(発明が解決しようとする課題) 従来の二次冷却系の配置構成によれば、二次主循環ポン
プ7と蒸気発生器6が個別に設置され、それらの機器お
よび配管が原子炉補助建屋の空間の大きな割合を占め、
建物およびドレンタンクなどの付帯設備の規模を大型化
する不経済性があった。
(Problems to be Solved by the Invention) According to the conventional arrangement of the secondary cooling system, the secondary main circulation pump 7 and the steam generator 6 are installed separately, and their equipment and piping are located in the reactor auxiliary building. occupies a large proportion of the space,
There was an uneconomical need to increase the size of the building and ancillary equipment such as drain tanks.

また、蒸気発生器6と二次主循環ポンプ7等を接続する
配管8a、 8b、 8cの接続部はいずれも固定され
たアンカー点になるため、各機器間を接続する配管は熱
膨張を吸収する。したがって、その途中に配管ループを
形成したり、蛇行させる必要があり、そのため配管長が
長くなり、配管が占める空間容積が大きく、付帯設備が
大型化する欠点があった。
In addition, since the connections of the piping 8a, 8b, and 8c that connect the steam generator 6 and the secondary main circulation pump 7, etc. are all fixed anchor points, the piping that connects each device absorbs thermal expansion. do. Therefore, it is necessary to form a pipe loop or meander in the middle of the pipe, which has the disadvantage that the length of the pipe becomes long, the space occupied by the pipe becomes large, and the size of the incidental equipment increases.

これに対し、二次主循環ポンプを機械式ポンプから電磁
ポンプへ変更する。また、蒸気発生器内に電磁ポンプを
内蔵した一体型蒸気発生器を採用する等の解決案が提案
されているが、流量計測のための電磁流量計の設置が別
に必要となる。この流量計設置にともなう配管計画上の
制約(設置スペースの確保、適切な長さの直管部の確保
等)があるため、充分な解決案とはなり得ていない。
In response, the secondary main circulation pump will be changed from a mechanical pump to an electromagnetic pump. In addition, solutions have been proposed such as adopting an integrated steam generator with an electromagnetic pump built into the steam generator, but this requires a separate installation of an electromagnetic flowmeter to measure the flow rate. Due to restrictions in piping planning associated with the installation of this flowmeter (securing installation space, securing a straight pipe section of an appropriate length, etc.), this has not been a sufficient solution.

本発明は前記課題を解決するためになされたもので、原
子炉冷却系のシステムおよび配置の簡素化を図るために
流量計測可能な電磁ポンプを提供することにある。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an electromagnetic pump capable of measuring flow rate in order to simplify the system and arrangement of a nuclear reactor cooling system.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は内部鉄心を有する内側ダクトと、この内側ダク
トを包囲した外側ダクトと、この外側ダクトの外周部に
設けられた電磁コイルを有する外部鉄心と、前記外側ダ
クトの入口または出口に設けられた渦電流型電磁流速計
とを具備したことを特徴とする。
(Means for Solving the Problems) The present invention includes an inner duct having an inner core, an outer duct surrounding the inner duct, an outer core having an electromagnetic coil provided on the outer periphery of the outer duct, and the outer core. It is characterized by comprising an eddy current type electromagnetic current meter provided at the inlet or outlet of the duct.

(作用) 本発明の電磁ポンプにおいて、電磁ポンプ内を流れる液
体金属は電磁ポンプの内側ダクトと外側ダクトによって
整流されているため、流速分布が安定しており、電磁ポ
ンプの入口または出口に設けた渦電流型電磁流速計で流
速を計測することによって流量への換算が容易に行うこ
とができる。
(Function) In the electromagnetic pump of the present invention, the liquid metal flowing inside the electromagnetic pump is rectified by the inner duct and outer duct of the electromagnetic pump, so the flow velocity distribution is stable. By measuring the flow velocity with an eddy current electromagnetic current meter, it can be easily converted to a flow rate.

また、渦電流型電磁流速計は極めてコンパクトに形成で
るため、該流速計を設けることによって電磁ポンプが大
型化することはない。
Furthermore, since the eddy current type electromagnetic current meter can be formed extremely compactly, the electromagnetic pump does not become larger by providing the current meter.

従って、電磁流速計の設置に伴なう配管計画上の制約が
解消され、機器・配管の配置設計の自由度が増加し、配
管の延べ長さも短縮化される。
Therefore, restrictions on piping planning associated with the installation of an electromagnetic current meter are eliminated, the degree of freedom in designing the arrangement of equipment and piping is increased, and the total length of piping is also shortened.

(実施例) 本発明に係る電磁ポンプの一実施例を第1図を参照しな
がら説明する。
(Example) An example of an electromagnetic pump according to the present invention will be described with reference to FIG.

第1図において、符号10は外側ダクトを示しており、
この外側ダクト10は液体金属の配管の一部をなしてい
る。この外側ダクト10の外周部には外部鉄心11およ
び電磁コイル12が外側ダクト10を包囲するようにし
て配設されている。一方、外側ダクト10の内側には外
部鉄心11と軸方向に相対する位置に内部鉄心13を内
蔵する内側ダクト14が配設されており、前記外側ダク
ト10との間に環状の液体金属流路を形成している。ま
た、内側ダクト14の一端には前述の外部鉄心11およ
び電磁コイル12によって発生する磁界の影響を受けな
いようにして一定の距離を隔てて渦電流型電磁流速計1
5が液体金属流路の中央部に配設されている。この渦電
流型電磁流速計15の内部には軸方向に3組の図示しな
いコイルが電気的に互いに独立して配設されている。
In FIG. 1, reference numeral 10 indicates an outer duct,
This outer duct 10 forms part of the liquid metal piping. An outer core 11 and an electromagnetic coil 12 are disposed around the outer periphery of the outer duct 10 so as to surround the outer duct 10. On the other hand, an inner duct 14 having a built-in inner core 13 is disposed inside the outer duct 10 at a position facing the outer core 11 in the axial direction. is formed. Further, an eddy current type electromagnetic current meter 1 is installed at one end of the inner duct 14 at a certain distance so as not to be affected by the magnetic field generated by the above-mentioned external iron core 11 and electromagnetic coil 12.
5 is arranged in the center of the liquid metal channel. Inside this eddy current type electromagnetic current meter 15, three sets of coils (not shown) are arranged in the axial direction electrically independent of each other.

一般に、渦電流型電磁流速計はその構造上、電磁流量計
と異なり、流速計の外表面付近における流体の局所的な
流速を検出する計器であるため、系統全体の流量を測定
する事は困難である。しかしながら、本発明の電磁ポン
プにおいては外側ダクトlO内を流動する液体金属の流
速分布が安定しており、かつ、ダクト10によって整流
されているため、ダクト14の中央部の流速を測定する
ことによって容易に流量へ換算することができる。また
、ポンプの入口または出口における流量を計測すること
によって系統全体の流量を知ることができる。
In general, unlike electromagnetic flowmeters due to their structure, eddy current electromagnetic current meters are instruments that detect the local flow velocity of fluid near the outer surface of the current meter, making it difficult to measure the flow rate of the entire system. It is. However, in the electromagnetic pump of the present invention, the flow velocity distribution of the liquid metal flowing in the outer duct 10 is stable and rectified by the duct 10, so that by measuring the flow velocity in the center of the duct 14, It can be easily converted to flow rate. Furthermore, the flow rate of the entire system can be determined by measuring the flow rate at the inlet or outlet of the pump.

尚、本実施例の説明においては説明を容易にするため、
直管型電磁ポンプを例に示したが、上述の効果はセンタ
リターン型電磁ポンプに渦電流型電磁流速計を配設した
場合にも同様の効果が得られる。
In addition, in the description of this example, for ease of explanation,
Although a straight pipe type electromagnetic pump is shown as an example, the same effect as described above can be obtained when an eddy current type electromagnetic current meter is provided in a center return type electromagnetic pump.

次に1本発明の電磁ポンプの応用例として、液体金属冷
却型原子炉のポンプ内蔵型蒸気発生器に本発明の電磁ポ
ンプを組込んだ場合、および液体金属冷却型原子炉の一
次主循環ポンプに本発明の電磁ポンプを使用した場合に
ついて図を用いて説明する。
Next, as an example of application of the electromagnetic pump of the present invention, the electromagnetic pump of the present invention is incorporated into a steam generator with a built-in pump of a liquid metal cooled nuclear reactor, and the primary main circulation pump of a liquid metal cooled nuclear reactor. The case where the electromagnetic pump of the present invention is used will be explained using the drawings.

第2図は本発明に係る電磁ポンプを組込んだポンプ内蔵
型蒸気発生器の模式的概略断面図、第3図は本発明に係
る電磁ポンプを一次主循環ポンプに組込んだ液体金属冷
却型原子炉−次系の模式的概略断面図である。
FIG. 2 is a schematic cross-sectional view of a steam generator with built-in pump incorporating the electromagnetic pump according to the present invention, and FIG. 3 is a liquid metal cooling type steam generator incorporating the electromagnetic pump according to the present invention into the primary main circulation pump. FIG. 2 is a schematic cross-sectional view of a nuclear reactor system.

第2図において1図示しない中間熱交換器において図示
しない原子炉−次系冷却材との熱交換を行った高温の液
体金属は蒸気発生器入口配管16を経て蒸気発生器17
内へ流入し、伝熱管18を介して水・蒸気系との熱交換
を行った後、蒸気発生器出口配管19を経て、図示しな
い中間熱交換器へと戻る。一方、水・蒸気系の冷却材で
ある水は、図示しない給水ポンプより圧送されて水入口
水室20より伝熱管18内へ給水され、伝熱管18内で
液体金属との熱交換により加熱されて蒸気となり、出口
蒸気室21を経て図示しない蒸気タービンへと送られる
。ここで、二次冷却材である液体金属は蒸気発生器17
内の蒸気発生器出口配管19上部に配設された本発明に
係る電磁ポンプ22によって循環駆動および流量制御さ
れる。従って、本発明に係る電磁ポンプをポンプ内蔵型
蒸気発生器に使用することによって二次系を構成する主
要機器は中間熱交換器、蒸気発生器および両機器を接続
するホットレグ、コールドレグの2本の配管のみとなり
、二次系系統構成の簡素化が図れ、配置設計上の自由度
が増大するため、配管長、冷却材インベントリ。
In FIG. 2, the high-temperature liquid metal that has undergone heat exchange with the reactor-subsystem coolant (not shown) in the intermediate heat exchanger (not shown) passes through the steam generator inlet pipe 16 to the steam generator 17.
After flowing into the interior and exchanging heat with the water/steam system via the heat transfer tube 18, it returns to the intermediate heat exchanger (not shown) via the steam generator outlet piping 19. On the other hand, water, which is a water/steam-based coolant, is pumped by a water supply pump (not shown), supplied into the heat transfer tube 18 from the water inlet water chamber 20, and heated by heat exchange with liquid metal within the heat transfer tube 18. It becomes steam and is sent to a steam turbine (not shown) through the outlet steam chamber 21. Here, the liquid metal that is the secondary coolant is supplied to the steam generator 17.
The circulation is driven and the flow rate is controlled by an electromagnetic pump 22 according to the present invention disposed above the steam generator outlet piping 19 inside. Therefore, when the electromagnetic pump according to the present invention is used in a steam generator with a built-in pump, the main equipment that constitutes the secondary system is an intermediate heat exchanger, a steam generator, and two hot legs and cold legs that connect both equipment. Only piping is required, which simplifies the secondary system configuration and increases the degree of freedom in layout design.

建物容積等、プラント全体の物量削減を可能とする。ま
た、ポンプの入口または出口流量をリアルタイムで計測
できるため、二次系の運転制御性が向上し、プラント全
体の信頼性向上に寄与し得るものである。
Enables reduction of building volume, etc. of the entire plant. Furthermore, since the inlet or outlet flow rate of the pump can be measured in real time, the operation controllability of the secondary system is improved, which can contribute to improving the reliability of the entire plant.

第3図は本発明に係る電磁ポンプをタンク型炉の一次主
循環ポンプに使用した例を示している。
FIG. 3 shows an example in which the electromagnetic pump according to the present invention is used as a primary main circulation pump of a tank type furnace.

同図において、原子炉冷却材である液体金属は炉心2で
発生する熱を吸収して高温となり、中間熱交換器5内で
二次冷却材と熱交換し冷却された後、再び炉心2へと戻
っていく。この原子炉冷却材は原子炉容器1内に装備さ
れた一次主循環ポンプによって循環される。このような
型式の原子炉においては炉心2の上方に配設された炉心
上部機構23内の下部に配設される図示しない炉心出口
流速計による局所流量の測定は実施されているが、原子
炉冷却材全体の流量は把握することが困難である。
In the figure, the liquid metal that is the reactor coolant absorbs heat generated in the reactor core 2 and becomes high temperature, and after being cooled by exchanging heat with the secondary coolant in the intermediate heat exchanger 5, it is returned to the reactor core 2. and goes back. This reactor coolant is circulated by a primary main circulation pump installed within the reactor vessel 1. In this type of reactor, the local flow rate is measured by a core outlet current meter (not shown) installed at the bottom of the upper core mechanism 23 installed above the reactor core 2. It is difficult to determine the overall coolant flow rate.

これに対して本発明に係る電磁ポンプを一次主循環ポン
プとして使用すれば、ポンプ出口における冷却材の流量
、すなわち原子炉冷却材全体の循環流量が把握でき、前
述の炉心出口流速計と併用することによって全体流量と
局所流量を同時に把握できる。そのため、よりきめ細か
い原子炉の運転制御が可能となり、。プラント全体の信
頼性向上に寄与することができる。
On the other hand, if the electromagnetic pump according to the present invention is used as a primary main circulation pump, the flow rate of the coolant at the pump outlet, that is, the circulation flow rate of the entire reactor coolant can be grasped, and it can be used in conjunction with the core outlet current meter described above. This makes it possible to grasp the overall flow rate and local flow rate at the same time. As a result, more fine-grained nuclear reactor operation control becomes possible. It can contribute to improving the reliability of the entire plant.

〔発明の効果〕〔Effect of the invention〕

本発明によれば系統構成の簡素化が図れ、配置設計の自
由度が増加する。また、その結果として配管長、冷却材
インベントリ、建物容積等の削減が可能となり、原子力
発電プラントの建設コスト低減に大きな効果が得られる
。さらに、原子炉の運転制御性が向上するため、原子力
発電プラントの信頼性向上に大きく貢献することができ
る。
According to the present invention, the system configuration can be simplified and the degree of freedom in layout design can be increased. Furthermore, as a result, it becomes possible to reduce the length of piping, coolant inventory, building volume, etc., which has a significant effect on reducing the construction costs of nuclear power plants. Furthermore, since the operational controllability of the nuclear reactor is improved, it can greatly contribute to improving the reliability of nuclear power plants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電磁ポンプの一実施例を示す模式
的概略断面図、第2図は本発明に係る電磁ポンプを組込
んだポンプ内蔵型蒸気発生器の模式的概略断面図、第3
図は本発明に係る電磁ポンプを一次主循環ポンプに使用
した液体金属冷却型原子炉−次系の模式的概略断面図、
第4図は従来の液体金属冷却型原子炉の冷却系の系統構
成を示す概略系統図である。 10・・・外側ダクト   11・・・外部鉄心12・
・電磁コイル   13・・・内部鉄心14・・内側ダ
クト  15・・・渦電流型電磁流速計代理人 弁理士
 猪股祥晃(ほか1名)低届城肺4鷹 第 図 竿 二次ンむp#入”て=フ′ 茶
FIG. 1 is a schematic cross-sectional view showing an embodiment of an electromagnetic pump according to the present invention, and FIG. 2 is a schematic cross-sectional view of a steam generator with a built-in pump incorporating the electromagnetic pump according to the present invention. 3
The figure is a schematic cross-sectional view of a secondary system of a liquid metal cooled nuclear reactor using an electromagnetic pump according to the present invention as a primary main circulation pump.
FIG. 4 is a schematic system diagram showing the system configuration of a cooling system of a conventional liquid metal cooled nuclear reactor. 10...Outer duct 11...Outer core 12.
・Electromagnetic coil 13...Inner core 14...Inner duct 15...Eddy current type electromagnetic current meter Agent Patent attorney Yoshiaki Inomata (and one other person) #入”te=fu′ Tea

Claims (1)

【特許請求の範囲】[Claims] 内部鉄心を有する内側ダクトと、この内側ダクトを包囲
した外側ダクトと、この外側ダクトの外周部に設けられ
た電磁コイルを有する外部鉄心と、前記外側ダクトの入
口または出口に設けられた渦電流型電磁流速計とを具備
したことを特徴とする電磁ポンプ。
An inner duct having an inner core, an outer duct surrounding the inner duct, an outer core having an electromagnetic coil provided on the outer periphery of the outer duct, and an eddy current type provided at the inlet or outlet of the outer duct. An electromagnetic pump characterized by being equipped with an electromagnetic current meter.
JP3270089A 1989-02-14 1989-02-14 Electromagnetic pump Pending JPH02214466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3270089A JPH02214466A (en) 1989-02-14 1989-02-14 Electromagnetic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3270089A JPH02214466A (en) 1989-02-14 1989-02-14 Electromagnetic pump

Publications (1)

Publication Number Publication Date
JPH02214466A true JPH02214466A (en) 1990-08-27

Family

ID=12366129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3270089A Pending JPH02214466A (en) 1989-02-14 1989-02-14 Electromagnetic pump

Country Status (1)

Country Link
JP (1) JPH02214466A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025917A (en) * 2008-06-19 2010-02-04 Central Res Inst Of Electric Power Ind Method for measuring discharge quantity of electromagnetic pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025917A (en) * 2008-06-19 2010-02-04 Central Res Inst Of Electric Power Ind Method for measuring discharge quantity of electromagnetic pump

Similar Documents

Publication Publication Date Title
JPH02214466A (en) Electromagnetic pump
US5114667A (en) High temperature reactor having an improved fluid coolant circulation system
JP2010066191A (en) Intermediate heat exchanger and fast breeder reactor plant
JPH08184691A (en) Heat valve of heat exchange controller
JPH0325396A (en) Fast breeder reactor
JP3523634B2 (en) Steam generator with built-in intermediate heat exchanger
JP2539405B2 (en) Liquid metal cooling heat exchanger
JP2539534B2 (en) Cooling device for electromagnetic induction equipment
US4676947A (en) Device for thermal protection of a component of a fast-neutron nuclear reactor
JPS6358290A (en) Cooling device for liquid metal cooling type reactor
JPH07117591B2 (en) Nuclear reactor plant
JPH07260994A (en) Intermediate heat exchanger with built-in electromagnetic pump
JPS6154495A (en) Fast breeder reactor
US3434926A (en) Indirect-cycle integral steam cooled nuclear reactor
JP4660125B2 (en) Intermediate heat exchanger with built-in electromagnetic pump
JP3110901B2 (en) Fast breeder reactor
JP2915469B2 (en) Liquid metal cooled reactor cooling system
JPS6027895A (en) Fast breeder reactor
JPS63193092A (en) Cooling device for liquid-metal cooling type reactor
JPH03122593A (en) Tank type fast bredder reactor
JPS62108901A (en) Cooling device for liquid-metal cooling type reactor
JPS61207996A (en) Fast reactor
JPH0660721B2 (en) Steam generator
JPH049274B2 (en)
Cage Jr Electromagnetic pumps for large pool-concept LMFBR