JPH02214372A - Color picture reader - Google Patents

Color picture reader

Info

Publication number
JPH02214372A
JPH02214372A JP1035694A JP3569489A JPH02214372A JP H02214372 A JPH02214372 A JP H02214372A JP 1035694 A JP1035694 A JP 1035694A JP 3569489 A JP3569489 A JP 3569489A JP H02214372 A JPH02214372 A JP H02214372A
Authority
JP
Japan
Prior art keywords
diffraction grating
grating
sensor
blazed diffraction
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1035694A
Other languages
Japanese (ja)
Other versions
JPH0546139B2 (en
Inventor
Takehiko Nakai
武彦 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1035694A priority Critical patent/JPH02214372A/en
Priority to US07/479,606 priority patent/US5113067A/en
Priority to EP90102903A priority patent/EP0383307B1/en
Priority to DE69020378T priority patent/DE69020378T2/en
Publication of JPH02214372A publication Critical patent/JPH02214372A/en
Publication of JPH0546139B2 publication Critical patent/JPH0546139B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To attain reduction in color slurring and compactness of the reader by arranging a linear blazed diffraction grating in an optical path between an image forming optical system and a sensor and varying the thickness of the diffraction grating in response to the incident picture angle. CONSTITUTION:A diffraction grating 2 comprising stepwise thickness parts d1 and d2 periodically in the direction Y is formed on a diffraction grating base 1a in a blazed diffraction grating 1. Then the thickness parts d1 and d2 are varied in the direction x as shown in the x-z cross section in figure. Then, the picture information light is led to a 3-color decomposition linear blazed diffraction grating 1 via an image forming optical system 9. Then the information light is separated into 3 colors of luminous flux in the so-called color reading and the image is formed on the sensor arrays 4-6 on the monolithic 3 line sensor 3. Since the grating thickness of the linear blazed diffraction grating is adjusted in response to the picture angle of an incident luminous flux in this way, no deviation of the information light having a picture angle in the wavelength distribution, that is, no color slurring takes place.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は固体撮像素子を用いてカラー画像を読取る装置
、特に格子厚が適当に変化させられている1次元ブレー
ズド回折格子を介して被写体からの光を複数の固体撮像
素子アレイに導くカラー画像読取り装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an apparatus for reading color images using a solid-state image pickup device, and in particular, a device for reading a color image using a solid-state image pickup device, in particular, a device for reading a color image from a subject through a one-dimensional blazed diffraction grating whose grating thickness is appropriately changed. The present invention relates to a color image reading device that guides light to a plurality of solid-state image sensor arrays.

[従来の技術」 従来、原稿等の被写体を副走査方向にライン走査しその
画像を固体撮像素子(CCDセンサー等)アレイでカラ
ー読取りするものとして、第9図に示す如き装置が知ら
れている。同図において、照明用光源(不図示)からの
光で照明された原稿面18の一部上の情報は、結像光学
系19を介してスリーピース(3P)プリズム20で3
色に分解された後、3つの1ラインCCDセンサー21
.22.23に結像されて読取られる。
[Prior Art] Conventionally, a device as shown in FIG. 9 has been known as a device that scans a subject such as a document in a line in the sub-scanning direction and reads the image in color with an array of solid-state image sensors (CCD sensors, etc.). . In the figure, information on a part of the document surface 18 illuminated by light from an illumination light source (not shown) is transmitted to a three-piece (3P) prism 20 via an imaging optical system 19.
After being separated into colors, three 1-line CCD sensors 21
.. 22 and 23 are imaged and read.

[発明が解決しようとする課M] しかし乍ら、この従来例では、センサーが独立に3つ必
要であり、また、通常、3Pプリズム20は製作上高精
度が要求されるのでコストが高(付(、更に、集光光束
と各センサー21.22.23との調整が3つ独立に必
要であり、製作の困難度が高いなどという欠点もあった
[Problem M to be solved by the invention] However, in this conventional example, three independent sensors are required, and the 3P prism 20 usually requires high precision in manufacturing, so the cost is high ( (Furthermore, it required three independent adjustments between the condensed light beam and each sensor 21, 22, and 23, making it difficult to manufacture.)

そこで、センサーアレイを、3ライン、同一基板上に平
行に有限距離能して作り付け、モノリシックな3ライン
センサーとして3ラインを1素子上に形成することが考
えられるこの3ラインセンサー24を第10図に示す0
図中、3ライン25.26.27間の距離Z1.Zaは
様々の製作上の条件から、例えば0.1〜0.2mm程
度であり、各単素子28の幅a、bは例えば7μmX7
μm。
Therefore, it is possible to fabricate a sensor array in three lines parallel to each other over a finite distance on the same substrate, and form a monolithic three-line sensor with three lines on one element. This three-line sensor 24 is shown in FIG. 10. 0 shown in
In the figure, the distance Z1 between the three lines 25, 26, and 27. Due to various manufacturing conditions, Za is, for example, about 0.1 to 0.2 mm, and the widths a and b of each single element 28 are, for example, 7 μm×7
μm.

10μmX1oμm程度である。It is approximately 10 μm×10 μm.

こうしたモノリシック3ラインセンサーを受光素子に用
いたカラー画像読取り装置として公知な構成を第11図
に示す。同図において、原稿面18の情報を副走査方向
にライン走査して読取るにあたり、原稿面18からの光
は、結像光学系19を介して、2色性を有する選択透過
膜が付加された色分解用ビームスプリッタ−30,31
で3色の3光束に分解、分離された後、モノリシック3
ラインセンサー32上の対応するセンサーアレイ343
5.36に集光される。
FIG. 11 shows a known configuration of a color image reading device using such a monolithic three-line sensor as a light receiving element. In the figure, when reading the information on the document surface 18 by line scanning in the sub-scanning direction, light from the document surface 18 is passed through an imaging optical system 19 to which a selective transmission film having dichroism is added. Beam splitter for color separation-30, 31
After being decomposed and separated into 3 light beams of 3 colors, the monolithic 3
Corresponding sensor array 343 on line sensor 32
The light is focused at 5.36.

しかし、第11図に示す如く、ビームスプリッタ−30
,31の板厚をXとしたとき、センサー32上のアレイ
間距離は212 xとなり、前述の様にアレイ間距離(
212x )を0.1〜0.2mm程度とすると、板厚
(X)は35〜70μm程度ということになる、この数
値は、必要とされる面の平坦度等のことを考えると、製
作上容易ではない。
However, as shown in FIG.
, 31 is X, the distance between the arrays on the sensor 32 is 212x, and as mentioned above, the distance between the arrays (
212 It's not easy.

更に、こうしたモノリシックな3ラインセンサーを用い
た別の構成のカラー画像読取り装置も公知である。この
構成では、上述したモノリシック3ラインセンサーに対
応し得るような色分解1分離手段として、ブレーズド回
折格子を用いる光学系が提供される。
Further, color image reading devices having other configurations using such a monolithic three-line sensor are also known. In this configuration, an optical system using a blazed diffraction grating is provided as a color separation means that can be used for the above-mentioned monolithic three-line sensor.

しかし、この構成では、被写体の1点からの光について
のみ考慮され、主走査方向に有限な読取り幅が被写体面
に存在することによる所謂画角特性については何ら考慮
されていない。
However, in this configuration, only the light from one point on the subject is considered, and no consideration is given to so-called view angle characteristics due to the existence of a finite reading width on the subject plane in the main scanning direction.

従って、本発明の目的は、上記の問題点を解決すべ(、
特別の形態を有する1次元ブレーズド回折格子を用いた
カラー画像読取り装置を提供することにある。
Therefore, an object of the present invention is to solve the above problems (
An object of the present invention is to provide a color image reading device using a one-dimensional blazed diffraction grating having a special configuration.

[発明の概要] 本発明によるカラー読取り装置においては、被写体から
の角度を持った光束が、結像光学系及び1次元ブレーズ
ド回折格子を介して、異なる波長域から成る複数の光束
に分離され、夫々、センサー上の応対するセンサーアレ
イに結像する様に構成され、且つ1次元ブレーズド回折
格子の格子厚が当該格子に入射する光の主光線の画角に
対応して変えられ、それにより色分解される3光束の波
長域が、夫々、全画角に亙って実質的に等しくなってい
る。
[Summary of the Invention] In the color reading device according to the present invention, an angled light beam from an object is separated into a plurality of light beams each having different wavelength ranges through an imaging optical system and a one-dimensional blazed diffraction grating, The grating thickness of the one-dimensional blazed diffraction grating is configured to be imaged onto the corresponding sensor array on the sensor, and the grating thickness of the one-dimensional blazed diffraction grating is changed corresponding to the angle of view of the chief ray of light incident on the grating, thereby changing the color. The wavelength ranges of the three luminous fluxes to be resolved are substantially equal over the entire angle of view.

[実施例] 第1図と第2図は本発明の一実施例に使用される1次元
ブレーズド回折格子1を示す、この種のブレーズド回折
格子については、Applied  0ptics誌、
第17巻、第15号、2273〜2279ページ(19
78年8月1日号)に示されている。
[Example] FIGS. 1 and 2 show a one-dimensional blazed diffraction grating 1 used in an embodiment of the present invention. This type of blazed diffraction grating is described in Applied Optics magazine,
Volume 17, No. 15, pages 2273-2279 (19
(August 1, 1978 issue).

ブレーズド回折格子1は、回折格子基板la、I:にX
方向に周期的に階段状の回折格子2(厚みd、と厚みd
2の部分から成る)が形成されている。そして、回折格
子2の厚みd9.d2は、第1図と第2図のx−z断面
を示す部分に示されているように、X方向に沿って変化
している。
The blazed diffraction grating 1 has a diffraction grating substrate la, I:
The diffraction grating 2 is periodically stepped in the direction (thickness d, and thickness d
(consisting of two parts) is formed. Then, the thickness d9 of the diffraction grating 2. d2 changes along the X direction, as shown in the xz section of FIGS. 1 and 2.

第3図に、上記1次元ブレーズド回折格子1を含むカラ
ー読取り光学系が示されている、同図において、原稿面
8上の画像情報は、この原稿面8と結像光学系9との間
に配置されるミラー(不図示)などにより副走査方向に
ライン走査され、そして画像情報光は結像光学系9を介
して、3色分解用1次元ブレーズド回折格子1に導かれ
る。ここで、情報光は所謂カラー読取りにおける3色(
例えばRG、B)の光束に分離された後、モノリシック
3ラインセンサー3上の各センサーアレイ4.5,6上
に結像される。3ラインセンサー3のセンサー面はライ
ン走査方向(副走走査方向)と平行に配置されている。
FIG. 3 shows a color reading optical system including the one-dimensional blazed diffraction grating 1. In the figure, image information on the document surface 8 is transmitted between the document surface 8 and the imaging optical system 9. The image information light is line-scanned in the sub-scanning direction by a mirror (not shown) or the like disposed in the image information system 9, and then guided to the one-dimensional blazed diffraction grating 1 for three-color separation via the imaging optical system 9. Here, the information light is the three colors (
For example, after being separated into RG and B light beams, images are formed on the respective sensor arrays 4, 5 and 6 on the monolithic 3-line sensor 3. The sensor surface of the three-line sensor 3 is arranged parallel to the line scanning direction (sub-scanning direction).

ここで、本発明の原理をより良(理解するために、1次
元ブレーズド回折格子が通常のものであるとき、第3図
の構成において如何なる問題が起こるかを詳説する。
Now, in order to better understand the principle of the present invention, we will explain in detail what problems occur in the configuration of FIG. 3 when a one-dimensional blazed diffraction grating is a normal one.

実際の読取り装置を構成する上で、第3図(a)に示す
通り、有限な読取り幅Wが必要であり、よって結像光学
系9に対して画角θが存在する。従って、主走査断面に
て、結像光学系9の光軸外の点からの光束は、その主光
線がθなる角度で結像光学系9に入射し、第4図に示す
如(その射出瞳10からθ′の角度で射出する6通常光
学系ではθ与θ′である。
In configuring an actual reading device, as shown in FIG. 3(a), a finite reading width W is required, and therefore an angle of view θ exists with respect to the imaging optical system 9. Therefore, in the main scanning cross-section, the light beam from a point off the optical axis of the imaging optical system 9 enters the imaging optical system 9 at an angle of θ, and its exit emerges as shown in FIG. In a normal optical system, the light exits from the pupil 10 at an angle of θ'.

このような画角を持った光束の主光線が第5図と第6図
に示すような一定の格子厚d1、dヨを持つブレーズド
回折格子1′にθ′の角度を成して入射すると、主光線
が垂直入射する場合と格子2′内の実光路長が異なり1
両者のブレーズ波長がずれるという問題が起こる。
When the principal ray of a luminous flux having such an angle of view is incident at an angle of θ' into a blazed diffraction grating 1' having a constant grating thickness d1 and dyo as shown in Figs. 5 and 6, , the actual optical path length within the grating 2' is different from that when the chief ray is perpendicularly incident 1
A problem arises in that the blaze wavelengths of the two are shifted.

これは、ブレーズ波長んと厚みd、とに以下の関係があ
るからである。
This is because the following relationship exists between the blaze wavelength and the thickness d.

1二 λ   (i=1.2) ここでΦ、は位相差(rad)、n2は波長先の光に対
する格子媒質の屈折率である。
12λ (i=1.2) Here, Φ is the phase difference (rad), and n2 is the refractive index of the grating medium for light at the wavelength ahead.

即ち、所定次数の回折光について所望の位相差Φ、を得
る波長えは、第6図のように格子厚d、が一定であれば
、画角が大きくなるにつれて即ちθ′が太き(なるにつ
れて短波長側にシフトする。これは、幅Wを持つlライ
ン上の画像情報を読取るに際し軸上から軸外に向けて各
センサーアレイに捕捉される光の波長域の波長分布がず
れることを意味し、結果的に色ズレを引き起こす。
That is, the wavelength range for obtaining the desired phase difference Φ for the diffracted light of a predetermined order is such that if the grating thickness d is constant as shown in FIG. This means that when reading image information on an l line with a width W, the wavelength distribution of the wavelength range of light captured by each sensor array shifts from on-axis to off-axis. This results in color misalignment.

例えば、第5図と第6図に示す2段の階段状構造から成
るブレーズド回折格子1″の場合、dl =3100n
m、d* =6200nm、n1=1.5として、θ′
=oの軸上では1次回折光ビレーズ波長は516.7n
m (Φ6=6π、Φ2=12πとする)となるがθ′
=20°の軸外ではこの波長が4923nmとなって約
24nmシフトしてしまう。
For example, in the case of a blazed diffraction grating 1'' consisting of a two-stage stepped structure shown in FIGS. 5 and 6, dl = 3100n
m, d* = 6200 nm, n1 = 1.5, θ'
= On the axis of o, the first-order diffraction beam beam wavelength is 516.7n
m (Φ6=6π, Φ2=12π), but θ'
Off-axis at =20°, this wavelength becomes 4923 nm, which is a shift of about 24 nm.

そこで、上記の位相差Φ、の式から分かるように、画角
θ′に対応して回折格子の厚みdlを変えれば全画角に
亙ってブレーズ波長えを一定にできることに着目する。
Therefore, we will focus on the fact that, as can be seen from the above equation for the phase difference Φ, if the thickness dl of the diffraction grating is changed in accordance with the angle of view θ', the blaze wavelength can be made constant over the entire angle of view.

これが本発明の考え方である0例えば、前述の如(、d
l =3100nm、d* =6200nm。
This is the idea of the present invention. For example, as mentioned above (, d
l = 3100 nm, d* = 6200 nm.

nλ=1.5とすると、θ’=oではΦ1=6π、Φ8
=12πとしてブレーズ波長は516.7nmであった
が、θ’=20”でもブレーズ波長がこの値になるよう
にd、とd□を決定すると、d r = 3253 、
7 n m。
If nλ=1.5, Φ1=6π, Φ8 at θ'=o
= 12π, the blaze wavelength was 516.7 nm, but if d and d□ were determined so that the blaze wavelength would be this value even when θ' = 20'', dr = 3253,
7 nm.

da = 6507.4 nmとなる。da = 6507.4 nm.

従って1画角θ’=20”の主光線が回折格子1を通過
する位置での格子厚d+−diを、前記の如く厚(すれ
ば、軸上と軸外でブレーズ波長を一定に保つことができ
る。第1図と第2図に示す1次元ブレーズド回折格子1
の格子厚d+、daは、この様に軸上から軸外へ行(に
つれて厚くなるように変化している。
Therefore, the grating thickness d+-di at the position where the principal ray of one view angle θ'=20'' passes through the diffraction grating 1 is set to the thickness as described above (so that the blaze wavelength is kept constant on-axis and off-axis). One-dimensional blazed diffraction grating 1 shown in Figures 1 and 2
In this way, the lattice thicknesses d+ and da change from on-axis to off-axis (to become thicker).

次に、画角θ斡θ′に起因する別の問題を考える。Next, consider another problem caused by the angle of view θ□θ′.

ブレーズド回折格子1から3ラインセンサー3までの光
路長は、第4図に示す如く、軸上光線では10となるが
、入射角θの軸外光線では射出瞳10から射出角θ′で
出射してくるので、当該距離は1 l= l o / 
COSθ′〉1゜どなる。
As shown in FIG. 4, the optical path length from the blazed diffraction grating 1 to the three-line sensor 3 is 10 for on-axis rays, but for off-axis rays at an incident angle θ, it exits from the exit pupil 10 at an exit angle θ'. Therefore, the distance is 1 l= l o /
COSθ′〉1° roar.

一方、ブレーズド回折格子lにおける回折角αは、第5
図、第7図において、Psinα:え(P:格子ピッチ
、ん:波長)である以上より、センサー素子面における
色分解光間の143図(b)と第7図に示す分離距離Z
は、軸上でZ=to tanαとなり、軸外でZ=L+
 tana=lo tana/cosθ′となって5両
者は一致しない、この様に、軸上と軸外ではセンサー素
子面での分離距離が異なり、センサーアレイ間隔が一定
である3ラインセンサーであると、3色の光束が全画角
にわたって対応するセンサーアレイ45.6に正しく結
像しないことになる。
On the other hand, the diffraction angle α in the blazed diffraction grating l is the fifth
7, Psinα: E (P: lattice pitch, N: wavelength) From the above, the separation distance Z between the color separated lights on the sensor element surface shown in FIG. 143(b) and FIG.
is Z=to tanα on the axis, and Z=L+ off the axis.
tana=lo tana/cos θ' and 5The two do not match.In this way, the separation distance on the sensor element surface is different between on-axis and off-axis, and in a 3-line sensor where the sensor array spacing is constant, The three-color light beams will not be correctly imaged onto the corresponding sensor array 45.6 over the entire field of view.

例えば、P=60um、ん=540nm (グリーン)
、画角θ押θ′=20deg、1o=20mmとした場
合、分離距離の軸上と軸外でのズレは約11.5μm程
度となり、前述の素子サイズ7μm X 7μm% l
oum×10μmと比較すると、光束の結像中心がセン
サー素子中央から大きく外れてしまう。
For example, P=60um, N=540nm (green)
When the angle of view θ = 20 deg and 1o = 20 mm, the deviation of the separation distance between on-axis and off-axis is about 11.5 μm, and the above-mentioned element size is 7 μm × 7 μm% l
When compared with oum×10 μm, the center of image formation of the light beam is far away from the center of the sensor element.

画角θを小さくすればこのずれは小さくなる理屈である
が、装置のコンパクト化から画角θをいたずらに小さく
することはできない。
The theory is that this deviation can be reduced by reducing the angle of view θ, but in order to make the device more compact, the angle of view θ cannot be reduced unnecessarily.

そこで、例えば、Psinα=えにおける格子ピッチP
を軸上と軸外で変えることにより1次回折光の回折角α
を変え、センサー3のセンサーアレイ4.5,6上に3
色の光束が全画角に亙って正しく結像する様にする。
Therefore, for example, the lattice pitch P at Psinα=E
By changing on-axis and off-axis, the diffraction angle α of the first-order diffracted light is
3 on sensor array 4, 5, 6 of sensor 3.
To ensure that colored light beams form images correctly over the entire angle of view.

前記の如く、軸上での格子ピッチPをP=60gm、λ
=540nm% io =20mmとした場合、θ崎θ
′=20degの光束の主光線が回折格子に入射する位
置での格子ピッチはP=63.85amとなる。
As mentioned above, the grating pitch P on the axis is P=60gm, λ
=540nm% io =20mm, θzakiθ
The grating pitch at the position where the chief ray of the luminous flux of '=20 deg is incident on the diffraction grating is P=63.85 am.

しかし、本実施例の1次元ブレーズド回折格子1は画角
に対応して格子厚d1.dxを変えているので、その上
格子ピッチも変えると格子形状が2次元的で複数なもの
となり、製作が相当困難となる。
However, the one-dimensional blazed diffraction grating 1 of this embodiment has a grating thickness of d1 depending on the angle of view. Since dx is changed, if the grating pitch is also changed, the grating shape becomes two-dimensional and plural, making manufacturing considerably difficult.

そこで、第8図に示す如(、センサーアレイ4.5,6
上での結像位置のずれの補正は3ラインセンサー3を湾
曲させ、1次元ブレーズド回折格子lとセンサー3間の
光路長を全画角に亙って一定に保つことにより、軸上と
軸外での結像位置のずれをなくしてもよい。この様にす
れば、画角な持った情報光も、比較的簡単な構成のブレ
ーズド回折格子1、良好に色分解、分離、結像されるた
め、装置の生産性の向上並びにコストダウンができる。
Therefore, as shown in FIG.
To correct the deviation of the image formation position on the above axis, the 3-line sensor 3 is curved and the optical path length between the one-dimensional blazed diffraction grating l and the sensor 3 is kept constant over the entire angle of view. It is also possible to eliminate the deviation of the imaging position outside. In this way, information light having a wide angle of view can be well separated, separated, and imaged using the blazed diffraction grating 1, which has a relatively simple configuration, so it is possible to improve the productivity of the device and reduce costs. .

[発明の効果] 以上説明した様に、本発明においては、入射光束の画角
に対応して1次元ブレーズド回折格子の格子厚を調整し
ているので、画角を持つ情報光も波長分布のずれすなわ
ち色ズレな(、良好に、色分解、分離されて対応するセ
ンサーアレイに結像され、コンパクトで安価なカラー画
像読取り装置が得られる。
[Effects of the Invention] As explained above, in the present invention, since the grating thickness of the one-dimensional blazed diffraction grating is adjusted in accordance with the angle of view of the incident light beam, information light having an angle of view also has a wavelength distribution. A compact and inexpensive color image reading device is obtained by successfully color-separating, separating, and focusing images on corresponding sensor arrays without any misalignment or color misregistration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は本発明の一実施例に用いられる1次元
ブレーズド回折格子を示す図、第3図(a)、(b)は
本実施例の読取り光学系の主走査断面図、副走査断面図
、第4図はブレーズド回折格子と3ラインセンサ一間の
光路長を説明する図、第5図と第6図は1次元ブレーズ
ド回折格子の機能を説明する図、第7図はブレーズド回
折格子による分離距離を説明する図、第8図は本発明の
変形例を示す図、第9図は従来のカラー画像読取り装置
を示す図、第10図は従来のモノリシック3ラインセン
サーを示す図、第11図は他の従来のカラー画像読取り
装置を示す図である1・・・・・1次元ブレーズド回折
格子、2・・・・・格子、3・・・・・3ラインセンサ
ー 4%5.6・・・・・センサーアレイ8・・・・・
原稿、9・・・・・結像光学系
1 and 2 are diagrams showing a one-dimensional blazed diffraction grating used in one embodiment of the present invention, and FIGS. 3(a) and 3(b) are main scanning cross-sectional views of the reading optical system of this embodiment, 4 is a diagram explaining the optical path length between the blazed diffraction grating and one 3-line sensor, FIGS. 5 and 6 are diagrams explaining the function of the one-dimensional blazed diffraction grating, and FIG. 7 is a sub-scanning sectional view. A diagram explaining the separation distance by a blazed diffraction grating, FIG. 8 is a diagram showing a modification of the present invention, FIG. 9 is a diagram showing a conventional color image reading device, and FIG. 10 is a diagram showing a conventional monolithic 3-line sensor. 11 are diagrams showing other conventional color image reading devices.1...1-dimensional blazed diffraction grating, 2...Grating, 3...3 line sensor 4% 5.6...Sensor array 8...
Original, 9... Imaging optical system

Claims (1)

【特許請求の範囲】 1、1次元のセンサーアレイが、このアレイ方向と直角
に、複数ライン、有限距離を隔てて同一基板上に配置さ
れた複数ラインセンサーと、被写体の像を該センサー上
に結像する結像光学系とを有するカラー画像読取り装置
であって、該結像光学系と該センサー間の光路中に、被
写体からの光を前記アレイ方向と直角な方向に複数に色
分解すると共にこの色分解光を対応する各センサーアレ
イに導くための1次元ブレーズド回折格子が配置され、
該ブレーズド回折格子の格子厚が被写体からの光の主光
線の当該格子に入射する画角に対応して変えられている
ことにより、被写体全域からの光についてブレーズ波長
の等しい色ズレのない像が対応する各センサーアレイに
結像されることを特徴とするカラー画像読取り装置。 2、前記ブレーズド回折格子の格子ピッチが、被写体か
らの光の主光線の当該格子に入射する画角に対応して変
えられている請求項1記載のカラー画像読取り装置。 3、前記複数ラインセンサーが、該センサーとブレーズ
ド回折格子間の光路長が全画角に亙って等しくなるよう
に、湾曲している請求項1記載のカラー画像読取り装置
[Claims] A one-dimensional sensor array includes a plurality of line sensors arranged perpendicularly to the array direction on the same substrate with a plurality of lines separated by a finite distance, and an image of a subject onto the sensor. A color image reading device having an imaging optical system that forms an image, which separates light from a subject into a plurality of colors in a direction perpendicular to the array direction in an optical path between the imaging optical system and the sensor. A one-dimensional blazed diffraction grating is also arranged to guide this color-separated light to each corresponding sensor array,
Since the grating thickness of the blazed diffraction grating is changed in accordance with the angle of view at which the principal ray of light from the object is incident on the grating, an image without color shift of the light from the entire area of the object with the same blaze wavelength can be obtained. A color image reading device characterized in that an image is formed on each corresponding sensor array. 2. The color image reading device according to claim 1, wherein the grating pitch of the blazed diffraction grating is changed in accordance with the angle of view at which the principal ray of light from the object is incident on the grating. 3. The color image reading device according to claim 1, wherein the plural line sensor is curved so that the optical path length between the sensor and the blazed diffraction grating is equal over the entire angle of view.
JP1035694A 1989-02-15 1989-02-15 Color picture reader Granted JPH02214372A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1035694A JPH02214372A (en) 1989-02-15 1989-02-15 Color picture reader
US07/479,606 US5113067A (en) 1989-02-15 1990-02-13 Image reading apparatus having a blazed diffraction grating
EP90102903A EP0383307B1 (en) 1989-02-15 1990-02-14 Image reading apparatus
DE69020378T DE69020378T2 (en) 1989-02-15 1990-02-14 Image scanner.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1035694A JPH02214372A (en) 1989-02-15 1989-02-15 Color picture reader

Publications (2)

Publication Number Publication Date
JPH02214372A true JPH02214372A (en) 1990-08-27
JPH0546139B2 JPH0546139B2 (en) 1993-07-13

Family

ID=12449003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1035694A Granted JPH02214372A (en) 1989-02-15 1989-02-15 Color picture reader

Country Status (1)

Country Link
JP (1) JPH02214372A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369613A (en) * 1991-06-19 1992-12-22 Canon Inc Color image reader
JPH0563909A (en) * 1991-08-28 1993-03-12 Canon Inc Color picture reader
US7075722B2 (en) 2000-05-31 2006-07-11 Canon Kabushiki Kaisha Diffractive optical element and optical system having the same
JP2008070797A (en) * 2006-09-15 2008-03-27 Ricoh Co Ltd Diffractive optical element, scanning optical system, optical scanner, and image forming apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005007879D1 (en) * 2005-06-30 2008-08-14 Suisse Electronique Microtech Color Imager

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369613A (en) * 1991-06-19 1992-12-22 Canon Inc Color image reader
JPH0563909A (en) * 1991-08-28 1993-03-12 Canon Inc Color picture reader
US7075722B2 (en) 2000-05-31 2006-07-11 Canon Kabushiki Kaisha Diffractive optical element and optical system having the same
JP2008070797A (en) * 2006-09-15 2008-03-27 Ricoh Co Ltd Diffractive optical element, scanning optical system, optical scanner, and image forming apparatus

Also Published As

Publication number Publication date
JPH0546139B2 (en) 1993-07-13

Similar Documents

Publication Publication Date Title
JP3604844B2 (en) Color image reading device
EP0383307A2 (en) Image reading apparatus
JPH03226067A (en) Color picture reader
US5187358A (en) Image reading device having a telecentric optical system and a blazed diffraction grating
JPH0643387A (en) Color image reader
US5177349A (en) Image reading apparatus utilizing a four step or more staircase diffraction grating structure
JP3432106B2 (en) Color image reader
US5221835A (en) Image reading apparatus having a reflective blazed diffraction grating with varied pitch
JPH02214370A (en) Color picture reader
JPH02214372A (en) Color picture reader
JP3240870B2 (en) Color image reader
JPH0580273A (en) Color image reader
JPH0563909A (en) Color picture reader
JP3559658B2 (en) Color image reading device
JPH02223270A (en) Color picture reader
JP3033167B2 (en) Color image reader
JP3382288B2 (en) Color image reader
JP2969765B2 (en) Color image reader
JPH0818728A (en) Color image reader
JPH02224456A (en) Color picture reader
JPH1079834A (en) Color image reader
JPH0618807A (en) Color image reader
JP2638268B2 (en) Color image reader
JPH02214371A (en) Color picture reader
JPH08122693A (en) Color image reader

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees