JPH02213425A - Method for controlling completing point position of sintering in manufacture of agglomerated ore - Google Patents

Method for controlling completing point position of sintering in manufacture of agglomerated ore

Info

Publication number
JPH02213425A
JPH02213425A JP1033429A JP3342989A JPH02213425A JP H02213425 A JPH02213425 A JP H02213425A JP 1033429 A JP1033429 A JP 1033429A JP 3342989 A JP3342989 A JP 3342989A JP H02213425 A JPH02213425 A JP H02213425A
Authority
JP
Japan
Prior art keywords
sintering
layer
end point
ore
pallet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1033429A
Other languages
Japanese (ja)
Other versions
JPH0689414B2 (en
Inventor
Hidetoshi Noda
野田 英俊
Makoto Gocho
誠 牛膓
Masayasu Shimizu
清水 正安
Osamu Komatsu
修 小松
Hideaki Inoue
英明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3342989A priority Critical patent/JPH0689414B2/en
Priority to US07/456,800 priority patent/US5009707A/en
Priority to AU47761/90A priority patent/AU614211B2/en
Priority to KR1019900000435A priority patent/KR930000844B1/en
Priority to EP19900101622 priority patent/EP0383079A3/en
Priority to CA002009814A priority patent/CA2009814C/en
Priority to BR909000613A priority patent/BR9000613A/en
Publication of JPH02213425A publication Critical patent/JPH02213425A/en
Publication of JPH0689414B2 publication Critical patent/JPH0689414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration of quality of agglomerated ore or loss of production by obtaining completing point of sintering based on noise level value measured with plural noise sensors set at upper part of charged layer and quickly controlling this point position. CONSTITUTION:On the surface of green pellet charged into pallet 1 in a sintering machine, ignition is executed at an ignition furnace 6 at rear part of a drying furnace 5. The air is sucked as passing through this green pellet layer through wind box 5 and duct 4 and the generated combustion zone is progressed downward from the surface layer. By this method, the whole thickness of the green pellet layer is sintered and the obtd. agglomerated ore is discharged from an ore discharging part 10. In manufacture of the above agglomerated ore, the plural noise sensors 7 are set at the upper part of the charged layer in the rear part of the ignition furnace 6 in longitudinal direction of the machine leaving a space. Based on the noise level of explosive sound of the green pellet measured with this, the completing point of the sintering is obtd. with an arithmetic control unit 8. Further, the pallet 1 velocity is controlled through a driving motor 9 for the sintering machine so that this completing point of the sintering comes to the optimum position.

Description

【発明の詳細な説明】 [産業上の利用分野] 生ベレットの破裂音を測定して、パレット速度の制御を
行う塊成鉱製造における焼結終了点位置制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for controlling the position of a sintering end point in the production of agglomerated ore, in which the pallet speed is controlled by measuring the popping sound of a green pellet.

[従来の技術] 塊成鉱は、一般に次のようにして製造される。[Conventional technology] Agglomerate ore is generally produced as follows.

粉粒鉄鉱石、蛇紋岩等の媒溶材および塊成鉱の破砕、整
粒過程で発生する4mm以下の返鉱を配合し、ミキサー
で混合、−次ベレタイザーで造粒した後、二次ペレタイ
ザーで、この造粒物の表面に粉コークス、チャー、微粉
炭等の固体燃料をコーティングする二次造粒を行って、
5〜10cmの生ペレットを製造し、この生ペレットを
無端移動グレート式焼結機に装入して焼成する。焼成物
を所定サイズに破砕、冷却、整粒して4ffi−以上の
塊成鉱を製造する。
The return ore of 4mm or less generated during the crushing and sizing process of powdered iron ore, serpentine, etc. and the crushing of agglomerate ore is mixed in a mixer, granulated in a secondary pelletizer, and then in a secondary pelletizer. , Perform secondary granulation to coat the surface of this granulated material with solid fuel such as coke powder, char, and pulverized coal.
Green pellets with a size of 5 to 10 cm are produced, and the green pellets are charged into an endless moving grate type sintering machine and fired. The fired product is crushed to a predetermined size, cooled, and sized to produce agglomerated ore of 4ffi or more.

上記の製造工程において、生ベレットを焼結機に装入し
て焼成する際、普通焼結法で行われている焼結終了点位
置制御方法が一最に用いられている。即ち、第3図に示
されるようにパレット1の下方に設けた各風箱2に熱電
対等の温度計3を設け、その温度計3で風箱2を通過す
る排ガスの温度を測定し、それらの温度分布から最高ガ
ス温度を有する風箱を求めて、それを焼結終了点とし、
該焼結終了点が鼻適位置となるようにパレットの速度を
制御するものである。
In the above manufacturing process, when the green pellet is charged into a sintering machine and fired, the sintering end point position control method used in the normal sintering method is most often used. That is, as shown in FIG. 3, a thermometer 3 such as a thermocouple is provided in each wind box 2 provided below the pallet 1, and the temperature of the exhaust gas passing through the wind box 2 is measured with the thermometer 3. Find the wind box with the highest gas temperature from the temperature distribution, and use it as the sintering end point.
The speed of the pallet is controlled so that the sintering end point is at the appropriate position.

この他の普通焼結の焼結終了点位置制御方法としては、
風箱内に光フアイバー温度計によって装入原料底部の赤
熱帯の温度分布を直接測定して焼結終了点を求めて行う
特開昭61−147820号公報がある。
Other sintering end point position control methods for normal sintering include:
Japanese Patent Laid-Open No. 147820/1983 discloses a method in which the temperature distribution in the red zone at the bottom of the charged raw material is directly measured using an optical fiber thermometer in a wind box to determine the sintering end point.

[発明が解決しようとする課H] 従来の焼結終了点位置制御方法は、装入層に点火後25
〜30分経過した後でないと焼結終了点が検出できない
、従って、この間に通気性等の焼結速度に変動をもたら
す要因の変化があっても、焼結機のパレット速度のアク
ションがなされることがないから、塊成鉱の品質の悪化
または生産量の損失の問題点がある。
[Problem H to be solved by the invention] The conventional sintering end point position control method is to
The end point of sintering cannot be detected until ~30 minutes have elapsed; therefore, even if there are changes in factors that cause variations in sintering speed, such as air permeability, during this time, actions are taken on the pallet speed of the sintering machine. As a result, there is a problem of deterioration of the quality of agglomerate or loss of production.

[課題と解決するための手段] この発明は、以上の問題点を解決しようとするもので、
点火f後の装入層上方、且つ、機長方向に、複数の騒音
センサーを間隔的に設けて騒音レベルを測定し、その騒
音レベル値に基づいて焼結終了点を求め、該焼結終了点
が最適位置となるようにパレット速度を制御することを
特徴とする塊成鉱°製造における焼結終了点位置制御方
法である。
[Problem and means for solving the problem] This invention aims to solve the above problems.
A plurality of noise sensors are installed at intervals above the charging layer after ignition f and in the machine length direction to measure the noise level, determine the sintering end point based on the noise level value, and determine the sintering end point. This is a method for controlling the position of the sintering end point in the production of agglomerated ore, characterized by controlling the pallet speed so that the is at the optimum position.

[作用] 点火炉近くに設けた複数の騒音センサー下を通過する装
入層の燃焼帯の生ベレットの破裂音による騒音レベル値
から、騒音レベルの減衰直線式を求め、焼結終了点にお
ける騒音レベル値となる距離を求めれば、その距離が焼
結終了点の位置となる。この演算を演算器に行わせるこ
とにより、従来方法より約15〜20分早く焼結終了点
の検出ができる。従って、この間の塊成鉱の品質の悪化
または生産量の損失を防止することができる。
[Operation] From the noise level value caused by the bursting sound of green pellets in the combustion zone of the charging layer passing under multiple noise sensors installed near the ignition furnace, a linear attenuation equation for the noise level is determined, and the noise level at the end of sintering is determined. If the distance corresponding to the level value is determined, that distance becomes the position of the sintering end point. By having a calculator perform this calculation, the sintering end point can be detected about 15 to 20 minutes earlier than in the conventional method. Therefore, deterioration of the quality of the agglomerate or loss of production amount during this period can be prevented.

[実施例] 本発明の実施例を図面に基ずいて以下に説明する。第1
図は本発明の方法を実施するブロック図、第2図は本発
明の焼結終了点位置制御方法を説明するグラフである。
[Example] An example of the present invention will be described below based on the drawings. 1st
The figure is a block diagram for implementing the method of the present invention, and FIG. 2 is a graph for explaining the sintering end point position control method of the present invention.

第1図において、焼結機のパレット1に装入された生ベ
レットは、焼結機の高温排ガスを、利用する乾燥炉5で
乾燥された後、点火炉6で化ベレット層表面に点火され
る。
In FIG. 1, green pellets loaded onto a pallet 1 of a sintering machine are dried in a drying oven 5 that uses high-temperature exhaust gas from the sintering machine, and then ignited on the surface of the pelletized pellet layer in an ignition oven 6. Ru.

一方、乾燥炉5以降において、図示しない主、ブロワ−
17により風箱2、主ダクト4を介して、ガスまたは大
気がパレット1に装入された生ベレット層を通して、下
向きに吸引されている。そして、生ベレット層の表面に
生じた燃焼帯が、パレットの移動とともに下向きに進行
し、焼結機排鉱部10手前で生ペレツト層全高が焼結さ
れて、排鉱部10から連続的に排出される。排出された
焼結体は、破砕、整粒工程に送られる。この工程におい
て、燃焼帯の生ベレットの内、熱割れし易い鉄鉱石の入
っている生ペレットは、鉄鉱石の熱割れと内部水分の気
化によりバースティングを起こし、その際、破裂音を出
す、そして、この破裂音の騒音レベルを生ベレット層上
で計測すると、燃焼帯が生ベレット層を下向きに進行す
るにつれて直線的に減衰することが分かった0本発明は
、上記設備において、点火炉後の装入層の上方で且つ、
機長方向に複数の騒音センサー7 (1,2゜3.4)
を等間隔に、例えば2m間隔に設けである。複数の騒音
センサー7で測定した騒音レベル信号は、演算制御器8
に送信される。演算制御器8は送信されてきた騒音レベ
ル値から騒音レベル減衰直線式を求め、焼結終了点の騒
音レベル値−Noの直線との交点を求める。すなわち、
第2図において、求められた騒音レベル減衰直線式がB
であれば、焼結終了点の騒音レベル値=Noの直線との
交点の距離座標D4が求められる。そして、D4がこの
ときの焼結終了点で点火炉後端からの距離を表す0次に
、D4が設定された最適範囲DI〜D2に対してどの位
置にあるかを確認する。この場合は最適範囲り、〜D2
より排鉱部側に位置している(焼結速度が遅い)ので、
所定量パレット速度を下げる信号を出す、求められた騒
音レベル減衰直線式がAのときは、焼結終了点の距離座
標はD5となる。D5は最適範囲り、〜D2内に位置す
るから、パレット速度の増減信号は出さない、求められ
た騒音レベル減衰直線式がAのときは、焼結終了点の距
離座標はD3となる。
On the other hand, in the drying oven 5 and beyond, a main blower (not shown)
17, gas or atmospheric air is sucked downward through the wind box 2 and the main duct 4 through the layer of green pellets loaded onto the pallet 1. The combustion zone formed on the surface of the green pellet layer advances downward as the pallet moves, and the entire height of the green pellet layer is sintered before the sintering machine discharge section 10, and the combustion zone continues from the ore discharge section 10. be discharged. The discharged sintered body is sent to a crushing and sizing process. In this process, among the raw pellets in the combustion zone, those that contain iron ore, which is prone to thermal cracking, cause bursting due to thermal cracking of the iron ore and vaporization of internal moisture, and at that time, a bursting sound is produced. When the noise level of this plosive sound was measured on the green pellet layer, it was found that it attenuated linearly as the combustion zone progressed downward through the green pellet layer. above the charge layer of and
Multiple noise sensors 7 in the direction of the aircraft (1, 2° 3.4)
are provided at equal intervals, for example, at 2 m intervals. The noise level signals measured by the plurality of noise sensors 7 are sent to the arithmetic controller 8.
sent to. The arithmetic controller 8 determines a noise level attenuation linear equation from the transmitted noise level value, and determines the intersection point of the sintering end point with the straight line of the noise level value - No. That is,
In Figure 2, the obtained noise level attenuation linear equation is B
If so, the distance coordinate D4 of the intersection of the sintering end point with the straight line with the noise level value=No is determined. Then, it is confirmed where D4 is at the zeroth order representing the distance from the rear end of the ignition furnace at the sintering end point at this time, and where D4 is in the set optimum range DI to D2. In this case, the optimal range is ~D2
Because it is located closer to the ore discharge area (sintering speed is slower),
When the determined noise level attenuation linear equation that provides a signal to reduce the pallet speed by a predetermined amount is A, the distance coordinate of the sintering end point is D5. Since D5 is located within the optimum range, ~D2, no pallet speed increase/decrease signal is issued.When the obtained noise level attenuation linear equation is A, the distance coordinate of the sintering end point is D3.

D3は最適範囲、Dl〜D2より点火炉側に位置してい
る(焼結速度が早い)ので、所定量パレット速度を上げ
る信号を出す、なお、パレット速度の増減量は、求めら
れた焼結終了点がi&遡範囲り、〜Dλ内になるパレッ
ト速度を求めて定める。演算制御器8はこのようにして
求めたパレット速度の増1111i、tを焼結機の駆動
モータ9に送信する。駆動モータ9は受信信号により、
バレ、ット遠度を増減する。従って、焼結終了点は常に
最適範囲になるように制御される。
Since D3 is located in the optimum range, closer to the ignition furnace than Dl to D2 (sintering speed is faster), a signal is issued to increase the pallet speed by a predetermined amount.The increase or decrease in pallet speed is determined by the calculated sintering speed. Find and determine the pallet speed at which the end point is within i & trace range and ~Dλ. The arithmetic controller 8 sends the increase in pallet speed 1111i,t determined in this manner to the drive motor 9 of the sintering machine. The drive motor 9 is driven by the received signal.
Barre, increase or decrease the distance. Therefore, the sintering end point is always controlled to be within the optimum range.

騒音センサーは、点火炉後端から5〜10mの範囲に設
けるとよい。この範囲にすることにより、従来法に比較
して約15〜20分早<+i結終了点の検出ができる。
The noise sensor is preferably installed within a range of 5 to 10 m from the rear end of the ignition furnace. By setting it within this range, it is possible to detect the end point <+i> about 15 to 20 minutes earlier than in the conventional method.

[発明の効果コ 本発明は、点火炉後方に設けた複数の騒音センサーによ
り焼結終了点を求めて、パレット速度を制御するもので
あるから、従来法より約15〜20分早くパレット速度
を制御することができる。従って、従来発生していたこ
の間の塊成鉱の品質の悪化または生産量の損・失が無く
なるという効果が得られる。
[Effects of the Invention] Since the present invention determines the sintering end point using multiple noise sensors installed at the rear of the ignition furnace and controls the pallet speed, the pallet speed can be controlled approximately 15 to 20 minutes faster than the conventional method. can be controlled. Therefore, the effect of eliminating deterioration in the quality of agglomerated ore or loss of production during this period, which conventionally occurred, can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するブロック図、第2図は
本発明の焼結終了点位置制御方法を説明するグラフ図、
第3図は従来の焼結終了点位置制御方法を説明する図で
ある。 1・・・パレット、5・・・乾燥炉、6・・・点火炉、
7・・・騒音センサー、8・・・演算制御器、9・・・
駆動モータ、10・・・排鉱部。
FIG. 1 is a block diagram for implementing the method of the present invention, and FIG. 2 is a graph diagram for explaining the sintering end point position control method of the present invention.
FIG. 3 is a diagram illustrating a conventional sintering end point position control method. 1... Pallet, 5... Drying oven, 6... Ignition oven,
7... Noise sensor, 8... Arithmetic controller, 9...
Drive motor, 10... ore discharge section.

Claims (1)

【特許請求の範囲】[Claims] 点火炉後の装入層上方且つ、機長方向に、複数の騒音セ
ンサーを間隔的に設けて騒音レベルを測定し、その騒音
レベル値に基ずいて焼結終了点を求め、該焼結終了点が
最適位置となるようにパレット速度を制御することを特
徴とする塊成鉱製造における焼結終了点位置制御方法。
A plurality of noise sensors are installed at intervals above the charging layer after the ignition furnace and in the machine length direction to measure the noise level, determine the sintering end point based on the noise level value, and determine the sintering end point. 1. A method for controlling the position of a sintering end point in agglomerate ore production, the method comprising: controlling the pallet speed so that the sintering end point is at an optimal position.
JP3342989A 1989-02-13 1989-02-13 Sintering end point position control method in agglomerated ore manufacturing Expired - Lifetime JPH0689414B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3342989A JPH0689414B2 (en) 1989-02-13 1989-02-13 Sintering end point position control method in agglomerated ore manufacturing
US07/456,800 US5009707A (en) 1989-02-13 1989-12-29 Method for manufacturing agglomerates of sintered pellets
AU47761/90A AU614211B2 (en) 1989-02-13 1990-01-08 Method for manufacturing agglomerates of sintered pellets
KR1019900000435A KR930000844B1 (en) 1989-02-13 1990-01-15 Method for manufacturing agglomerate of sintered pellets
EP19900101622 EP0383079A3 (en) 1989-02-13 1990-01-26 Method for manufacturing agglomerates of sintered pellets
CA002009814A CA2009814C (en) 1989-02-13 1990-02-12 Method for manufacturing agglomerates of sintered pellets
BR909000613A BR9000613A (en) 1989-02-13 1990-02-12 METHOD FOR MANUFACTURING SINTERIZED PELLETS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3342989A JPH0689414B2 (en) 1989-02-13 1989-02-13 Sintering end point position control method in agglomerated ore manufacturing

Publications (2)

Publication Number Publication Date
JPH02213425A true JPH02213425A (en) 1990-08-24
JPH0689414B2 JPH0689414B2 (en) 1994-11-09

Family

ID=12386307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3342989A Expired - Lifetime JPH0689414B2 (en) 1989-02-13 1989-02-13 Sintering end point position control method in agglomerated ore manufacturing

Country Status (1)

Country Link
JP (1) JPH0689414B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091459A (en) * 2021-04-17 2021-07-09 乌海市包钢万腾钢铁有限责任公司 Method for controlling sintering end point by synthesis speed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091459A (en) * 2021-04-17 2021-07-09 乌海市包钢万腾钢铁有限责任公司 Method for controlling sintering end point by synthesis speed
CN113091459B (en) * 2021-04-17 2024-04-19 乌海市包钢万腾钢铁有限责任公司 Method for controlling sintering end point by synthesis speed

Also Published As

Publication number Publication date
JPH0689414B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
US3584850A (en) Rotary kiln for shock sintering
KR930000844B1 (en) Method for manufacturing agglomerate of sintered pellets
KR930003599B1 (en) Method for manufacturing agglomerates of sintered pellets
JPH02213425A (en) Method for controlling completing point position of sintering in manufacture of agglomerated ore
US4120643A (en) Method of regulating the process of agglomeration of a mineral on an endless chain
RU2303759C1 (en) Well furnace for producing granulated roasted calcium acid
CN1021346C (en) Method for manufacturing agglomerates of sintered pellets
US4317676A (en) Process for producing sintered iron ore having high reducibility
JPH0288724A (en) Method for operating sintering machine
WO2022230858A1 (en) Method for manufacturing sintered ore and device for manufacturing sintered ore
SU857070A1 (en) Method of annealing grained material
RU2021222C1 (en) Method of roasting granular material
JPH0814007B2 (en) Agglomerated ore manufacturing method
JPH08127822A (en) Operation of sintering
SU960513A1 (en) Apparatus for heat treatment of chemicometallurgical production industrial products
RU2163645C1 (en) Drum-type unit for production of calcined pellets
JPH02213423A (en) Manufacture of agglomerated ore
JPH06330194A (en) Operation of sintering machine
JPH02217427A (en) Method for adjusting sintering speed in width direction of pallet in manufacture of agglomerated ore
JPH07258755A (en) Production of sintered ore
JPS5925746B2 (en) Continuous granulation and sintering method for fly attachment
SU586141A1 (en) Method of automatic control of raw mixture roasting process in rotary furnace
JPH05222463A (en) Manufacture of sintered ore
JPH07180972A (en) Method for operating sintering machine
SU796635A1 (en) Method of controlling raw mixture firing process in the rotary furnace