JPH02212591A - Method for thermal decomposition of waste material - Google Patents

Method for thermal decomposition of waste material

Info

Publication number
JPH02212591A
JPH02212591A JP3168289A JP3168289A JPH02212591A JP H02212591 A JPH02212591 A JP H02212591A JP 3168289 A JP3168289 A JP 3168289A JP 3168289 A JP3168289 A JP 3168289A JP H02212591 A JPH02212591 A JP H02212591A
Authority
JP
Japan
Prior art keywords
reaction tank
treatment
decomposition
tank
distribution pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3168289A
Other languages
Japanese (ja)
Inventor
Mitsuo Nanba
難波 光夫
Masaru Muranaka
勝 村中
Yoshiaki Miyano
宮野 良秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIJIYUUITSUSEIKI KAIHATSU KK
Original Assignee
NIJIYUUITSUSEIKI KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIJIYUUITSUSEIKI KAIHATSU KK filed Critical NIJIYUUITSUSEIKI KAIHATSU KK
Priority to JP3168289A priority Critical patent/JPH02212591A/en
Publication of JPH02212591A publication Critical patent/JPH02212591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To prevent coking on the inner wall of a pipe and to realize a safe stable operation and an improvement in recovery of a produced oil by a process wherein waste material is thermally melted, continuously fed into a decomposition reactor, sent into a circulation pipe installed in a heating furnace and heated so that it is partly gasified and passed through the pipe at a specified flow rate, and then discharged into the decomposition reactor. CONSTITUTION:Waste material, such as a waste oil or a low polymer, is thermally melted in a raw material melting unit 11; continuously fed into a decomposition reactor 1 by way of a raw material storage tank 14: sent through a pump 6 and a filter 7 into a circulation pipe 5 installed in a heating furnace 3 and heated preferably to 410-460 deg.C so that it is partly gasified and passed through the pipe 5 at a flow rate of 3 m/sec or higher; and then discharged into the thermal decomposition reactor 1. The discharged gas is passed through a fractionating tower 2 and a condenser 22, and collected in a liquid receiver tank 23 for recovery as produced oil.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、廃棄物、特に廃油、高粘度廃油、ローポリマ
ー等を熱分解し炭化水素油を回収する処理方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a treatment method for thermally decomposing waste, particularly waste oil, high viscosity waste oil, low polymer, etc., to recover hydrocarbon oil.

〔従来の技術〕[Conventional technology]

この種廃棄物の処理として直接焼却処理や埋め立て処理
をすることは二次公害が発生することから望ましくない
、そこで熱分解処理し炭化水素油等の有効成分を回収す
る溶融浴槽すなわちポリノ(入力式(特公昭60−14
0437号)や!(イブスチーム方式(特公昭58−2
9833号)等が開発されている。
It is undesirable to directly incinerate or landfill this kind of waste because it causes secondary pollution.Therefore, thermal decomposition treatment is carried out to recover active ingredients such as hydrocarbon oil, which is called a molten bath or porino (input type). (Tokuko Showa 60-14
No. 0437) Ya! (Evesteam method (Special public service 58-2
No. 9833) etc. have been developed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、熱分解で最も重要な要素は、加熱技術であっ
て外温と内温の温度差(八T)が大きい円熟交換効率は
高いが1反対にカーボンの発生は多くなり分解が均一に
行われないためローカルヒーティングの原因となってい
た。またガス発生量(非凝縮ガス)が多く生成油の回収
率の低下をtrI来する1種々の欠点を解消する必要が
ある。
By the way, the most important element in pyrolysis is the heating technology.The temperature difference between the outside temperature and the inside temperature (8T) is large, which increases the efficiency of mature exchange, but on the other hand, the generation of carbon increases and decomposition is not carried out uniformly. This caused local heating. In addition, it is necessary to eliminate various drawbacks such as a large amount of gas generation (non-condensable gas) and a decrease in the recovery rate of produced oil.

しかしながら、従来の方法では原料の連続供給方法、5
!!生するカーボンの処理がネト分なため分解油の回収
効率が低く、また分解反応槽内に発生するカーボンや残
漬物が堆積し連続的に運転することが困短なため運転費
等が高くなり不経済なため実用化され雉いものであった
However, in the conventional method, continuous supply of raw materials,
! ! The recovery efficiency of cracked oil is low because the carbon produced is treated in a net manner, and the carbon and residue generated in the cracking reaction tank accumulates, making continuous operation difficult and short, resulting in high operating costs. It was not put into practical use because it was uneconomical.

すなわち、ポリバス方式のような外部加熱方式では、処
理は一定量毎にしか行うことができないので1に!!運
転はできず不経済であり、また八゛rを大きくして攪半
を強化してもカーボンの発生を防止することはできない
ため伝熱効率を低下してしまい不経済なものであった。
In other words, with an external heating method such as the polybath method, processing can only be performed for each fixed amount, so 1! ! It was uneconomical to operate, and even if the agitation was strengthened by increasing 8r, the generation of carbon could not be prevented, resulting in a decrease in heat transfer efficiency, making it uneconomical.

また、パイプスチーム方式であっても外部加熱によるパ
イプ内へのカーボンの堆積は避けることは出来ないもの
であった。
Further, even with the pipe steam method, the accumulation of carbon inside the pipe due to external heating cannot be avoided.

また、流動層方式の場合には、生成物への燃焼排ガスの
混入があり生成物の品質が低ドすることとなり分解反応
槽を精留塔に直結できないという構造上の欠点があると
ともに、燃焼1トガスが混入するため非凝縮ガスの有効
利用に限界があった。
In addition, in the case of the fluidized bed method, there is a structural disadvantage in that the decomposition reaction tank cannot be directly connected to the rectification column, as the quality of the product deteriorates due to the mixing of combustion exhaust gas into the product. There was a limit to the effective use of non-condensable gas because 1 gas was mixed in.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、このような欠点を解消すべくしたものであっ
て、熱溶融処理後、連続的に分解反応槽1に供給した処
理物を、加熱炉3内に内装した流通パイプ5に送入して
加熱すると共に、一部をガス化しつつパイプ5内を3 
m/sec以上の流速で流通させ分解反応槽1に排出し
てなる方法である。
The present invention is intended to eliminate such drawbacks, and after the heat melting process, the treated material that has been continuously supplied to the decomposition reaction tank 1 is fed into the distribution pipe 5 installed in the heating furnace 3. At the same time, the inside of the pipe 5 is heated by gasifying a part of it.
This is a method in which the water is passed through the water at a flow rate of m/sec or higher and discharged into the decomposition reaction tank 1.

また第2の発明方法として、廃棄物を溶融槽12内に投
入し熱溶融する工程と1M熱溶融処理工程で溶融された
lf!融処理物を貯蔵する貯蔵工程でlr?蔵された溶
融処理物を分解反応槽1内に連続的に供給した処理物を
、放出口5b、送入口5aとなる端部を分解反応槽1の
側壁の]二下面に連接すると共に加熱炉3内に内装した
流通パイプ5内を3m1sec以上の流速で流通する熱
分解工程と、該熱分解工程で加熱された生成物を前記分
解反応槽l内に放出して精製処理する工程とからなる方
法である。
Further, as a second method of the invention, the lf! lr in the storage process of storing the melted product? The stored molten processed material is continuously fed into the decomposition reaction tank 1, and the end portions which will become the discharge port 5b and the inlet port 5a are connected to the bottom surface of the side wall of the decomposition reaction tank 1, and the heated product is placed in a heating furnace. The process consists of a thermal decomposition process in which the flow rate is at least 3 ml/sec through a distribution pipe 5 installed in the thermal decomposition process, and a process in which the heated product in the thermal decomposition process is discharged into the decomposition reaction tank l for purification treatment. It's a method.

〔作用〕[Effect]

本発明は、上記のような方法によりなるものであるので
以ドのような作用がある。
Since the present invention is based on the method described above, it has the following effects.

この場合、流通パイプ5内での処理物の加熱温度を41
0〜460℃とすることが回収油の回収効率が高くなり
望ましい。
In this case, the heating temperature of the processed material in the distribution pipe 5 is set to 41
It is desirable that the temperature be 0 to 460°C, as this will increase the recovery efficiency of the recovered oil.

本発明の方法では1分解反応槽lと処理物を加熱する加
熱炉3とに分割しているので後処理が容易であるだけで
なく、熱溶融した処理物は、−旦分解反応槽1に供給し
た後、加熱炉3内に内装した流通パイプ5に送−り込ま
れ一部をガス化しつつ通過し分解反応槽lに送り込まれ
、この分解反応槽l内で加熱処理物は完全にガス化する
こととなるので内部等の危険がなく安心して連続運転が
出来る。
Since the method of the present invention is divided into one decomposition reaction tank 1 and a heating furnace 3 for heating the processed material, not only is the post-treatment easy, but the heat-molten processed material is first transferred to the decomposition reaction tank 1. After being supplied, the material is fed into the distribution pipe 5 installed in the heating furnace 3, passes through it while being partially gasified, and is fed into the decomposition reaction tank 1, where the heated material is completely converted to gas. , so continuous operation can be carried out with peace of mind without any internal danger.

また、処理物は、流通パイプ5内を31/sac以上の
流速で通過するためパイプの内壁面へのコーキングをほ
ぼ完全に防止することが出来るので安定した処理能力の
低丁もなく連続的な運転が可能となる。
In addition, since the processed material passes through the distribution pipe 5 at a flow rate of 31/sac or more, caulking on the inner wall surface of the pipe can be almost completely prevented, so there is no drop in stable processing capacity and continuous processing is possible. Driving becomes possible.

更にまた、加熱炉3内には、端部が前記分解反応#FI
と連通している耐熱性のある流通パイプ5を内装してお
り、処理物は流通パイプ5内を高速で流通するようにし
ているので、ΔTが大きい状態でかつ堺膜係数の効率を
高め、総括伝熱係数を驚異的に向りさせると共に最大の
問題点であったカーボンの発生を防止しかつ分解を均一
化できるためローカルヒーティングの発生を防ぐ結果生
成油の回収率を80wt%以上にすることが出来ること
となった。
Furthermore, in the heating furnace 3, the end portion is connected to the decomposition reaction #FI.
A heat-resistant distribution pipe 5 is installed inside which communicates with the flow pipe 5, and the processed material is allowed to flow through the distribution pipe 5 at high speed, so that the ΔT is large and the efficiency of the Sakai membrane coefficient is increased. In addition to dramatically improving the overall heat transfer coefficient, it also prevents the generation of carbon, which was the biggest problem, and homogenizes decomposition, thereby preventing the occurrence of local heating and increasing the recovery rate of produced oil to over 80wt%. It became possible to do so.

廃棄物は、原料貯蔵槽14内で加熱処理していると水分
や軽質油等の不純物が蒸発処理された処理物を分解反応
槽1に供給されることとなり、より良質の炭化水素油の
回収が可能となる。
When the waste is heat-treated in the raw material storage tank 14, the treated product from which impurities such as water and light oil have been evaporated is supplied to the decomposition reaction tank 1, and higher quality hydrocarbon oil is recovered. becomes possible.

また1分解反応槽1内では分解残漬は比重値により底部
に沈澱することとなるが、その沈澱物を液状混合状態で
連続的に槽外に抜き取ることにより分解反応槽1内は常
に正常な状態を保つことが出来る。
In addition, in the decomposition reaction tank 1, the decomposition residue will settle to the bottom depending on the specific gravity, but by continuously extracting the precipitate out of the tank in a liquid mixed state, the inside of the decomposition reaction tank 1 will always be normal. It is possible to maintain the condition.

熱分解湿度は、加熱炉3の出口湿度で制御して操作を行
うことにより連M運転を行っても流通パイプ5にカーボ
ンの堆111がないので長持1ftl一定した条件で加
熱でき、安定した回収率を保つことが出来る。
The pyrolysis humidity is controlled by the outlet humidity of the heating furnace 3, and even if continuous M operation is performed, there is no carbon deposit 111 in the distribution pipe 5, so 1 ftl can be heated under constant conditions for a long time, resulting in stable recovery. It is possible to maintain the rate.

(実施例) 次に本発明の実施例について図面を参照しながら説明す
る。
(Example) Next, an example of the present invention will be described with reference to the drawings.

11は、溶融槽12を持った〃χ料命命断装置あって原
料貯蔵槽14と供給ポンプ13を介して連設している。
Reference numeral 11 denotes a material life cutting device having a melting tank 12, which is connected to a raw material storage tank 14 via a supply pump 13.

1は1分解反応槽であって、前記原料貯蔵M14と原料
供給ポンプ15を介して連接されている、分解反応槽l
の底部には分解槽@環ポンプ8を連接し濾過器9を介し
て分解反応槽1に循環させて分解反応槽1の内部温度を
均一化するようにしている。そして、スラッジの一部は
′J!!続的に槽外へ排出しつるように分解槽循環ポン
プ8と濾過器9間にはバルブ1.6.17を連接してい
る。
1 is a decomposition reaction tank 1, which is connected to the raw material storage M14 via a raw material supply pump 15.
A decomposition tank@ring pump 8 is connected to the bottom of the decomposition tank and circulates it to the decomposition reaction tank 1 through a filter 9 to equalize the internal temperature of the decomposition reaction tank 1. And some of the sludge is 'J! ! A valve 1.6.17 is connected between the decomposition tank circulation pump 8 and the filter 9 so as to continuously discharge the water out of the tank.

3は、加熱炉でド部に燃焼室3aを有す外筒4aの略中
央部分に底部を開口した内筒4を立設している。外筒4
a内には9両端部が分解反応槽1に連設されト方より」
二部に向けて螺旋状に羅闘している流通パイプ5を内装
している。
Reference numeral 3 is a heating furnace, and an inner cylinder 4 having an open bottom is provided upright at approximately the center of an outer cylinder 4a having a combustion chamber 3a at the corner thereof. Outer cylinder 4
Inside a, both ends of 9 are connected to the decomposition reaction tank 1, and from the side of 9.
A distribution pipe 5 spirally spiraling toward the second part is installed inside.

そして、該流通パイプ5には、高速循環ポンプ6によっ
て分解反応槽Iの下方より処理物が送り込まれ、該処理
物は410〜460℃に加熱され、流通パイプ5内を3
 m/sec以上の流速で流通するようにしている。そ
して、パイプ5内でガス化雰囲気となった処理物は、パ
イプ5の放出口5bより分解反応M1の上部に放出され
=−気にガス化し熱分解する。そして生成物は上部出口
より前記分解反応M1のに部に放出される。
Then, the processed material is fed into the distribution pipe 5 from below the decomposition reaction tank I by a high-speed circulation pump 6, and the processed material is heated to 410 to 460°C.
It is made to flow at a flow rate of m/sec or more. The treated material, which has become a gasified atmosphere within the pipe 5, is discharged from the discharge port 5b of the pipe 5 to the upper part of the decomposition reaction M1, and is gasified and thermally decomposed. The product is then discharged from the upper outlet into the decomposition reaction M1.

また1分解反応槽1と加熱が3との間の循環ライン中に
は、濾過装置7を設は流通パイプ5内にコーキングの付
着を防止しつるようにしている。
A filtration device 7 is installed in the circulation line between the decomposition reaction tank 1 and the heating device 3 to prevent coking from adhering to the distribution pipe 5.

更にまた。内筒4の頂部に空気抜き孔4bを設けること
により加熱炉3内の不足の酸素を供給できるので加熱効
率を高めるこ・とができ、また内筒4のト部より冷却m
の空気が流入し易くなり内筒4の内壁面を冷却され内壁
面の歪み防止を回ることができる。
Yet again. By providing an air vent hole 4b at the top of the inner cylinder 4, insufficient oxygen in the heating furnace 3 can be supplied, thereby increasing heating efficiency.
This makes it easier for air to flow in, thereby cooling the inner wall surface of the inner cylinder 4 and preventing distortion of the inner wall surface.

このようにして分解反応槽lに放出された精製ガスは精
留塔2に送り込まれて精製されるが、このとき精留塔2
の塔偵温度を270〜350℃の範囲に制御することに
よりAffl油相当の高品質の炭化水素油を得ることが
出来る7このガス状生成物は、コンデンサー22で冷却
し、液化した生成油は受液槽23に回収°される。
The purified gas released into the decomposition reaction tank 1 in this way is sent to the rectification column 2 and purified;
By controlling the tower temperature in the range of 270 to 350°C, high quality hydrocarbon oil equivalent to Affl oil can be obtained.7 This gaseous product is cooled in a condenser 22, and the liquefied product oil is The liquid is collected in the liquid receiving tank 23.

そして、精留塔2の塔底より排出された高μ留分は0分
解反応槽1ヘリターンされ再分解することに−より低分
子量適として回収できる。
The high μ fraction discharged from the bottom of the rectification column 2 is returned to the zero decomposition reactor 1 and decomposed again, whereby it can be recovered as a low molecular weight fraction.

また、熱分解により発生したC4以ドの非凝縮ガスは、
水封槽24内に導入して槽内の水と接触させることによ
り冷却、洗浄した後、バーナー10に供給し熱分解用熱
源として利用することができる。
In addition, non-condensable gases of C4 and above generated by thermal decomposition are
After being introduced into the water seal tank 24 and brought into contact with the water in the tank to be cooled and washed, it can be supplied to the burner 10 and used as a heat source for pyrolysis.

なお、分解温度の制御は、温度計20を観察することに
より行い、また分解反応槽1内の液相のレベルは、原料
供給ポンプ15を連動させたレベル計21により制御す
ればよい。
The decomposition temperature may be controlled by observing the thermometer 20, and the level of the liquid phase in the decomposition reaction tank 1 may be controlled by the level meter 21 linked to the raw material supply pump 15.

〔発明の効果〕〔Effect of the invention〕

本発明は、上述のような方法によりなるものであるので
以下のような効果を有すこととなる。
Since the present invention is implemented by the method described above, it has the following effects.

分解反応槽1と加熱炉3とに二分割するとともに処理物
が@環するように加熱炉3内に内装した流通パイプ5を
分解反応槽lに連接しているので′4&2運転による安
全操業が可能となった。処理物が分解反応槽1と加熱炉
3内を循環することにより加熱炉3の温度が急激にドが
ることがなく常に一定に保たれるからである。
It is divided into two parts, the decomposition reaction tank 1 and the heating furnace 3, and the distribution pipe 5 installed inside the heating furnace 3 is connected to the decomposition reaction tank 1 so that the processed material is circulated, so safe operation is possible by '4 & 2 operation. It has become possible. This is because the treated material circulates within the decomposition reaction tank 1 and the heating furnace 3, so that the temperature of the heating furnace 3 does not drop suddenly and is always kept constant.

また処理物は、流通パイプ5内を3 m/sac以上の
流速で流通するようにしているのでカーボン等の付着物
質は吹き飛ばされ分解反応槽1内に送り込まれ流通パイ
プ5への付着をなくすことが出来る。
Furthermore, since the processed material is made to flow through the distribution pipe 5 at a flow rate of 3 m/sac or more, adhering substances such as carbon are blown away and sent into the decomposition reaction tank 1, thereby eliminating adhesion to the distribution pipe 5. I can do it.

処理物を分解温度とする場合、従来のように加熱炉内に
処理物を投入する方法では長時間要したが1本発明では
流通パイプ5内を通過させるので少量の処理物を順次加
熱することとなり短時間で目的温度とでき、ポリバス方
式に比較して約175P4度に処理時世を短縮できるこ
ととなった。
In order to bring the treated material to the decomposition temperature, the conventional method of putting the treated material into a heating furnace takes a long time, but in the present invention, it passes through the distribution pipe 5, so a small amount of the treated material can be heated one after another. Therefore, the target temperature can be reached in a short time, and the processing time can be shortened to about 175P4 degrees compared to the Polybath method.

また、分解温度の制御を13℃の範囲で行うと安定した
運転が可能となり生成油の回収率が80wt%以上を安
定的に確保することができ、非凝縮ガスの発生率も10
%以下に降下させることが期待できることとなった。
In addition, if the decomposition temperature is controlled within the range of 13℃, stable operation is possible, and the recovery rate of produced oil can be stably maintained at 80wt% or more, and the generation rate of non-condensable gas is also 10%.
% or less.

加熱炉3は、ΔTを大きくシ、また内筒4を設けるとと
もに内筒4と外m4a問に螺旋状の流通パイプ5を捲回
しているので燃焼ガスは外筒4a内の空間をスピードを
にげて旋回加熱するため熱効率を高められ、また流通パ
イプ5の内部を溶融原料が高速で流通することとなりカ
ーボンの付着をより防止することが出来る。
The heating furnace 3 has a large ΔT, is provided with an inner cylinder 4, and has a spiral distribution pipe 5 wound between the inner cylinder 4 and the outer cylinder 4a, so that the combustion gas flows through the space inside the outer cylinder 4a at high speed. Since the molten raw material is rotated and heated, thermal efficiency can be increased, and since the molten raw material flows inside the distribution pipe 5 at high speed, it is possible to further prevent carbon adhesion.

なお、力udが3の上部には、1s旋状に捲回し水を流
通させる温水パイプ25aを内装している余剰ガス燃焼
室25を突設しておくと、余剰表スを幇 余剰ガス燃焼賞頃25に導入することにより水封槽24
が異常圧となる危険を防止することが出来る。
In addition, if a surplus gas combustion chamber 25 is provided protruding from the upper part of the force ud of 3, which is equipped with a hot water pipe 25a that is wound in a 1s spiral shape and circulates water, the surplus surface area can be covered and the surplus gas can be burned. Water sealing tank 24 by introducing it to Shokoro 25
The danger of abnormal pressure can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は1本発明方法を実施する装置の概略図である。 】・・・分解反応槽、2・・・精留塔、3・・・加熱炉
、5・・・流通パイプ、11・・・原料溶断装置、14
・・原料貯蔵槽 出願人 株式会社二十−世紀開発
The drawing is a schematic diagram of an apparatus for carrying out the method of the invention. ]... Decomposition reaction tank, 2... Rectification column, 3... Heating furnace, 5... Distribution pipe, 11... Raw material fusing device, 14
...Raw material storage tank applicant 20th Century Development Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] (1)熱溶融処理後、連続的に分解反応槽に供給しした
処理物を、加熱炉内に内装した流通パイプに送入して加
熱すると共に、一部をガス化しつつパイプ内を3m/s
ec以上の流速で流通させ熱分解反応槽に放出してなる
ことを特徴とする廃棄物の熱分解処理方法
(1) After the heat melting process, the treated material is continuously supplied to the decomposition reaction tank and is heated by feeding it into the distribution pipe installed in the heating furnace, and at the same time, the inside of the pipe is heated by 3m/3m while gasifying a part of it. s
A method for pyrolysis treatment of waste, characterized by discharging it into a pyrolysis reaction tank by distributing it at a flow rate of ec or higher.
(2)熱溶融処理後に加熱処理している処理物を、分解
反応槽に供給している請求項1記載の廃棄物の熱分解処
理方法
(2) The method for thermal decomposition treatment of waste according to claim 1, wherein the treated material is supplied to the decomposition reaction tank after being subjected to heat treatment after the hot melt treatment.
(3)流通パイプ内での処理物の加熱温度が、410〜
460℃である請求項1又は2記載の廃棄物の熱分解処
理方法
(3) The heating temperature of the processed material in the distribution pipe is 410~
The method for thermally decomposing waste according to claim 1 or 2, wherein the temperature is 460°C.
(4)熱溶融処理物の加熱温度を、±3℃の範囲で制御
している請求項1、2又は3記載の廃棄物の熱分解処理
方法
(4) The method for thermal decomposition treatment of waste according to claim 1, 2 or 3, wherein the heating temperature of the thermally melted material is controlled within a range of ±3°C.
(5)分解反応槽の底部より、液状混合状態で連続的に
分解残渣を槽外に排出するようにしている請求項1、2
、3又は4記載の廃棄物の熱分解処理方法
(5) Claims 1 and 2, wherein the decomposition residue is continuously discharged from the bottom of the decomposition reaction tank in a liquid mixed state to the outside of the tank.
, 3 or 4, the method for thermal decomposition of waste
(6)廃棄物を溶融槽内に投入し熱溶融する工程と、該
熱溶融処理工程で溶融された溶融処理物を貯蔵する貯蔵
工程で貯蔵された溶融処理物を熱分解反応槽内に連続的
に供給した処理物を、放出口、送入口となる端部を分解
反応槽の側面上下に連接すると共に加熱炉内に内装した
流通パイプ内を3m/sec以上の流速で流通する熱分
解工程と、該熱分解工程で加熱された生成物を前記熱分
解反応槽内に放出して精製処理する工程とからなる廃棄
物の熱分解処理方法
(6) The process of putting the waste into a melting tank and thermally melting it, and the storage process of storing the molten product melted in the heat melting process, the stored molten product is continuously placed in the pyrolysis reaction tank. A pyrolysis process in which the treated material is passed through a flow rate of 3 m/sec or more through a distribution pipe that connects the ends that serve as the discharge port and inlet to the upper and lower sides of the decomposition reaction tank and is installed inside the heating furnace. and a step of discharging the heated product in the pyrolysis step into the pyrolysis reaction tank for purification treatment.
(7)熱溶融処理後に加熱処理している処理物を、流通
パイプに送入している請求項6記載の廃棄物の熱分解処
理方法
(7) The method for pyrolysis treatment of waste according to claim 6, wherein the treated material is fed into a distribution pipe after being subjected to heat treatment after the heat melting treatment.
(8)流通パイプ内での処理物の加熱温度が、410〜
460℃である請求項6又は7記載の廃棄物の熱分解処
理方法
(8) The heating temperature of the processed material in the distribution pipe is 410~
The method for thermally decomposing waste according to claim 6 or 7, wherein the temperature is 460°C.
(9)熱溶融処理物の加熱温度を±3℃の範囲で制御し
ている請求項6、7又は8記載の廃棄物の熱分解処理方
(9) The method for thermal decomposition treatment of waste according to claim 6, 7 or 8, wherein the heating temperature of the thermally melted material is controlled within a range of ±3°C.
(10)分解反応槽の底部より、液状混合状態で連続的
に分解残渣を槽外に排出するようにしている請求項6、
7、8又は9記載の廃棄物の熱分解処理方法
(10) Claim 6, wherein the decomposition residue is continuously discharged from the bottom of the decomposition reaction tank in a liquid mixed state to the outside of the tank.
The method for thermal decomposition of waste according to 7, 8 or 9
(11)精留塔の塔頂温度を、270〜350℃として
いる請求項6、7、8、9又は10記載の廃棄物の熱分
解処理方法
(11) The method for thermal decomposition treatment of waste according to claim 6, 7, 8, 9 or 10, wherein the temperature at the top of the rectification column is 270 to 350°C.
JP3168289A 1989-02-10 1989-02-10 Method for thermal decomposition of waste material Pending JPH02212591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3168289A JPH02212591A (en) 1989-02-10 1989-02-10 Method for thermal decomposition of waste material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3168289A JPH02212591A (en) 1989-02-10 1989-02-10 Method for thermal decomposition of waste material

Publications (1)

Publication Number Publication Date
JPH02212591A true JPH02212591A (en) 1990-08-23

Family

ID=12337867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3168289A Pending JPH02212591A (en) 1989-02-10 1989-02-10 Method for thermal decomposition of waste material

Country Status (1)

Country Link
JP (1) JPH02212591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212592A (en) * 1989-02-10 1990-08-23 Nijiyuuitsuseiki Kaihatsu:Kk Device for thermal decomposition of waste material
JPH03143991A (en) * 1989-06-15 1991-06-19 Nijiyuuitsuseiki Kaihatsu:Kk Thermal decomposition apparatus for fluid waste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962575A (en) * 1972-10-19 1974-06-18
JPS4966776A (en) * 1972-10-30 1974-06-28
JPS5141001A (en) * 1974-10-04 1976-04-06 Kyoshige Hayashi Horiorefuinkeijushikokeibutsukaraekitainenryoseizosuru hoho
JPH02212592A (en) * 1989-02-10 1990-08-23 Nijiyuuitsuseiki Kaihatsu:Kk Device for thermal decomposition of waste material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962575A (en) * 1972-10-19 1974-06-18
JPS4966776A (en) * 1972-10-30 1974-06-28
JPS5141001A (en) * 1974-10-04 1976-04-06 Kyoshige Hayashi Horiorefuinkeijushikokeibutsukaraekitainenryoseizosuru hoho
JPH02212592A (en) * 1989-02-10 1990-08-23 Nijiyuuitsuseiki Kaihatsu:Kk Device for thermal decomposition of waste material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212592A (en) * 1989-02-10 1990-08-23 Nijiyuuitsuseiki Kaihatsu:Kk Device for thermal decomposition of waste material
JPH03143991A (en) * 1989-06-15 1991-06-19 Nijiyuuitsuseiki Kaihatsu:Kk Thermal decomposition apparatus for fluid waste

Similar Documents

Publication Publication Date Title
SK12912002A3 (en) Reactor and method for gasifying and/or melting materials
US11884783B2 (en) Method and device for the destructive distillation of polyethylene and polypropylene waste
JPH02212591A (en) Method for thermal decomposition of waste material
CN205640923U (en) System for segmentation of heat accumulation formula revolving bed utilizes carbonaceous organic material thermal decomposition product
JPH02504157A (en) Processes and equipment for converting combustible pollutants and waste into clean energy and usable products
KR100305113B1 (en) Vacuum pyrolysis method and equipment of waste tire using both direct and indirect heating
JP2608376B2 (en) Plastic waste treatment equipment
JPH02212592A (en) Device for thermal decomposition of waste material
CN105295985A (en) Method used for producing fuel oil and combustible gas from abandoned tyres
CN105907407A (en) Biomass pyrolysis system and method
CN211141964U (en) Cracking refining system of oil product lava furnace
CN108502903B (en) Gasification detoxification system and method for pre-concentrated salt residue fluidized bed
CN208406934U (en) Pseudocumene aoxidizes separator
CN106517446A (en) High-risk waste liquid treatment device
CN205838913U (en) The system of pyrolysis biomass
JP2002265956A (en) Liquefaction apparatus for polymer waste
JPH1142642A (en) Apparatus for treating thermoplastic metal composite material
JP3654833B2 (en) Oil plasticizing method and apparatus for waste plastic
WO2022118738A1 (en) Waste-plastic oil creation device and oil creation method
CN114890604B (en) System and method for treating salt-containing waste liquid based on in-liquid incineration technology
JPH04117490A (en) Equipment for thermal decomposition of fluid waste material
CN214120078U (en) Device for sludge incineration
JPS5996189A (en) Polymer substance pyrolysis and apparatus
JPH0512992B2 (en)
CN114105749A (en) Anthraquinone production process and equipment