JPH0221232A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPH0221232A
JPH0221232A JP17124888A JP17124888A JPH0221232A JP H0221232 A JPH0221232 A JP H0221232A JP 17124888 A JP17124888 A JP 17124888A JP 17124888 A JP17124888 A JP 17124888A JP H0221232 A JPH0221232 A JP H0221232A
Authority
JP
Japan
Prior art keywords
pressure
magnetic alloy
amorphous magnetic
sensor
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17124888A
Other languages
Japanese (ja)
Other versions
JPH0769243B2 (en
Inventor
Masayuki Wakamiya
若宮 正行
Masato Shoji
理人 東海林
Hiroyuki Hase
裕之 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17124888A priority Critical patent/JPH0769243B2/en
Publication of JPH0221232A publication Critical patent/JPH0221232A/en
Publication of JPH0769243B2 publication Critical patent/JPH0769243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance detection accuracy and to obtain stable linear output even when a temp. change is generated by applying internal stress to an amorphous magnetic alloy at the time of fixing and keeping the same in a measuring state. CONSTITUTION:Pressure to be detected is applied to the interior of a round pipe 1 composed of a titanium alloy from one end part thereof through a pressure introducing part 2. The other end of the round pipe is closed and a rectangular ferrous amorphous magnetic alloy 3 having positive magnetostriction is wound around the outside central part of the round pipe and fixed thereto at temp. higher than sensor using temp. In-plane compression stress is always applied to the amorphous magnetic alloy thin strip in a sensor using temp. region. A coil 4 is wound around the round pipe 1 in a concentric circular state and, when pressure to be applied is changed, an inductance change is generated in the coil 4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非晶質磁性合金の応力磁気効果を用いた圧力
センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a pressure sensor using the stress magnetic effect of an amorphous magnetic alloy.

従来の技術 磁歪を何する非晶質磁性合金に応力を外部から印加する
とその透磁率が変化するという性質、いわゆる応力磁気
効果を用いた力学量のセンサが注目されている。たとえ
ばこの原理を用いた圧力センサが特願昭57−1904
21号、同58−195239号公報等で提案されてい
る。
2. Description of the Related Art Mechanical quantity sensors that use the so-called stress-magnetic effect, which has the property that when stress is externally applied to an amorphous magnetic alloy with magnetostriction, changes its magnetic permeability, are attracting attention. For example, a pressure sensor using this principle was proposed in a patent application filed in 1984.
No. 21, No. 58-195239, etc.

第4図は後者の出願における実施例の概略を示す断面図
である。11は円環状の溝が設けられた円柱状の軟磁性
体で、12は磁歪を有する非晶質磁性合金、13は前記
軟磁性体11の溝部に巻装されたコイル、14は一端を
溝部・底部に接し他端を軟磁性体開口面と面位置になる
非磁性リング、15はこれらを収納する容器、16は非
晶質磁性合金に圧力を伝達する透孔17を有した蓋部で
ある。
FIG. 4 is a sectional view schematically showing an embodiment in the latter application. 11 is a cylindrical soft magnetic material provided with an annular groove; 12 is an amorphous magnetic alloy having magnetostriction; 13 is a coil wound around the groove of the soft magnetic material 11;・A non-magnetic ring that is in contact with the bottom and whose other end is flush with the opening surface of the soft magnetic material, 15 is a container for storing these, and 16 is a lid having a through hole 17 for transmitting pressure to the amorphous magnetic alloy. be.

次に、上記従来技術の作用を説明する。Next, the operation of the above-mentioned prior art will be explained.

圧力が油圧導入部18に加わると、透孔17を通して圧
力が非晶質磁性合金円板12に加わり、これを軟磁性体
溝部において押し下げ非晶質、磁7性合金円板内に応力
が発生する。この内部応力の発生で応力磁気効果により
非晶質磁性合金の透磁率が減少する。この変化を電気磁
気的手段の一つであるコイル13を用いてインダクタン
スの形で検出し圧力を測定する様になっている。
When pressure is applied to the hydraulic pressure introduction part 18, pressure is applied to the amorphous magnetic alloy disk 12 through the through hole 17, pushing it down in the soft magnetic groove, and stress is generated in the amorphous magnetic alloy disk. do. Due to the generation of this internal stress, the magnetic permeability of the amorphous magnetic alloy decreases due to the stress-magnetic effect. This change is detected in the form of inductance using a coil 13, which is one of the electromagnetic means, and the pressure is measured.

発明が解決しようとする課題 上記の様な構成の従来のセンサにおいては、圧力検出材
料である非晶質磁性合金円板12は両側のセンサ構成部
材によって該円板の厚み方向に加圧、固定されている。
Problems to be Solved by the Invention In the conventional sensor configured as described above, the amorphous magnetic alloy disk 12, which is the pressure detection material, is pressed and fixed in the thickness direction of the disk by the sensor component members on both sides. has been done.

このような圧力センサにおいては使用条件下で非晶質磁
性合金円板の接触加圧状態を均一に保つことは難しく、
特に温度変化が生じた場合センサ出力が変化し、検出精
度を低下させる。また、このセンサの出力は非直線であ
り、検出圧力領域によって感度が変化する。
In such pressure sensors, it is difficult to maintain a uniform contact pressure state of the amorphous magnetic alloy disc under the operating conditions;
In particular, when a temperature change occurs, the sensor output changes, reducing detection accuracy. Further, the output of this sensor is non-linear, and the sensitivity changes depending on the detection pressure region.

本発明は、上記のような従来圧力センサの課題に鑑み、
検出精度が高く直線出力を有し、温度変化が生じても出
力の安定な圧力センサを提供することを目的とする。
In view of the problems of conventional pressure sensors as described above, the present invention
It is an object of the present invention to provide a pressure sensor that has high detection accuracy, has a linear output, and has a stable output even when temperature changes occur.

課題を解決するための手段 本発明は、圧力の導入口と、少なくとも該圧力によって
歪が生じる変形部分を有し、少なくとも該変形部分に磁
歪を有する非晶質・磁性合金を固着し、該非晶質磁性合
金と磁気回路をなすように、非晶質磁性合金の透磁率を
計測する電気、磁気的手段を有し、圧力印加にともなう
電気磁気的手段の出力から圧力を検出する圧力センサに
おいて、センサの計測条件下で、少なくとも該変形部分
に固着した非晶質磁性合金が正なる飽和磁歪定数を有す
る場合常に面内圧縮応力を受けた状態であり、負なる飽
和磁歪定数を有する場合常に面内引っ張り応力を受けた
状態に維持される構造を有する圧力センサである。
Means for Solving the Problems The present invention has a pressure introduction port and at least a deformed portion where distortion occurs due to the pressure, an amorphous magnetic alloy having magnetostriction is fixed to at least the deformed portion, and the amorphous In a pressure sensor that has electric and magnetic means for measuring the magnetic permeability of an amorphous magnetic alloy so as to form a magnetic circuit with the amorphous magnetic alloy, and detects pressure from the output of the electromagnetic means as pressure is applied, Under the measurement conditions of the sensor, if the amorphous magnetic alloy fixed to the deformed part has a positive saturation magnetostriction constant, it is always under in-plane compressive stress, and if it has a negative saturation magnetostriction constant, it is always under in-plane compressive stress. The pressure sensor has a structure that is maintained under internal tensile stress.

作用 本発明は、上記のような構成ををするので、計測条件下
でセンサ本体の変形部分から常に非晶質磁性合金に印加
される応力により、非晶質磁性合金内の自発磁化は基本
的に非晶質磁性合金面に対し垂直の方向すなわち厚み方
向を向き、計測磁界と直交することになる。このことに
よって検出精度が高く直線出力を有し、温度変化が生じ
ても出力の安定な圧力センサが実現できる。
Function Since the present invention has the above-described configuration, the spontaneous magnetization within the amorphous magnetic alloy is basically caused by the stress constantly applied to the amorphous magnetic alloy from the deformed part of the sensor body under measurement conditions. The direction is perpendicular to the amorphous magnetic alloy surface, that is, the thickness direction, and is orthogonal to the measurement magnetic field. This makes it possible to realize a pressure sensor with high detection accuracy, linear output, and stable output even when temperature changes occur.

実施例 以下に、本発明をその実施例を示す図面に基づいて、詳
述する。
EXAMPLES Below, the present invention will be explained in detail based on drawings showing examples thereof.

実施例1 第1図は本発明に係る圧力センサの一実施例の断面図で
ある。1はチタニウム合金からなる外径10mm5  
内径9.7mmの円管であり、その円管内部には検出す
べき圧力を円管の一端部より圧力導入口2を通じて円管
内に印加できるようになっている。また、他の一端は閉
じられた構、造になっており、その円管の外側中央部に
、長方形状で飽和磁歪定数20X10−6なる正の磁歪
を有する鉄系非晶質磁性合金3を軸周に巻回、センサ使
用温度より高温で固着しである。この時、鉄系非晶質磁
性合金と円筒管1を構成するチタニウム合金との線熱膨
張係数差はlXl0−6であり、チタニウム合金の方が
少し大きい。このため、センサ使用温度領域では非晶質
磁性合金薄帯に常に面内圧縮応力が印加されている状態
にある。4は、金属円管1の周囲に同心円状に巻回した
コイルである。
Embodiment 1 FIG. 1 is a sectional view of an embodiment of a pressure sensor according to the present invention. 1 is made of titanium alloy and has an outer diameter of 10 mm5
It is a circular tube with an inner diameter of 9.7 mm, and the pressure to be detected can be applied to the inside of the circular tube from one end of the circular tube through a pressure introduction port 2. The other end has a closed structure, and a rectangular iron-based amorphous magnetic alloy 3 having a positive magnetostriction with a saturation magnetostriction constant of 20X10-6 is placed at the outer center of the circular tube. It is wound around the shaft and is fixed at temperatures higher than the sensor operating temperature. At this time, the difference in linear thermal expansion coefficient between the iron-based amorphous magnetic alloy and the titanium alloy constituting the cylindrical tube 1 is lXl0-6, and the titanium alloy is slightly larger. Therefore, in the sensor operating temperature range, in-plane compressive stress is always applied to the amorphous magnetic alloy ribbon. 4 is a coil wound concentrically around the metal circular tube 1.

さらに該コイルの外側に48%Ni−Feからなる容器
5を設けである。6はセンサ出力用回路であり、7は出
力端子、8はセンサ取り付は用ネジである。
Furthermore, a container 5 made of 48% Ni--Fe is provided outside the coil. 6 is a sensor output circuit, 7 is an output terminal, and 8 is a sensor mounting screw.

印加圧力を変化させた場合、コイル4にインダクタンス
変化が生じる。結果を第2図に示す。計測周波数は30
 k Hzl  印加磁界は180A/mである。縦軸
は大気圧をOkgf/cm2としたときのインダクタン
ス値L9に対する各圧力でのインダクタンス値りとの比
を示す。横軸の圧力は大気圧との差圧、即ち大気圧との
相対圧を示す。圧力が10kgf/cm2までインダク
タンスは圧力に対し直線的に変化する。また、出力が一
30〜120°Cの範囲でほぼ直線的なセンナが得られ
、また加圧時と減圧時の圧力ヒステリシスもフルスケー
ルの1%以下と殆ど生じなかった。また雰囲気の温度変
化がある場合にも一30〜120″Cの範囲でセンサ出
力はフルスケールの5%以下の変化ときわめて安定であ
った。
When the applied pressure is changed, an inductance change occurs in the coil 4. The results are shown in Figure 2. The measurement frequency is 30
The k Hz applied magnetic field is 180 A/m. The vertical axis shows the ratio of the inductance value at each pressure to the inductance value L9 when atmospheric pressure is Okgf/cm2. The pressure on the horizontal axis indicates the differential pressure with atmospheric pressure, that is, the relative pressure with atmospheric pressure. Inductance changes linearly with pressure up to a pressure of 10 kgf/cm2. In addition, a substantially linear senna was obtained in the output range of 130 to 120°C, and pressure hysteresis during pressurization and depressurization was less than 1% of the full scale, and hardly occurred. Furthermore, even when there was a change in the temperature of the atmosphere, the sensor output was extremely stable with a change of less than 5% of the full scale in the range of -30 to 120''C.

実施例2 実施例1と同様な構造を有する圧力センサを試作した。Example 2 A pressure sensor having a structure similar to that of Example 1 was fabricated.

非晶質磁性合金の固着条件等も実施、例1と同様とした
。第1図の1にはニッケル鉄合金からなる外径10mm
1 内径9.4mmの円管を用いた。また、3には飽和
磁歪定数−4X10−6なる負の磁歪を有するコバルト
系非晶質磁性合金を用いた。その他の構成材料も実施例
1と同様である。
The conditions for fixing the amorphous magnetic alloy were also the same as in Example 1. 1 in Figure 1 is made of nickel-iron alloy with an outer diameter of 10 mm.
1 A circular tube with an inner diameter of 9.4 mm was used. Further, for No. 3, a cobalt-based amorphous magnetic alloy having negative magnetostriction with a saturation magnetostriction constant of -4×10 −6 was used. Other constituent materials are also the same as in Example 1.

このとき、コバルト系非晶質磁性合金3とニッケル鉄合
金製円筒管1との線熱膨張係数差は1.2×10−6で
あり、コバルト系非晶質磁性合金の方が少し大きい。こ
のため、センサ使用温度領域では非晶質磁性合金薄帯に
常に面内引っ張り応力が印加されている状態にある。
At this time, the difference in linear thermal expansion coefficient between the cobalt-based amorphous magnetic alloy 3 and the nickel-iron alloy cylindrical tube 1 is 1.2×10 −6 , and the cobalt-based amorphous magnetic alloy is slightly larger. Therefore, in the sensor operating temperature range, in-plane tensile stress is always applied to the amorphous magnetic alloy ribbon.

第3図に本センサの出力を示す。計測周波数は50 k
 HZN  印加磁界は約100A/mの設計である。
Figure 3 shows the output of this sensor. Measurement frequency is 50k
The HZN applied magnetic field is designed to be approximately 100 A/m.

実施例1と同様、圧力は大気圧との相対圧を示す。圧力
が20kgf/cm2まで出力は圧力に対し直線的に変
化する。また、実施例1と同様、出力が一30〜120
″Cの範囲でほぼ直線的であり、加圧時と減圧時の圧力
ヒステリシスもフルスケールの1%以下と殆ど生じなか
った。また雰囲気の温度変化がある場合にも−30〜1
20 ’Cの範囲でセンサ出力はフルスケールの5%以
下の変化ときわめて安定であった。
As in Example 1, the pressure is relative to atmospheric pressure. The output changes linearly with pressure up to a pressure of 20 kgf/cm2. Also, as in Example 1, the output was 130 to 120.
It was almost linear in the range of "C", and the pressure hysteresis during pressurization and depressurization was less than 1% of the full scale, which was almost non-existent.Also, even when there was a change in the temperature of the atmosphere, it was -30 to 1
In the range of 20'C, the sensor output was extremely stable with a change of less than 5% of full scale.

以上のように、本発明に係る圧力センサは、検出精度が
高く直線出力を有し、温1度変化が生じても出力の安定
な圧力センサが供給できる。
As described above, the pressure sensor according to the present invention has high detection accuracy and linear output, and can provide a pressure sensor with stable output even if the temperature changes by 1 degree.

本発明の実施例では固着した非晶質磁性合金と少なくと
も該圧力によって歪が生じる固着される変形部分を形成
する材料の線熱膨張係数差とその固着条件によって非晶
質磁性合金内部に適当な応力状態をつくり出すことを述
べた。特にこの材料の線熱膨張係数差が2X10−6以
下の場合、高精度かつ良好な感度を有する直線出力が得
られたが、線熱膨張係数差がこの値より大きくなると、
圧力に対する出力感度が大きく低下し、この結果精度も
低下する。
In the embodiments of the present invention, an appropriate temperature is formed inside the amorphous magnetic alloy based on the difference in linear thermal expansion coefficient between the fixed amorphous magnetic alloy and the material forming at least the fixed deformed part that is strained by the pressure and the fixing conditions. I mentioned that it creates a stress state. In particular, when the difference in linear thermal expansion coefficient of this material was 2X10-6 or less, a linear output with high accuracy and good sensitivity was obtained, but when the difference in linear thermal expansion coefficient became larger than this value,
The output sensitivity to pressure is greatly reduced, resulting in a reduction in accuracy.

発明の効果 本発明による圧力センサは、上述のように固着時に非晶
質磁性合金に内部応力を印加し、計測状態でこれを維持
することにより、検出精度が高く直線出力を有し、温度
変化が生じても出力の安定であるという効果を有する。
Effects of the Invention As described above, the pressure sensor of the present invention applies internal stress to the amorphous magnetic alloy when it is fixed and maintains this in the measurement state, so it has high detection accuracy, a linear output, and is sensitive to temperature changes. This has the effect of stabilizing the output even if this occurs.

またこの圧力センサは構造が簡単なため、安価に供給が
可能でかつ上記の効果を有するため、自動車などの制、
御分野に応用が適切である。
Furthermore, since this pressure sensor has a simple structure, it can be supplied at low cost and has the above-mentioned effects, so it can be used as a control device for automobiles, etc.
The application is appropriate for your field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の圧力センサに係る実施例の断面図、第
2図は同実施例のコイルの圧力によるインダクタンス値
の変化を示す図、第3図は、別の実施例における圧力セ
ンサの出力結果を示す図、第4図は従来の圧力センサの
概・略を示す断面図である。 1・・・チタニウム合金製円筒管、2・・・圧力導入口
、3・・・磁歪を有する鉄系非晶質磁性合金、4・・・
コイル、5・・・容器、6・・・センサ出力用回路、7
・・・出力端子、8・・・センサ取り付は用ネジ、11
・・・円柱状の軟磁性体、12・・・は歪を有する非晶
質磁性合金、13・・・軟磁性体の溝部に巻装されたコ
イル、14・・・非磁性リング、15・・・容器、 1
6・・・透孔、17・・・蓋部、18・・・油圧導入部
。 代理人の氏名 弁理士 粟野重孝 はか1名第 図 円筒管 圧力1人口 非晶賀確l庄合金 コイル 第 図 圧 力 (Kgf/cm2 ) (kg%m2’)
Fig. 1 is a sectional view of an embodiment of the pressure sensor of the present invention, Fig. 2 is a diagram showing changes in inductance value due to pressure of the coil of the same embodiment, and Fig. 3 is a diagram of a pressure sensor according to another embodiment. FIG. 4, which is a diagram showing the output results, is a sectional view showing an outline of a conventional pressure sensor. DESCRIPTION OF SYMBOLS 1... Titanium alloy cylindrical tube, 2... Pressure introduction port, 3... Iron-based amorphous magnetic alloy having magnetostriction, 4...
Coil, 5... Container, 6... Sensor output circuit, 7
... Output terminal, 8... Screw for sensor installation, 11
. . . Cylindrical soft magnetic material, 12 . . . is an amorphous magnetic alloy having strain, 13 . . . Coil wound in the groove of the soft magnetic material, 14 .・・Container, 1
6... Through hole, 17... Lid part, 18... Hydraulic pressure introduction part. Name of agent Patent attorney Shigetaka Awano (1 person) Figure Cylindrical pipe pressure 1 Population Amorphous alloy coil Figure Pressure (Kgf/cm2) (kg%m2')

Claims (1)

【特許請求の範囲】[Claims] 圧力の導入口と、少なくとも該圧力によって歪が生じる
変形部分を有し、少なくとも該変形部分に磁歪を有する
非晶質磁性合金を固着し、該非晶質磁性合金と磁気回路
をなすように、非晶質磁性合金の透磁率を計測する電気
磁気的手段を有し、圧力印加にともなう電気磁気的手段
の出力から圧力を検出する圧力センサにおいて、センサ
の計測条件下で、少なくとも前記変形部分に固着した非
晶質磁性合金が正なる飽和磁歪定数を有する場合常に面
内圧縮応力を受けた状態であり、負なる飽和磁歪定数を
有する場合常に面内引っ張り応力を受けた状態に維持さ
れることを特徴とする圧力センサ。
A non-crystalline magnetic alloy having a pressure introduction port and at least a deformed portion that is strained by the pressure, an amorphous magnetic alloy having magnetostriction fixed to at least the deformed portion, and forming a magnetic circuit with the amorphous magnetic alloy. In a pressure sensor that has an electromagnetic means for measuring the magnetic permeability of a crystalline magnetic alloy and detects pressure from the output of the electromagnetic means as pressure is applied, the pressure sensor is fixed to at least the deformed portion under measurement conditions of the sensor. When an amorphous magnetic alloy has a positive saturation magnetostriction constant, it is always under in-plane compressive stress, and when it has a negative saturation magnetostriction constant, it is always under in-plane tensile stress. Features of pressure sensor.
JP17124888A 1988-07-08 1988-07-08 Pressure sensor Expired - Lifetime JPH0769243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17124888A JPH0769243B2 (en) 1988-07-08 1988-07-08 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17124888A JPH0769243B2 (en) 1988-07-08 1988-07-08 Pressure sensor

Publications (2)

Publication Number Publication Date
JPH0221232A true JPH0221232A (en) 1990-01-24
JPH0769243B2 JPH0769243B2 (en) 1995-07-26

Family

ID=15919798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17124888A Expired - Lifetime JPH0769243B2 (en) 1988-07-08 1988-07-08 Pressure sensor

Country Status (1)

Country Link
JP (1) JPH0769243B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016009596A1 (en) * 2016-08-06 2018-02-08 Thomas Magnete Gmbh Pump unit with pressure sensors and method for operating the pump set

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016009596A1 (en) * 2016-08-06 2018-02-08 Thomas Magnete Gmbh Pump unit with pressure sensors and method for operating the pump set
DE102016009596B4 (en) 2016-08-06 2018-05-30 Thomas Magnete Gmbh Pump unit with pressure sensors and method for operating the pump set

Also Published As

Publication number Publication date
JPH0769243B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
US4412454A (en) Pressure sensing unit for a pressure sensor
US4823617A (en) Torque sensor
US20110232392A1 (en) Wireless Sensor for Measuring Mechanical Stress
Schneider et al. Biaxial magnetoelasticity in steels
Ishizuka et al. Precise magnetization measurements under high pressures in the diamond‐anvil cell
Karl et al. A micromachined magnetostrictive pressure sensor using magneto-optical interrogation
US4484161A (en) Silicone rubber for relieving stress in magnetic material
JPH0221232A (en) Pressure sensor
US7219552B2 (en) Scalable high sensitivity magnetostrictive pressure sensor
Ong et al. Control of a magnetoelastic sensor temperature response by magnetic field tuning
JPH0221233A (en) Pressure sensor
Ong et al. Magnetism-based sensors
US4979395A (en) Apparatus and method of forming a magnetic domain strain gage
US7931400B2 (en) Temperature sensor and related remote temperature sensing method
Bian et al. Modeling and Design of Resonant Magnetic Field Sensors in the Scheme of Differential Magnetostrictive Actuation With Compact Bias Magnetic Circuit
JPH01118732A (en) Pressure sensor
JPH06241920A (en) Load detection method and load sensor
JP2641741B2 (en) Mechanical quantity sensor
JP4919310B2 (en) Method for manufacturing giant magnetostrictive thin film element
JPH05133977A (en) Acceleration sensor
JPH0261530A (en) Dynamic quantity sensor
Müller et al. Grain structure, coercivity and high-frequency noise in soft magnetic Fe81Ni6Mo alloys
JPH04169826A (en) Load sensor
JPH09512360A (en) Labels containing amorphous tapes with improved properties
Meydan et al. Amorphous ribbon transducers