JPH02212116A - Method for extruding foaming resin - Google Patents

Method for extruding foaming resin

Info

Publication number
JPH02212116A
JPH02212116A JP1034208A JP3420889A JPH02212116A JP H02212116 A JPH02212116 A JP H02212116A JP 1034208 A JP1034208 A JP 1034208A JP 3420889 A JP3420889 A JP 3420889A JP H02212116 A JPH02212116 A JP H02212116A
Authority
JP
Japan
Prior art keywords
gas
foaming material
amount
hopper
cfc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1034208A
Other languages
Japanese (ja)
Inventor
Nobuyuki Shibata
信之 芝田
Takahide Kimura
木村 隆秀
Yukio Komura
幸夫 香村
Munehisa Mizutani
水谷 宗久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1034208A priority Critical patent/JPH02212116A/en
Publication of JPH02212116A publication Critical patent/JPH02212116A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to stably extrude foaming material by a method wherein the pellet-shaped foaming material is housed in a hopper having the specified ambient temperature or higher and fed with chlorofluorocarbon(CFC) gas so as to bring the amount of chlorofluorocarbon gas infiltrated into the foaming material to the specified percentage of the amount of CFC gas saturated in the foaming material or higher and, after that, the resultant foaming material is extruded from the cylinder of an extruder. CONSTITUTION:It is known that the percentage of CFC gas impregnated in fluoroplastic is improved by using high temperature saturated chlorofluorocarbon gas vapor. Since chlorofluorocarbon gas is fed in a hopper 2 having an ambient temperature of 40 deg.C or higher, the gas easily infiltrates into foaming material 1. Even in case of unmolten pellet-like foaming material 1, the amount of chlorofluorocarbon gas infiltrated into the foaming material easily becomes uniform and, in addition, reaches the desired amount of infiltration in a short period of time. Further, since the foaming material 1 is extruded under the condition that the amount of CFC gas infiltrated into the foaming material 1 reaches 80% or higher of the amount of CFC gas saturated in the foaming material, the expansion ratio of the foaming material is also enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は第2図のように導体aの外周が発泡フッ素樹脂
すにより被覆されてなる発泡フッ素樹脂絶縁電線dを製
造する場合に、同導体aの外周に発泡フッ素樹脂すを押
出し被でする方法に関する(従来の技術) 従来の発泡フッ素樹脂絶縁ケーブルの製造方法は、発泡
剤であるフッ化物ガス(例えばフロンガス:デュポン社
商標)を第3図のように押出機シリンダCの途中より注
入して、同ガスを前記シリンダC内の発泡材料であるフ
ッ素樹脂へ含浸させ、同樹脂がダイから放出される際の
減圧効果により同樹脂を発泡させている。
Detailed Description of the Invention (Industrial Application Field) The present invention is applicable to the production of a foamed fluororesin insulated wire d in which the outer periphery of a conductor a is covered with foamed fluororesin as shown in FIG. Related to a method for extruding and covering the outer periphery of a conductor a with a foamed fluororesin (prior art) A conventional method for manufacturing a foamed fluororesin insulated cable uses a fluoride gas as a foaming agent (for example, fluorocarbon gas: DuPont trademark). As shown in Figure 3, the gas is injected from the middle of the extruder cylinder C to impregnate the fluororesin that is the foamed material in the cylinder C, and the resin is decompressed by the depressurizing effect when the resin is discharged from the die. It is foaming.

このフロンガスの注入方法には第3図のような定圧注入
法、同図のような定量ポンプ注入法がある。
Methods for injecting this fluorocarbon gas include a constant pressure injection method as shown in FIG. 3, and a metered pump injection method as shown in the same figure.

前。首はフロンガスボンベA内のフロンガスを減圧弁B
を通して押出機シリンダCに注入するようにしたもので
あり、後者はチッ素ボンベD内のチッ素ガスを減圧弁E
を通してフロンガスボンベFに注入し、同ボンベF内の
フロンガスをポンプGにより押出機シリンダCに注入す
るようにしたものである。
Before. The neck is a pressure reducing valve B that removes the fluorocarbon gas from the fluorocarbon gas cylinder A.
The nitrogen gas in the nitrogen cylinder D is injected into the extruder cylinder C through the pressure reducing valve E.
The fluorocarbon gas in the cylinder F is injected into the extruder cylinder C by the pump G.

これら両方法は押出機シリンダCのガス注入部Hの樹脂
圧力によって使い分けられている。
Both of these methods are used depending on the resin pressure of the gas injection part H of the extruder cylinder C.

前記いずれの方法の場合も、フッ素樹脂の発泡は非常に
微妙であり、60%以上の発泡率を得るためには押出機
シリンダCのうち圧力の安定したところでフロンガスを
注入する必要がある。
In any of the above methods, the foaming of the fluororesin is very delicate, and in order to obtain a foaming rate of 60% or more, it is necessary to inject fluorocarbon gas at a point in the extruder cylinder C where the pressure is stable.

しかもフロンガスを完全に溶融している溶融樹脂内に注
入しないと同樹脂へのガスの含浸量が不均一となり、発
泡が不均一になる。
Moreover, unless the fluorocarbon gas is injected into the molten resin that is completely melted, the amount of gas impregnated into the resin will be uneven, resulting in non-uniform foaming.

(従来技術の問題点) しかし、フロンガスは溶融樹脂下に注入しなければホッ
パー等の材料供給部■から逃げてしまうため、ガス注入
口Jを押出機シリンダCのクロスヘツドに寄りに設けざ
るを得ない、このため樹脂がクロスヘツドKに達するま
での時間が短くなり、その時間内にフロンガスがフッ素
樹脂内へ十分に拡散しきれず、樹脂の発泡が不安定にな
るという問題があった。
(Problems with the prior art) However, if the fluorocarbon gas is not injected under the molten resin, it will escape from the material supply section such as the hopper, so the gas inlet J has to be installed closer to the crosshead of the extruder cylinder C. As a result, the time required for the resin to reach the crosshead K is shortened, and there is a problem in that the fluorocarbon gas cannot be sufficiently diffused into the fluororesin within that time, making foaming of the resin unstable.

また、前記方法のうち定量ポンプ注入法では、注入量が
ポンプ精度に依存しており、重に押出機シリンダC内に
吐き出されたフロンガスが同シリンダC内のフッ素樹脂
を冷却してしまうため、同シリンダC内の樹脂の温度、
粘度が不均一になり、樹脂の押出しが不安定になるとい
)問題もあった。
Furthermore, in the metered pump injection method among the above methods, the injection amount depends on the pump precision, and the fluorocarbon gas discharged into the extruder cylinder C cools the fluororesin in the cylinder C. The temperature of the resin in the same cylinder C,
There were also problems in that the viscosity became non-uniform and extrusion of the resin became unstable.

(発明の目的) 本発明の目的はフロンガスがフッ素樹脂内へ十分に拡散
され、フッ素樹脂の発泡が安定し、安定した押出しがで
きるようにした発泡フッ素樹脂の押出し方法を提供する
ことにある。
(Objective of the Invention) An object of the present invention is to provide a method for extruding a foamed fluororesin in which fluorocarbon gas is sufficiently diffused into the fluororesin, the foaming of the fluororesin is stabilized, and stable extrusion is possible.

1間3点を解決するための手段) 本発明のうち請求項第1の発泡樹脂押出し方法は第1図
のように、ベレット状の発泡材1′4(例えばフッ素樹
脂)lを雰囲気温度40℃以上のホ・ンパー2内に収容
し、同ホッパー2内にフロンガスを供給し、前記発泡材
料lへのフロンガス含浸量が飽和含浸量の80%以上に
なってから同発泡材料1を押出機シリンダCから押出す
ことを特徴とするものである。
Means for Solving the Problems 1 and 3) The foamed resin extrusion method according to claim 1 of the present invention is as shown in FIG. The foamed material 1 is placed in a hopper 2 at a temperature of ℃ or higher, and fluorocarbon gas is supplied into the hopper 2. After the amount of fluorocarbon gas impregnated into the foamed material 1 reaches 80% or more of the saturated amount, the foamed material 1 is extruded. It is characterized by being extruded from cylinder C.

本発明のうち請求項第2の発明は、請求項第1における
フロンガスを加熱してホッパー2に供給し、同ガスを同
ホッパー2内で加圧して飽和蒸気にして使用するように
したものである。
The second aspect of the present invention is such that the fluorocarbon gas in the first aspect is heated and supplied to the hopper 2, and the gas is pressurized in the hopper 2 and used as saturated steam. be.

(作用) フッ素樹脂へのフロンガスの含浸率は第4図のように、
フロンガスを高温の飽和蒸気として用いると向上するこ
とが知られている。第4図におけるDF−22,DF−
113はフロンガスのJ4類を、50℃、20 kg/
cm″、50℃、1 、 5 kg/c+m”等はフロ
ンの飽和蒸気の温度及び圧力を示す。
(Function) The impregnation rate of fluorocarbon gas into fluororesin is as shown in Figure 4.
It is known that the improvement can be achieved by using fluorocarbon gas as high temperature saturated steam. DF-22, DF- in Figure 4
113 uses Class J4 fluorocarbon gas at 50℃, 20 kg/
cm'', 50°C, 1,5 kg/c+m'', etc. indicate the temperature and pressure of saturated fluorocarbon vapor.

本発明の請求項第1の発泡樹脂押出し方法では、フロン
ガスが雰囲気温度40℃以上のホ・ンパー2内に供給さ
れるので、同ガスが発泡材料lへ含浸し易くなり、溶融
していないペレット状の発泡材料1であってもフロンガ
スの含浸量が均一化し易くなり、しかも短時間で所望の
含41となる。また発泡材料lへのフロンガス含浸量が
飽和含浸量の80%以上になってから同発泡材141を
押出すものであるため発泡率も向上する。
Claims of the Invention In the first foamed resin extrusion method, since the fluorocarbon gas is supplied into the honper 2 at an ambient temperature of 40°C or higher, the gas easily impregnates the foamed material 1, resulting in unmolten pellets. Even if the foamed material 1 has a shape, the amount of fluorocarbon gas impregnated can be easily made uniform, and the desired amount of fluorocarbon gas can be achieved in a short time. Furthermore, since the foamed material 141 is extruded after the amount of fluorocarbon gas impregnated into the foamed material 1 reaches 80% or more of the saturated impregnated amount, the foaming rate is also improved.

本発明の請求項第2の発泡樹脂押出し方法では、フロン
ガスを例えば50℃程度に加熱してホッパー2に供給し
、同ガスをホッパー2内で加圧して飽和蒸気にするので
、同ガスが発泡材料lへより一層含浸し易(なり、また
含浸時間もより一層短縮される。
Claims of the Invention In the second foamed resin extrusion method, freon gas is heated to, for example, about 50°C and supplied to the hopper 2, and the gas is pressurized in the hopper 2 to become saturated steam, so that the gas foams. It becomes easier to impregnate the material 1 (and the impregnation time is further shortened).

(実施例) 第1図の押出し装置は本発明の押出し方法を実施化する
ためのものである。
(Example) The extrusion apparatus shown in FIG. 1 is for implementing the extrusion method of the present invention.

本発明ではホッパー2に供給するフロンガスを加熱して
飽和蒸気にすることができるように−するため、同ホッ
パー2を加圧式の耐圧容器にしである。また同ホッパー
2は加熱されて供給されてくるフロンガスを保温するた
め、内面に断熱材を貼りつける等して保温性を持たせで
ある。
In the present invention, in order to be able to heat the fluorocarbon gas supplied to the hopper 2 and turn it into saturated steam, the hopper 2 is made into a pressurized pressure-resistant container. Further, the hopper 2 is provided with a heat-retaining property such as by pasting a heat insulating material on the inner surface in order to keep the heated and supplied fluorocarbon gas warm.

本発明ではフロンガスとして第4図のフロン22 (D
F−22)を用い、これをホッパー2内の発泡材料lに
効率的に含浸させるため、50℃、20にg/ cae
”の飽和蒸気にして用いた。この場合、DF−22のガ
スボンベ3を恒温槽4により50℃に(rj温し、更に
ホッパー2.配管部5をヒーター6により加熱し1図示
されていない温度調筒器等により一度調節して内部の雰
囲気を50℃に保温し、更にホッパー2内を20にg/
 cyr”に加圧して飽和蒸気を得た。
In the present invention, Freon 22 (D
F-22) was used to efficiently impregnate the foamed material in the hopper 2 with g/cae at 50°C and 20°C.
In this case, the gas cylinder 3 of DF-22 was heated to 50°C (rj temperature) in a constant temperature bath 4, and the hopper 2 and piping section 5 were further heated with a heater 6 to bring the temperature to 1 (not shown). The temperature inside the hopper 2 is adjusted to 50°C by adjusting the cylinder temperature once, and then the inside of the hopper 2 is heated to 20g/kg.
cyr'' to obtain saturated steam.

この状態でホッパー2内に発泡材料lを約10時間放置
し、同発泡材料l中に十分にフロンガスを含浸させた。
In this state, the foamed material 1 was left in the hopper 2 for about 10 hours, and the foamed material 1 was sufficiently impregnated with chlorofluorocarbon gas.

このとき、フロンガスの含浸率は約3.0重量パーセン
トであった。この含浸率はフロンの飽和蒸気の温度によ
り決定されるが、実験では同温度が40℃以上であれば
発泡に十分な含浸が得られることがわかった。
At this time, the impregnation rate of fluorocarbon gas was about 3.0% by weight. This impregnation rate is determined by the temperature of saturated freon vapor, and experiments have shown that sufficient impregnation for foaming can be obtained if the temperature is 40°C or higher.

また、ペレット状の発泡材料lへのフロンガス含浸量は
、飽和含浸量のほぼ80%であれば、その後に含浸する
量は微量で又含浸に長時間を要するため、押出しの安定
性に影響しないこともわかった。
In addition, if the amount of fluorocarbon gas impregnated into the pellet-shaped foam material is approximately 80% of the saturated amount, the amount of subsequent impregnation will be small and will take a long time to impregnate, so it will not affect the stability of extrusion. I also learned that.

また、第1図の装置ではホッパー2の下部から押出機シ
リンダC内のスクリュー7の後方にガスが抜は難いよう
に、スクリュー7の後方のギヤーボックス及びスクリュ
ー7への動力伝達部(いずれも図示されていない)をシ
ールしである。
In addition, in the apparatus shown in FIG. 1, a gear box behind the screw 7 and a power transmission section to the screw 7 (both (not shown).

(発明の効果) 本発明の発泡樹脂押出し方法では1発泡材料lに対して
フロンガスを安定した状態で供給することができ、フロ
ンガスが同発泡材料lに発泡に十分な量含浸するので、
同発泡材料lの発泡が安定し、しかも発泡率が向上する
(Effects of the Invention) In the foamed resin extrusion method of the present invention, fluorocarbon gas can be stably supplied to 1 foamed material 1, and the fluorocarbon gas impregnates the same foamed material 1 in a sufficient amount for foaming.
The foaming of the foaming material 1 is stabilized, and the foaming rate is improved.

この結果1本発明の押出し方法により第2図の導体aの
外周に発泡材料lを押出し被覆すれば発泡フッ素樹脂絶
縁型1i1dが容易に得られ、しかも生産性か向−トす
る。
As a result, if the outer periphery of the conductor a shown in FIG. 2 is coated with the foamed material 1 by extrusion using the extrusion method of the present invention, the foamed fluororesin insulation type 1i1d can be easily obtained, and productivity is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施化する押出し装置の一実施例を示
す説明図、第2図は発泡フッ素樹脂絶縁電線の説明図、
第3図は従来の押出し装置の説明図、第4図はフッ素樹
脂へのフロンガスの含浸率と含浸時間との関係を示す説
明図である。 1は発泡材料 2はホッパ
FIG. 1 is an explanatory diagram showing an example of an extrusion device embodying the present invention, FIG. 2 is an explanatory diagram of a foamed fluororesin insulated wire,
FIG. 3 is an explanatory diagram of a conventional extrusion device, and FIG. 4 is an explanatory diagram showing the relationship between the impregnation rate of fluorocarbon gas into the fluororesin and the impregnation time. 1 is foam material 2 is hopper

Claims (2)

【特許請求の範囲】[Claims] (1)ペレット状の発泡材料1を雰囲気温度40℃以上
のホッパー2内に収容し、同ホッパー2内にフロンガス
を供給し、前記発泡材料1へのフロンガス含浸量が飽和
含浸量の80%以上になってから同発泡材料1を押出す
ことを特徴とする発泡樹脂押出し方法。
(1) Pellet-shaped foamed material 1 is placed in a hopper 2 with an ambient temperature of 40°C or higher, and fluorocarbon gas is supplied into the hopper 2, so that the amount of fluorocarbon gas impregnated into the foamed material 1 is 80% or more of the saturated impregnated amount. A method for extruding a foamed resin, characterized in that the foamed material 1 is extruded after the foamed material 1 is formed.
(2)前記フロンガスを加熱してホッパー2に供給し、
同ガスを同ホッパー2内で加圧して飽和蒸気にして使用
することを特徴とする請求項第1の発泡樹脂押出し方法
(2) heating the fluorocarbon gas and supplying it to the hopper 2;
2. A foamed resin extrusion method according to claim 1, characterized in that said gas is pressurized in said hopper and used as saturated steam.
JP1034208A 1989-02-14 1989-02-14 Method for extruding foaming resin Pending JPH02212116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1034208A JPH02212116A (en) 1989-02-14 1989-02-14 Method for extruding foaming resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1034208A JPH02212116A (en) 1989-02-14 1989-02-14 Method for extruding foaming resin

Publications (1)

Publication Number Publication Date
JPH02212116A true JPH02212116A (en) 1990-08-23

Family

ID=12407741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1034208A Pending JPH02212116A (en) 1989-02-14 1989-02-14 Method for extruding foaming resin

Country Status (1)

Country Link
JP (1) JPH02212116A (en)

Similar Documents

Publication Publication Date Title
US4289716A (en) Thermally insulating tubes
US3649730A (en) Method of jacketing tubular stock with polyolefin foam
TWI716917B (en) System for molding a single-phase solution
CA1053872A (en) Method and device for the production of articles having a non-cellular smooth skin and a cellular core from polymer materials
US7198748B2 (en) Injection molding machine and injection molding method for manufacturing foamed shaped parts
US4155690A (en) Continuous production of cross-linked polyethylene
JPH02212116A (en) Method for extruding foaming resin
US4376741A (en) Method and apparatus for continuously extruding an expandable thermoplastic resin composition onto an elongated preform
KR102540292B1 (en) Polyurethane foam insulator manufacturing apparatus for pipe and polyurethane foam insulato using it
US3180910A (en) Method and apparatus for making coaxial cables
US20040156945A1 (en) Injection mold, molding system having injection mold, method thereof and molded product
CN102658638A (en) Fluoroplastic foaming extruder set
Wang Recent Patents on the Equipment of Microcellular Injection Molding Machine
CN113427737A (en) Soluble teflon processing device and processing technology thereof
JPH03169512A (en) Manufacture of pelletlike resin and foamed wire
JPH03210709A (en) Manufacture of foam insulation cable
JP3605136B2 (en) High foam polyethylene coaxial cable manufacturing method
JPH02304816A (en) Manufacture of foaming insulated wire
JP2001071366A (en) Method and apparatus for extruding foamed resin
GB1580065A (en) Electrical insulators
JPS6222781B2 (en)
JPH03233815A (en) Manufacture of foam insulated electric cable
JPH0520944A (en) Manufacture of foam insulation conductor
JPH0583798B2 (en)
JPH04319212A (en) Manufacture of extra-fine high forming wire