JPH022116A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH022116A
JPH022116A JP14587588A JP14587588A JPH022116A JP H022116 A JPH022116 A JP H022116A JP 14587588 A JP14587588 A JP 14587588A JP 14587588 A JP14587588 A JP 14587588A JP H022116 A JPH022116 A JP H022116A
Authority
JP
Japan
Prior art keywords
silicon
substrate
side wall
ion
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14587588A
Other languages
Japanese (ja)
Inventor
Koichi Kato
弘一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14587588A priority Critical patent/JPH022116A/en
Publication of JPH022116A publication Critical patent/JPH022116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable impurities to be introduced uniformly over the entire side wall by impregnating an ion of atom constituting a substrate simultaneously with the impurities ion or alternately after forming a groove on the semiconductor substrate by anisotropy etching in manufacture of a trench capacitor. CONSTITUTION:When impregnating impurities ion on the surface of a substrate 1 within a groove 7 using the formed groove 7 after performing anisotropy reaction etching to an Si semiconductor substrate 1 with a laminated film 5 as a mask, an accelerated parallel high energy impurities ion beam and a silicon ion beam are allowed to incide alternately and repeatedly. First of all, the incided impurities ion mainly incide the side wall part of the groove 7 where part of it scatters into atomic nucleus within the silicon substrate 1, jumps out of the surface of the substrate 1, and is impregnated into other side wall part or bottom part again. Then, when silicon ion is allowed to side from the same direction, silicon within the silicon substrate begins to move and several ions begin to jump out of the surface on the side wall part so that the impurities ion struck into the inside of the surface jumps out of the surface simultaneously to be impregnated into other side wall part or bottom part again.

Description

【発明の詳細な説明】 〔発明の目的〕 (従業上の利用分骨) この発明は、半導体装置、例えばメモリセル用溝形キャ
パシタ等の半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Employee Use) The present invention relates to a method of manufacturing a semiconductor device, such as a trench capacitor for a memory cell.

(従来の技術) 近年、サブミクロンサイズの素子が高密度に搭載された
LSIが開発されている。このようなLSIでは、搭載
される膨大な数のトランジスタやキャパシタ等の各素子
の面積が縮小されるので。
(Prior Art) In recent years, LSIs in which submicron-sized elements are mounted at high density have been developed. In such LSIs, the area of each element such as the huge number of transistors and capacitors mounted on it is reduced.

例えば、キャパシタでは従来りよう(こブレーナ構造を
採りたのでは十分なGtitが得られないつそこで最近
では半導体基板を立体的に利用するトレンチキャパシタ
の技術が(j!案されてデバイスに実用され始めている
っ トレンチキャパシタ技術Iユ、半導体壱板1こ略承
直な側管を有する数μm O)深さのトレンチ(J)を
異方性反応エツチングマスクにより穿設し、その側壁(
こキャパシタを形成して所要の太きfcgllを得る技
術である。
For example, in the case of capacitors, the trench capacitor technology that uses the semiconductor substrate three-dimensionally has been proposed and put into practical use in devices. Trench capacitor technology IU is used to create trenches (J) several μm deep with approximately straight side pipes in one semiconductor board using an anisotropic reactive etching mask, and to remove the sidewalls (
This is a technique for forming a capacitor to obtain a required thick fcgll.

このヨウに、トレンチキャパシタ(ま、溝り月1111
壁が一方の41ffiとなるので1通常その1111I
璧にlま高不純r’71J層が形成される。第2図(ま
、このような手導体弄仮(9)壷こ形成された(10)
のtilH&を部分に不純物を導入する方法を示して5
つ、高エネルギーのイオン(11)を斜め上方から溝(
10)内lこ注入する方法が採うれている。7Jロ速さ
れたイオンビーム(11)は、+行に前記ft!#(1
0)に入射されて、賂垂直に杉成された溝(10)の側
壁部分への注入が行なわれている。
In this case, a trench capacitor (well, Mizoriguki 1111
Since the wall is 41ffi on one side, 1 usually that 1111I
A highly impurity r'71J layer is formed on the entire surface. Figure 2 (Well, such a hand conductor is played (9) A pot is formed (10)
5 shows how to introduce impurities into the tilH&
High-energy ions (11) are directed diagonally upward into the groove (
10) A method of injecting the inside of the tank is adopted. The ion beam (11) sped up by 7J is placed in the + line at the ft! #(1
0), and injection into the side wall portion of a groove (10) formed perpendicularly to the grain is performed.

そして、@記側壁部分に入射された高エネルギーカイオ
ンは1手導体中に8いて原子核散乱と4子散乱とを繰返
しながら波数されていき最r&に静止する。しかし略肋
直に形成された側壁に、イオンを大きな入射角で入射さ
せると、耳3図の析面図に示すように側壁から非稽;こ
近い立11竿り〕原子核で散乱されたイオンは、広角度
の散乱を受け、入射されたイオンの一部(lla)は測
・層部分から飛び出してI濤(10) ’))底部や対
向している反対B111の1i1i啼部分に再入射され
て波数してしまう。
The high-energy cations incident on the side wall part are in the one-handed conductor and are changed in wave number while repeating nuclear scattering and quadruplets scattering, and finally come to rest at r&. However, when ions are incident at a large angle of incidence on a side wall formed approximately perpendicular to the ribs, ions are scattered by the atomic nucleus from the side wall, as shown in the analytical surface diagram in Figure 3. is subjected to wide-angle scattering, and a part of the incident ions (lla) jumps out of the measurement layer and re-enters the bottom of Itou (10)')) and the opposite 1i1i part of B111 facing the other side. The wave number will be changed.

(発明が解決しようとする課!A) 従来の、搏は、異方性反応エツチング)5法イこより、
1i1i啼が略垂百1こ形成されていたため、例えばト
レンチキャパシタの形成に際して、そ′y)溝に斜め上
方から大きな入射角でイオンビームを入射させて側壁部
分への不純物導入を行なうと、原子核散乱されたイオン
は、広角度の散乱を受けるので、側壁全体に均一に不、
N物を・5人させることが難しく。
(Problem to be solved by the invention!A) From the conventional 5 methods (Anisotropic reaction etching)
For example, when forming a trench capacitor, if an ion beam is introduced into the trench from diagonally above at a large angle of incidence to introduce impurities into the sidewalls, the atomic nuclei will form. The scattered ions undergo wide-angle scattering, so they are distributed uniformly and unevenly across the sidewall.
It's difficult to get 5 people to do N things.

高性能のトレンチキャパシタ等を製造することが困難で
ありた。
It has been difficult to manufacture high-performance trench capacitors and the like.

この発明は上記事情に基づいてなされたもので、側壁全
体に一様に不純物を導入することを容易(こし、高性能
のトレンチキャパシタ等を製造することのできる半導体
装置の製置方法を提供することを目的とする。
The present invention has been made based on the above circumstances, and provides a method for fabricating a semiconductor device that makes it easy to uniformly introduce impurities into the entire sidewall, thereby making it possible to fabricate high-performance trench capacitors, etc. The purpose is to

〔発明の構成〕[Structure of the invention]

(課題を解決するための手il!、) この発明は上記課題を解決するために、半導体基板の主
面に所要の開口部を有するエツチングマスクを形成する
工程と、前記マスクの開口部から前記半導体基板の主面
に対し垂直方向に異方性エツチングして前記店仮にン4
を形成する工程と5次いで所望の不純物イオンと半導体
基板を構成する原子のイオンを同時あるいは交互番こt
f4 ’J)上部より注入する工程とをざむことそ安旨
とする。
(Hands to Solve the Problems!) In order to solve the above problems, the present invention includes a step of forming an etching mask having a required opening on the main surface of a semiconductor substrate, and a step of forming an etching mask from the opening of the mask to Anisotropic etching is performed in a direction perpendicular to the main surface of the semiconductor substrate to form the etching surface 4.
Step 5: Then, desired impurity ions and ions of atoms constituting the semiconductor substrate are simultaneously or alternately added.
f4'J) It is safe to skip the step of injecting from the top.

(作用) 不純物イオンと同時壷こ又は交互に半導体基板を構成す
る原子のイオンを注入することにより、溝内11t!I
壁部分のスパッタリングが促進され、基板を構成する原
子だけでなく、−度静止したイオ/も層板表面よりたた
き出され、1’a’))表面へ再注入されることtこな
る。この再注入により、溝内部久)不純物濃度の均−比
が実現される。
(Function) By implanting ions of atoms constituting the semiconductor substrate simultaneously or alternately with impurity ions, the inside of the trench 11t! I
Sputtering of the wall portion is promoted, and not only the atoms constituting the substrate, but also the stationary ions are knocked out from the layer surface and reinjected into the surface. This re-implantation realizes a uniform ratio of the impurity concentration within the trench.

(更嘲列) 以下、この発明り〕一実施例である半導体装置の製造方
法を第11図tal〜telに基づいて説明する。
(Continued) A method of manufacturing a semiconductor device according to an embodiment of the present invention will be described below with reference to FIGS.

まず、第1図1blに示すよう(こP杉力St学導体簀
仮(1)り)主面を熱酸1ヒして約1000 A (7
J iQさの第1のシリコン酸化膜(2を形成する。こ
の第1り)シリコン酸化膜(2)上をこさらに約200
OAの厚さのシリコン室比模(3)及び6000 A 
’))厚さの第2のシリコン酸化膜(4)をCVD法;
こより:+lF’:次堆積して、シリコン酸化1漠(2
)、シリコン窒化膜(3)、シリコン酸化膜(4)の績
喘帳(5)を形成し、この積嚇模上(こレジスト膜(6
)をユ1当な厚さにコーティングする。前記at l蓄
模(5)は基板(1)をエツチングするp俵のエツチン
グマスクとなる。
First, as shown in Fig. 1 1bl, the main surface of the conductor (1) was heated with hot acid for about 1000 A (7
The first silicon oxide film (2) of J iQ size is formed.
Silicon chamber ratio of OA thickness (3) and 6000 A
')) thick second silicon oxide film (4) by CVD;
From this: +lF': Next deposited, silicon oxide 1 (2
), a silicon nitride film (3), and a silicon oxide film (4) are formed on the resist film (5).
) to an appropriate thickness. The atl pattern (5) serves as an etching mask for the p bale for etching the substrate (1).

次に、第1図1bl に示すようにフォトリソグラフィ
法により、前記レジスト膜(6)を1μm1Tlに開口
し、この開口部を有するレジスト膜16)をマスクとし
て、蹟方性反16エツチングによりまず第2のシリコン
酸[ヒ模(4)を開口する。前記レジスト膜(6)を除
去した後%開口した第2σ)シリコン酸rts @ +
41をマスクとして、エツチングによりシリコン窒化膜
(3)及び第1のシリコン酸化1漠(2)を順次開口し
、開口部(5a)を有する積1模(5)からなるエツチ
ングマスクを形成する。
Next, as shown in FIG. 11bl, an opening of 1 μm 1 Tl is formed in the resist film (6) by a photolithography method, and using the resist film 16) having this opening as a mask, a first step is performed by diagonal anti-16 etching. 2. Open the silicone acid pattern (4). After removing the resist film (6), the second σ) silicon acid rts @ +
Using 41 as a mask, the silicon nitride film (3) and the first silicon oxide layer (2) are sequentially opened by etching to form an etching mask consisting of a square pattern (5) having an opening (5a).

次いで、工、チングマスク(5)をマスクトシテ。Next, apply the mask (5).

Si千°ダ本眉仮(1)に、そD主面に対し浩直方向の
異方性反応エツチングを癩して、深さ約3μmの岳直形
エツチング領域としての垂@傳(7)を形成する。
Anisotropic reaction etching in the direction perpendicular to the main surface of Si 1,000 degrees is applied to the main surface of Si (1) to form a vertical etching region (7) with a depth of about 3 μm. do.

このようにして形成されたa(7)を用いて前記溝(7
)内の壱仮11)面に不純物イオンが注入されたトレン
チキャパシタを製造する1合、@1図(clに示すよう
にv0速された子桁な高エネルギーの不純物イオンビー
ムと加速された子桁な高エネルギーのシリコンイオンビ
ームを交互に入射する。ここで。
Using a(7) thus formed, the groove (7) is
11) Fabricating a trench capacitor with impurity ions implanted into the plane of Silicon ion beams with extremely high energy are alternately injected here.

まず、入射された不純物イオンは溝(7)の主に側壁部
に入射される。こ力うちの一部はシリコン基板(1)中
の原子核に散乱され、梧仮(1)表面より飛び出し、b
の側壁部外や底部分蒼こ再圧入さルる。しかし、大部の
不純物イオンは入射された側管部分の内部に静止する。
First, the incident impurity ions are mainly incident on the side walls of the groove (7). A part of this force is scattered by the atomic nuclei in the silicon substrate (1) and ejects from the surface of Gokari (1), causing b
The outside of the side wall and the bottom part are press-fitted again. However, most of the impurity ions remain stationary inside the side tube portion into which they are incident.

そこで1次にシリコンイオンを同じ方向より多tilt
こ入射する。入射されたシリコンイオンはシリコン秀仮
内で原子核と散乱して運切エネルギーを与える。このた
め、シリコン店仮中つシリコンI、まこのエネルギーに
より、j1勧し始める。このうちのいくつかのイオンは
側磯部表面より飛び出すため、茂面つ檻シリコンイオン
の注入により後退する。これと同時に、浸面内部に打ち
込まれた不純物イオ/も表面より飛び出して、池の側壁
部分や底部分に再注入される。このようにして、不純勿
イオンとシリコンイオンの注入を繰り返していくと、i
mgこ不純物イオンが入射されない部分にも不純物イオ
ンが注入されることになり、側壇σ)内の全体に均一に
所望力不純物が導入され、高性能のトレンチキャパシタ
が・持直できることになる。
Therefore, firstly, silicon ions are tilted many times from the same direction.
This is incident. The injected silicon ions scatter with the atomic nuclei within the silicon hydroxide, giving them energy. Therefore, due to the energy of Silicon Store Temporary Silicon I and Mako, we begin to recommend J1. Some of these ions fly out from the surface of the side rock, so they retreat by implanting caged silicon ions. At the same time, impurity ions/ions implanted inside the immersion surface also fly out from the surface and are re-injected into the side walls and bottom of the pond. In this way, by repeating the implantation of impurity ions and silicon ions, i
Impurity ions are implanted even into the parts where the impurity ions are not incident, so that the desired force of impurity is uniformly introduced throughout the side podium σ), and the high performance trench capacitor can be restored.

なお、内壁部に均一に不純物を導入することのできる溝
等からなる縦形エツチング領域は、トレンチキャパシタ
に限らず溝の側壁にイオン圧入を行なう工iをまむlj
J O)半導体装置の製雀方去にも用いるこ也かで慈る
Note that the vertical etching region consisting of a groove or the like that can uniformly introduce impurities into the inner wall is useful not only for trench capacitors but also for the process of performing ion injection into the sidewall of the groove.
J O) This is also used in the manufacturing of semiconductor devices.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれは、不純物イオン
とシリコンイオンの狂人を交互に0行なうので、トレン
チ溝内部に均一をこ不純物が導入され。
As explained above, according to the present invention, impurity ions and silicon ions are alternately mixed, so that impurities are uniformly introduced into the trench groove.

高性能Dトレンチキャパシタ専を製漬することができる
という利点がある。
There is an advantage that a high performance D trench capacitor can be manufactured exclusively.

4、図面V噛羊な説明 @1図はこの発明の一天抱列による半導体装置の幌遣方
f去を示す工程断−図、適2図は溝力1則壁部分に、妬
エネルギーのイオンを注入する方f去を説明するための
iJ 、嬉3図は広角度の散乱を受けて4の側肋部分か
ら飛び出したイオンの飛跡を説明するための図である。
4. Explanation of drawing V @ Figure 1 is a process cross-sectional diagram showing how to attach the top of a semiconductor device according to this invention. Figure 3 is a diagram used to explain the trajectory of ions ejected from the side ribs after being scattered at a wide angle.

1・・・Si#−導本僑仮、5・・・シリコン酸比@/
シリコン窒比模/シリコン酸化膜の積1m@からなるエ
ツチングマスク、6・・・レジスト模、7・・・溝、8
・・・イオンビーム。
1...Si#-conductor ratio, 5...Silicon acid ratio @/
Etching mask consisting of a silicon nitride ratio pattern/silicon oxide film with a product of 1 m@, 6... Resist pattern, 7... Groove, 8
...Ion beam.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の主面に所要の開口部を有するエッチングマ
スクを形成する工程と、前記マスクの開口部から前記半
導体基板の主面に対して垂直方向に異方性エッチングを
行ない、前記基板に溝を形成する工程と、所程の不純物
イオンと前記半導体基板を構成する原子のイオンを同時
あるいは交互に前記溝の上部より圧入する工程を含む半
導体装置の製造方法。
forming an etching mask having a required opening on the main surface of the semiconductor substrate; performing anisotropic etching from the opening of the mask in a direction perpendicular to the main surface of the semiconductor substrate to form a groove in the substrate; A method for manufacturing a semiconductor device, comprising a step of forming a semiconductor substrate, and a step of simultaneously or alternately press-fitting a predetermined number of impurity ions and ions of atoms constituting the semiconductor substrate from above the groove.
JP14587588A 1988-06-15 1988-06-15 Manufacture of semiconductor device Pending JPH022116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14587588A JPH022116A (en) 1988-06-15 1988-06-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14587588A JPH022116A (en) 1988-06-15 1988-06-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH022116A true JPH022116A (en) 1990-01-08

Family

ID=15395066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14587588A Pending JPH022116A (en) 1988-06-15 1988-06-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH022116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283452A (en) * 1992-09-30 1994-10-07 Internatl Business Mach Corp <Ibm> Apparatus and method for manufacture of semiconductor
US5915195A (en) * 1997-11-25 1999-06-22 Advanced Micro Devices, Inc. Ion implantation process to improve the gate oxide quality at the edge of a shallow trench isolation structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283452A (en) * 1992-09-30 1994-10-07 Internatl Business Mach Corp <Ibm> Apparatus and method for manufacture of semiconductor
US5915195A (en) * 1997-11-25 1999-06-22 Advanced Micro Devices, Inc. Ion implantation process to improve the gate oxide quality at the edge of a shallow trench isolation structure

Similar Documents

Publication Publication Date Title
Reed Quantum dots
Henderson et al. Simulation of structural anisotropy and void formation in amorphous thin films
Rafferty et al. Simulation of cluster evaporation and transient enhanced diffusion in silicon
Narayanan et al. Large-N reduction in the continuum three-dimensional Yang-Mills theory
US4035522A (en) X-ray lithography mask
TW201131699A (en) Methods of patterning materials, and methods of forming memory cells
WO2001041201A1 (en) Process for fabricating a uniform gate oxide of a vertical transistor
JPH022116A (en) Manufacture of semiconductor device
US4460412A (en) Method of making magnetic bubble memory device by implanting hydrogen ions and annealing
JPS594423A (en) Production of separation nozzle element conprising separator equipped with closure plate
US8361564B2 (en) Protective layer for implant photoresist
Burstein et al. Magnetic optical band gap effect in InSb
Rossi Diffusion-limited aggregation without branching
Budzanowski et al. Glory effect in the optical-model analysis of 39K (α, α) 39K elastic scattering
US5186788A (en) Fine pattern forming method
JP2677577B2 (en) Method for manufacturing semiconductor device
US7477819B2 (en) Two-dimensional photonic crystal
US4503517A (en) Magnetic bubble memory device
JPH0399430A (en) Manufacture of semiconductor device
JPS63227017A (en) Ion implanting method
JPS5898932A (en) Manufacture of semiconductor device
Kistemaker et al. Fundamental Processes in Surface Erosion by Sputtering
Spohr Ion Tracks in Materials Research and Microtechnology
JP2871588B2 (en) Simulation method of ion implantation process
JPH01105543A (en) Manufacture of semiconductor device