JPH02211340A - Correction for fuel quantity in internal combustion engine - Google Patents

Correction for fuel quantity in internal combustion engine

Info

Publication number
JPH02211340A
JPH02211340A JP1030771A JP3077189A JPH02211340A JP H02211340 A JPH02211340 A JP H02211340A JP 1030771 A JP1030771 A JP 1030771A JP 3077189 A JP3077189 A JP 3077189A JP H02211340 A JPH02211340 A JP H02211340A
Authority
JP
Japan
Prior art keywords
egr valve
pressure
valve
fuel
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1030771A
Other languages
Japanese (ja)
Other versions
JP2524392B2 (en
Inventor
Yoichi Ino
井野 洋一
Yoichi Iwakura
洋一 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP1030771A priority Critical patent/JP2524392B2/en
Publication of JPH02211340A publication Critical patent/JPH02211340A/en
Application granted granted Critical
Publication of JP2524392B2 publication Critical patent/JP2524392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To effectively improve the emission in the opening and closing of an EGR valve by constituting the title device so that the fuel injection quantity supplied from a fuel injection valve is gradually increased or decreased before and after the time when the differential pressure between the atmospheric pressure and the intake pressure reaches the operation pressure of the EGR valve. CONSTITUTION:When an EGR valve 9 changes from the perfectly opened state to the perfectly closed state, or changes from the perfectly closed state to the perfectly opened state, the fuel supply quantity is increased gradually, as the recirculation quantity of exhaust gas is throttled, and as the recirculation quantity of the exhaust gas increases, the fuel supply quantity is gradually throttled. Therefore, when the EGR valve 9 is opened or closed, the switching of the air-fuel ratio from lean to rich or from rich to lean in the front half and in the rear half can be surely suppressed. Therefore, the disturbance of the air-fuel ratio in the opening and closing of the EGR valve 9 can be effectively reduced, and the removal efficiency for the harmful components in the exhaust gas in these regions can be improved effective.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、自動車等に利用される電子制御燃料噴射装置
や排気ガス再循環装置等を備えた内燃機関の燃料°補正
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel temperature correction method for an internal combustion engine equipped with an electronically controlled fuel injection device, an exhaust gas recirculation device, etc. used in automobiles and the like.

し従来の技術〕 通常、自動車等のエンジンには、EGRバルブ等を有し
てなる排気ガス再循環装置を設けである。
BACKGROUND OF THE INVENTION [0003] Engines of automobiles and the like are usually equipped with an exhaust gas recirculation device including an EGR valve and the like.

そして、エンジン冷間時や高負荷時等を除く適度な時期
に、前記EGRバルブを開弁させて排気ガスの一部を吸
気系に還流させることにより、NO8の生成を低減する
ようにしている。
Then, the EGR valve is opened at appropriate times, except when the engine is cold or under high load, to recirculate part of the exhaust gas to the intake system, thereby reducing the generation of NO8. .

また、電子制御燃料噴射装置を備えたエンジンでは、燃
料噴射弁から供給する燃料噴射量を決定する際に、排気
ガス還流時の要求噴射量を基本噴射量としているものが
ある。ところが、大気圧と吸気圧との差圧によって作動
するように構成されたEGRバルブは、吸気圧が大気圧
近辺にあって大気圧との間に作動圧を上回る充分な差圧
が発生しない場合には閉じてしまうため、かかる領域に
おいては燃料噴射量の補正が必要となる。そのため、本
発明の先行技術として、例えば特開昭60−17334
3号公報に示されるように、排気ガスの非還流時には、
排気ガスの還流時よりも燃料噴射弁から供給する燃料噴
射量を増量するようにしている例がある。燃料噴射量を
増゛減する具体的な手法としては、第4図に示すように
、大気圧と吸気圧との差がEGRベルブの作動圧(例え
ば100 mmHg)を上回っているか否かによって補
正係数を増減させることにより、燃料噴射量を増減調節
する方策がある。
Furthermore, some engines equipped with electronically controlled fuel injection devices use the required injection amount during exhaust gas recirculation as the basic injection amount when determining the amount of fuel to be injected from the fuel injection valve. However, the EGR valve, which is configured to operate based on the differential pressure between atmospheric pressure and intake pressure, has problems when the intake pressure is close to atmospheric pressure and a sufficient differential pressure that exceeds the operating pressure does not occur between the intake pressure and the atmospheric pressure. Therefore, it is necessary to correct the fuel injection amount in such a region. Therefore, as prior art of the present invention, for example, Japanese Patent Application Laid-Open No. 60-17334
As shown in Publication No. 3, when the exhaust gas is not recirculated,
There is an example in which the amount of fuel injected from a fuel injection valve is increased compared to when exhaust gas is recirculated. As shown in Figure 4, a specific method for increasing or decreasing the fuel injection amount is to correct it depending on whether the difference between atmospheric pressure and intake pressure exceeds the EGR valve operating pressure (for example, 100 mmHg). There is a method of increasing/decreasing the fuel injection amount by increasing/decreasing the coefficient.

[発明が解決しようとする課題] しかしながら、EGRバルブは、特定の圧力を境にして
瞬間的に全開若しくは全開になるのではなく、一定の幅
および特性をもって全閉若しくは全開になる。具体的に
は第5図に示すように、EGRバルブは、全開状態から
全閉状態、若しくは全閉状態から全開状態に至る場合に
は、吸気圧の変化に対してなだらかに変化する。しかし
て、EGRバルブ作動圧は、EGRバルブが閉じ始めて
から全開状態になるまで、若しくは開き始めてから全開
状態になるまでの略中間にあるのが通常である。そのた
め、この作動圧を目安にして燃料噴射量をスキップ状に
増減する従来の手法によれば、EGRバルブが閉じ始め
てから中間位置に達する間は、排気ガスの還流量が絞ら
れるため、空燃比A/Fがリーン状態となる。他方、中
間位置を過ぎても排気ガスは吸気系に還流されているに
も拘らず、この中間位置を境にして燃料噴射量が急に増
量されるため、かかる領域では空燃比A/Pがリッチと
なる。そして、EGRバルブが開閉する度にこのような
不具合が繰り返されるため、空燃比が不安定となってエ
ミッション等が悪化する原因となっている。
[Problems to be Solved by the Invention] However, the EGR valve does not instantaneously become fully open or fully open when a certain pressure is reached, but fully closes or fully opens with a certain width and characteristics. Specifically, as shown in FIG. 5, when the EGR valve changes from a fully open state to a fully closed state, or from a fully closed state to a fully open state, the EGR valve changes smoothly with respect to changes in the intake pressure. Therefore, the EGR valve operating pressure is usually approximately halfway between when the EGR valve begins to close and when it becomes fully open, or from when it begins to open until it becomes fully open. Therefore, according to the conventional method of increasing or decreasing the fuel injection amount in skips using this operating pressure as a guide, the amount of recirculation of exhaust gas is throttled from the time the EGR valve begins to close until it reaches the intermediate position, so the air-fuel ratio A/F becomes lean. On the other hand, although the exhaust gas is still being recirculated to the intake system even after passing the intermediate position, the fuel injection amount is suddenly increased after this intermediate position, so in this region the air-fuel ratio A/P increases. Become rich. Since such a malfunction is repeated each time the EGR valve is opened or closed, the air-fuel ratio becomes unstable, causing deterioration of emissions and the like.

本発明は、このような不具合を解消することを目的とし
ている。
The present invention aims to eliminate such problems.

[課題を解決するための手段] 本発明は、上記目的を達成するために、次のような構成
を採用している。すなわち、本発明にかかる内燃機関の
燃料補正方法は、吸気系に燃料を供給する燃料噴射弁と
、大気圧と吸気圧との差圧により作動するEGRバルブ
とを備え、このEGRバルブを介して吸気系に還流する
排気ガスの非還流時に前記燃料噴射弁からの燃料噴射量
を増量するようにした内燃機関の燃料補正方法であって
、前記差圧が前記EGRバルブの作動圧に達する前後で
前記燃料噴射弁からの燃料噴射量を徐々に増減するよう
にしたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention employs the following configuration. That is, the fuel correction method for an internal combustion engine according to the present invention includes a fuel injection valve that supplies fuel to an intake system, and an EGR valve that is operated by a pressure difference between atmospheric pressure and intake pressure, and a fuel injection valve that supplies fuel to an intake system. A fuel correction method for an internal combustion engine, which increases the amount of fuel injected from the fuel injection valve when exhaust gas is not recirculating to the intake system, the method comprising: increasing the amount of fuel injected from the fuel injection valve before and after the differential pressure reaches the operating pressure of the EGR valve; The present invention is characterized in that the amount of fuel injected from the fuel injection valve is gradually increased or decreased.

[作用] EGRバルブが開弁若しくは閉じる際は、作動圧を略中
間にし、吸気圧に対してなだらかに変化するため、燃料
噴射量を決定する際にこのような特性を利用すると効果
的な燃料補正が可能となる。
[Function] When the EGR valve opens or closes, the operating pressure is set approximately in the middle and changes smoothly with respect to the intake pressure.Using these characteristics when determining the fuel injection amount will result in effective fuel injection. Correction becomes possible.

すなわち、前述のような構成によれば、EGRバルブが
全開状態から閉じ始めると、これに伴って燃料噴射■を
徐々に増量させていき、EGRバルブが全開になると、
燃料噴射mの増量を停止させることになる。
That is, according to the above-mentioned configuration, when the EGR valve starts to close from the fully open state, the amount of fuel injection (■) is gradually increased accordingly, and when the EGR valve becomes fully open,
This will stop increasing the amount of fuel injection m.

他方、EGRバルブが開き始めると、これに伴って燃料
噴射量を徐々に減量させていき、EGRバルブが全開に
なると、燃料噴射量の減量を停止させることになる。
On the other hand, when the EGR valve starts to open, the fuel injection amount is gradually reduced accordingly, and when the EGR valve is fully opened, the reduction in the fuel injection amount is stopped.

[実施例] 以下、本発明の一実施例を第1図から第3図を参照して
説明する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3.

図面に示した内燃機関たるエンジン1は、自動車に用い
られるもので、吸気系に燃料を噴射する燃料噴射弁2と
、排気ガスの一部を吸気系に還流するための排気ガス再
循環装置3を備えている。
An engine 1, which is an internal combustion engine shown in the drawing, is used in an automobile, and includes a fuel injection valve 2 that injects fuel into an intake system, and an exhaust gas recirculation device 3 that recirculates a part of exhaust gas to the intake system. It is equipped with

燃料噴射弁2は、吸気管4に装着してあり、内部に電磁
コイルを有している。そして、その電磁コイルに電子制
御装置5から燃料噴射信号aが印加されると、燃料噴射
信号aに相当する皿の燃料を吸気ポート付近に噴射する
ように構成したものである。
The fuel injection valve 2 is attached to the intake pipe 4 and has an electromagnetic coil inside. When a fuel injection signal a is applied to the electromagnetic coil from the electronic control device 5, the fuel in the dish corresponding to the fuel injection signal a is injected into the vicinity of the intake port.

排気ガス再循環装置3は、排気通路6と吸気通路7とを
連通させる排気還流通路8にEGRバルブ9を介設し、
このEGRバルブ9を第1の負圧切換弁10等を介して
前記電子御装置5で開閉制御するようにしたものである
The exhaust gas recirculation device 3 includes an EGR valve 9 interposed in an exhaust gas recirculation passage 8 that communicates an exhaust passage 6 and an intake passage 7.
The opening and closing of this EGR valve 9 is controlled by the electronic control device 5 via the first negative pressure switching valve 10 and the like.

EGRバルブ9は、ダイヤフラムによって内部空間を負
圧室と大気圧室とに分割したもので、負圧室にはEGR
モジュレータ11(負圧調整弁)を介して吸気圧が導入
されるようになっており、大気圧室には常に大気圧が導
入されるようにしである。そして、大気圧と吸気圧との
差圧がEGRバルブ9の作動圧(例えば100 mmH
g)に達する前後で前記排気還流通路8を開閉するよう
になっている。
The EGR valve 9 has an internal space divided into a negative pressure chamber and an atmospheric pressure chamber by a diaphragm.
Intake pressure is introduced through a modulator 11 (negative pressure regulating valve), so that atmospheric pressure is always introduced into the atmospheric pressure chamber. Then, the differential pressure between the atmospheric pressure and the intake pressure is the operating pressure of the EGR valve 9 (for example, 100 mmH
The exhaust gas recirculation passage 8 is opened and closed before and after reaching point g).

第1の負圧切換弁10は、バキュームスイッチングタイ
プの三方切換弁であり、第1のポート10aがスロット
ルバルブ12の上流に開口したEGRボート13と連通
し、第2のポート10bがエアクリーナ14内に連通し
ている。また、第3のポート10cが前記EGRモジュ
レータ11を介してEGRバルブ9の負圧室と連通して
いる。
The first negative pressure switching valve 10 is a vacuum switching type three-way switching valve, and the first port 10a communicates with the EGR boat 13 opened upstream of the throttle valve 12, and the second port 10b communicates with the inside of the air cleaner 14. is connected to. Further, the third port 10c communicates with the negative pressure chamber of the EGR valve 9 via the EGR modulator 11.

そして、その電気入力端子に通電が行われていない場合
は、吸気圧側に保持されて第1のポート10aと第3の
ポート10cが導通し、電気入力端子に通電が行われて
いる場合は、大気圧側に保持されて第2のポート10b
と第3のポート10cが導通ずるようになっている。
When the electrical input terminal is not energized, it is held at the intake pressure side and the first port 10a and the third port 10c are electrically connected, and when the electrical input terminal is energized, The second port 10b is held on the atmospheric pressure side.
and the third port 10c are electrically connected.

また、このエンジン1の吸気系には、第2の負圧切換弁
15を介して圧力センサ16を設けである。第2の負圧
切換弁15は、前記第1の負圧切換弁10と同様なバキ
ュームスイッチングタイプの三方切換弁であり、第1の
ポート15aがガスフィルタ17を介してサージタンク
18内に連通し、第2のポート15bがエアクリーナ1
4内に連通している。また、第3のポート15cが前記
圧力センサ16内に連通している。そして、その電気入
力端子に通電が行われていない場合は、吸気圧側に保持
されて第1のポート15aと第3のポート15cが連通
し、電気入力端子に通電が行われている場合は、大気圧
側に保持されて第2のポート15bと第3のポート15
cが連通ずるようになっている。
Further, a pressure sensor 16 is provided in the intake system of the engine 1 via a second negative pressure switching valve 15. The second negative pressure switching valve 15 is a vacuum switching type three-way switching valve similar to the first negative pressure switching valve 10, and the first port 15a communicates with the inside of the surge tank 18 via the gas filter 17. The second port 15b is connected to the air cleaner 1.
It communicates with 4. Further, a third port 15c communicates with the inside of the pressure sensor 16. When the electrical input terminal is not energized, it is held at the intake pressure side and the first port 15a and the third port 15c communicate with each other, and when the electrical input terminal is energized, The second port 15b and the third port 15 are held on the atmospheric pressure side.
c is connected.

電子制御装置5は、中央演算処理装置19と、メモリー
20と、入力インターフェース21と、出力インターフ
ェース22を備えたマイクロコンピュータユニットから
なるもので、その入力インターフェース21に、少なく
とも、前記圧力センサ16からの吸気圧信号す及び大気
圧信号Cや、図示しないクランク角センサからのエンジ
ン回転信号等がそれぞれ入力されるようになっている。
The electronic control device 5 is composed of a microcomputer unit equipped with a central processing unit 19, a memory 20, an input interface 21, and an output interface 22. An intake pressure signal C, an atmospheric pressure signal C, an engine rotation signal from a crank angle sensor (not shown), and the like are respectively input.

一方、出力インターフェース22からは、第1の負圧切
換弁10への制御信号dや第2の負圧切換弁15への制
御信号e、および、燃料噴射弁2への燃料噴射信号a等
がそれぞれ出力されるようになっている。
On the other hand, from the output interface 22, a control signal d to the first negative pressure switching valve 10, a control signal e to the second negative pressure switching valve 15, a fuel injection signal a to the fuel injection valve 2, etc. Each is output.

また、この電子制御装置5には、第2図に概略的に示す
ようなプログラムを内蔵してあり、そのプログラムを所
定のエンジン回転毎に繰り返し実行するようになってい
る。まず、ステップ51で、第2の負圧切換弁15に通
電を行って圧力センサ16から大気圧PA値を取込み、
ステップ52に進む。ステップ52では、第2の負圧切
換弁15への通電を停止して圧力センサ16から吸気圧
PMTP値を取込み、ステップ53に進む。ステップ5
3では、吸気圧信号すやエンジン回転信号等から算出し
た吸入空気回に応じて基本噴射ff1TPBsEを演算
した後、ステップ54に進む。ステップ54では、負荷
によって決まる補正係数PTPEGROをテーブル−1
から検索する。すなわち、負荷によっては排気還流が円
滑に行われ易い領域と、行われ難い領域(低負荷)とが
あるため、この補正係数I’TPEGROを吸気圧PM
TP値に対応させて変化させることにより、かかる領域
での補正を行うようにしている。
Further, this electronic control device 5 has a built-in program as schematically shown in FIG. 2, and the program is repeatedly executed every predetermined engine rotation. First, in step 51, the second negative pressure switching valve 15 is energized and the atmospheric pressure PA value is read from the pressure sensor 16.
Proceed to step 52. In step 52, the energization to the second negative pressure switching valve 15 is stopped, the intake pressure PMTP value is read from the pressure sensor 16, and the process proceeds to step 53. Step 5
In step 3, the basic injection ff1TPBsE is calculated according to the intake air cycle calculated from the intake pressure signal, engine rotation signal, etc., and then the process proceeds to step 54. In step 54, the correction coefficient PTPEGRO determined depending on the load is set in Table-1.
Search from. In other words, depending on the load, there are regions where exhaust gas recirculation is easy to be performed smoothly and regions where it is difficult to do so (low load), so this correction coefficient I'TPEGRO is
Correction is performed in this area by changing it in accordance with the TP value.

テーブル−1 また、大気圧PAと吸気圧PMTPとの差圧がEGRバ
ルブ9の作動圧(例えば、100 mmHg)に達スる
前後で、徐々に変化させる補正係数KTPEGRをテー
ブル−2から検索する。この補正係数KTPEGRは、
EGRバルブ9が開閉する領域でその開度に略反比例し
て変化させるようにしである。そして、第3図等に概略
的に示すように、EGRバルブ9の作動圧付近に設定し
た基準値(PA−125mml1g)から一定範囲内で
、吸気圧PMTPの変化に対応して徐々に変化するよう
にしである。
Table-1 Also, search Table-2 for the correction coefficient KTPEGR that is gradually changed before and after the differential pressure between the atmospheric pressure PA and the intake pressure PMTP reaches the operating pressure of the EGR valve 9 (for example, 100 mmHg). . This correction coefficient KTPEGR is
The opening degree is changed approximately in inverse proportion to the opening degree in the region where the EGR valve 9 opens and closes. Then, as schematically shown in Fig. 3, etc., within a certain range from the reference value (PA-125 mml 1 g) set near the operating pressure of the EGR valve 9, it gradually changes in response to changes in the intake pressure PMTP. That's how it is.

テーブル−2 そして、これらの補正係数FTPEGRO、KTPEG
R同士を掛けた値FTPEGROx KTPEGRI:
: 1を加算しテEGR補正係数FTPEGRを決定し
、ステップ55に進む。
Table 2 And these correction coefficients FTPEGRO, KTPEG
Value multiplied by R FTPEGROx KTPEGRI:
: Add 1 to determine the EGR correction coefficient FTPEGR, and proceed to step 55.

ステップ55では、前記基本噴射量TPBsEにEGR
補正係数FTPEGRを掛けるとともに、その値をエン
ジン状況に応じて決まる他の種々の補正係数で補正し、
実際に燃料噴射弁2から燃焼室23に供給する燃料噴射
1TAllを決定する。
In step 55, EGR is added to the basic injection amount TPBsE.
In addition to multiplying by the correction coefficient FTPEGR, the value is corrected by various other correction coefficients determined depending on the engine situation,
The fuel injection 1TAll actually supplied from the fuel injection valve 2 to the combustion chamber 23 is determined.

このような構成によると、エンジン1が冷間状態やアイ
ドリング状態にある場合、若しくは高負荷域では、電子
制御装置5から第1の負圧切換弁10に通電が行われ、
第2のポート10bと第3のポート10cとが導通ずる
。そして、第2のホト10bと第3のポート10cとが
導通ずると、EGRバルブ9の負圧室に大気圧が作用す
るため、EGRバルブ9によって排気還流通路8が閉じ
られ、排気還流が禁止される。
According to such a configuration, when the engine 1 is in a cold state or an idling state, or in a high load range, the first negative pressure switching valve 10 is energized from the electronic control device 5,
The second port 10b and the third port 10c are electrically connected. When the second photo port 10b and the third port 10c are electrically connected, atmospheric pressure acts on the negative pressure chamber of the EGR valve 9, so the EGR valve 9 closes the exhaust gas recirculation passage 8 and prohibits exhaust gas recirculation. be done.

一方、排気還流の実行領域では、前記第1の負圧切換弁
10への通電が停止されるとともに、第2の負圧切換弁
15のポート切換制御によって圧力センサ16から大気
圧PAと吸気圧PMTPがそれぞれ検出される。そして
、大気圧PAと吸気圧PMTPとの差圧がEGRバルブ
9の作動圧を上回って、EGRバルブ9が全開状態にあ
る場合には、排気還流通路8を介して排気ガスの一部が
吸気通路7に還流される。この場合は、EGR補正係数
FTPEGRによる基本噴射量TPBSHの増量は行わ
れないことになる。
On the other hand, in the exhaust gas recirculation execution region, the first negative pressure switching valve 10 is de-energized, and the pressure sensor 16 detects atmospheric pressure PA and intake pressure by port switching control of the second negative pressure switching valve 15. Each PMTP is detected. When the differential pressure between the atmospheric pressure PA and the intake pressure PMTP exceeds the operating pressure of the EGR valve 9 and the EGR valve 9 is fully open, a portion of the exhaust gas is transferred to the intake via the exhaust recirculation passage 8. It is refluxed to the passage 7. In this case, the basic injection amount TPBSH will not be increased by the EGR correction coefficient FTPEGR.

他方、大気圧PAと吸気圧PMTPとの差圧がEGRバ
ルブ9の作動圧を下回って、EGRバルブ9が全閉状態
にある場合には、排気ガスの還流が行われないため、E
GR補正係数PTPEGRによって基本噴射量TPO8
Eが増量補正される。
On the other hand, when the differential pressure between the atmospheric pressure PA and the intake pressure PMTP is lower than the operating pressure of the EGR valve 9 and the EGR valve 9 is in the fully closed state, the exhaust gas is not recirculated, so the E
The basic injection amount TPO8 is determined by the GR correction coefficient PTPEGR.
E is corrected by increasing the amount.

そして、EGRバルブ9の全開状態から吸気圧P)iT
Pが大気圧PA側に変化し、大気圧PAとの差圧がEG
Rバルブ9の作動圧を下回る際、換言すれば、EGRバ
ルブ9が全開状態から全閉状態に変わる場合には、その
開度に略反比例してEGR補正係数FTPEGRが徐々
に増加する。すなわち、排気ガスの還流量が徐々に絞ら
れるに伴って基本噴射fiTPBSEが徐々に増m補正
されるため、燃料噴射弁2から供給される燃料噴射1T
AUが徐々に増加することになる。そして、その増量は
EGRバルブ9が全閉になるとともに、停止される。
Then, from the fully open state of the EGR valve 9, the intake pressure P)iT
P changes to the atmospheric pressure PA side, and the differential pressure with atmospheric pressure PA becomes EG
When the operating pressure of the R valve 9 is lowered, in other words, when the EGR valve 9 changes from a fully open state to a fully closed state, the EGR correction coefficient FTPEGR gradually increases in substantially inverse proportion to the opening degree. That is, as the amount of recirculation of exhaust gas is gradually reduced, the basic injection fiTPBSE is gradually increased by m, so that the fuel injection 1T supplied from the fuel injection valve 2
AU will gradually increase. Then, the increase in amount is stopped when the EGR valve 9 is fully closed.

また、EGRバルブ9の全閉状態から吸気圧PHTPが
真空側に変化し、大気圧PAとの差圧がEGRバルブ9
の作動圧を上回る際、換言すれば、EGRバルブ9が全
閉状態から全開状態に変わる場合には、逆に、EGR補
正係数FTPEGRが徐々に減少する。すなわち、排気
ガスの還流量が多くなるに伴って基本噴射ff1TPB
sHの増量補正分が徐々に減少するため、燃料噴射弁2
から供給され燃料噴射1TAUが徐々に絞られる。そし
て、その減量はEGRバルブ9が全開になるとともに、
停止されることになる。
In addition, the intake pressure PHTP changes from the fully closed state of the EGR valve 9 to the vacuum side, and the pressure difference between the EGR valve 9 and the atmospheric pressure PA increases.
In other words, when the EGR valve 9 changes from a fully closed state to a fully open state, the EGR correction coefficient FTPEGR gradually decreases. That is, as the amount of exhaust gas recirculation increases, the basic injection ff1TPB
Since the increase correction amount of sH gradually decreases, the fuel injection valve 2
1 TAU of fuel is gradually throttled. The weight loss is achieved when the EGR valve 9 is fully opened.
It will be suspended.

したがって、このような構成によれば、EGRバルブ9
が全開状態から全開状態に切替わる場合、。
Therefore, according to such a configuration, the EGR valve 9
When switches from fully open state to fully open state.

若しくは全閉状態から全開状態に切替わる場合に、排気
ガスの還流nが絞られるに伴って燃料供給量が徐々に増
量され、排気ガスの還流量が多くなるに伴って燃料供給
量が徐々に絞られるため、EGRバルブ9の開閉時にお
いて、その前半部と後半部とで空燃比がリーン・リッチ
に切替わるのを確実に抑制することができる。その結果
、EGRバルブ9の開閉時における空燃比の乱れが有効
に低減できるので、かかる領域での排気ガス中の有害成
分の除去効率を効果的に高めることができる。
Alternatively, when switching from a fully closed state to a fully open state, the amount of fuel supplied is gradually increased as the exhaust gas recirculation n is throttled, and the amount of fuel supplied is gradually increased as the amount of exhaust gas recirculated increases. Therefore, when the EGR valve 9 is opened and closed, it is possible to reliably suppress the air-fuel ratio from switching to lean or rich in the first half and the second half. As a result, disturbances in the air-fuel ratio when the EGR valve 9 is opened and closed can be effectively reduced, so that the removal efficiency of harmful components from the exhaust gas in this region can be effectively increased.

そして、EGRバルブ9が全開状態若しくは全閉状態に
ある場合には、それぞれの状況に応じて燃料噴射弁2か
ら供給される燃料噴射量TAUが調節されるので、これ
らの領域における有害成分の発生が効果的に抑制できる
When the EGR valve 9 is fully open or fully closed, the fuel injection amount TAU supplied from the fuel injection valve 2 is adjusted according to each situation, so that harmful components are not generated in these areas. can be effectively suppressed.

しかも、圧力センサ16によって検出される大気圧PA
と吸気圧PMTPとの差圧は相対的な圧であるので、大
気圧PAが変化しても、以上の制御は有効に行われる。
Moreover, the atmospheric pressure PA detected by the pressure sensor 16
Since the differential pressure between the intake pressure PMTP and the intake pressure PMTP is a relative pressure, the above control can be performed effectively even if the atmospheric pressure PA changes.

なお、EGRバルブの開閉時に燃料噴射量を増減調節す
るための補正係数を、さらに微小値づつ変化させるよう
にすれば、より正確に燃料補正を行うことが可能となる
Incidentally, if the correction coefficient for increasing or decreasing the fuel injection amount when the EGR valve is opened or closed is changed by even smaller values, it becomes possible to perform fuel correction more accurately.

また、この実施例では、上記補正係数をEGRバルブの
開閉特性に対応させて略直線(比例)的に変化させるよ
うにしたが、該補正係数は、必ずしもこのように変化さ
せる場合に限らないのは勿論である。例えば、EGRバ
ルブが一定値づつ略同速度で変化しない場合や、負荷に
対して変化速度が異なる場合は、その変化態様に対応さ
せて曲線状に変化させるようにすれば、排気ガスの還流
量に対して細密に燃料噴射量を調節できる。
Further, in this embodiment, the correction coefficient is changed approximately linearly (proportional) in correspondence with the opening/closing characteristics of the EGR valve, but the correction coefficient is not necessarily changed in this way. Of course. For example, if the EGR valve does not change by a constant value at approximately the same speed, or if the speed of change differs depending on the load, if the EGR valve changes in a curved manner in accordance with the change mode, the amount of recirculation of exhaust gas can be changed. The amount of fuel injection can be finely adjusted.

[発明の効果コ 以上のような構成からなる本発明によれば、EGEバル
ブが開閉する際における排気ガスの還流量に対応させて
細密に燃料供給金を調節することができるので、EGR
バルブの開閉時における空燃比の乱れを有効に抑制でき
る。その結果、排気還流の実行時や非実行時は勿論、E
GRバルブが開閉する際のエミッションを効果的に改善
できる制御精度に優れた内燃機関の燃料補正方法を提供
できる。
[Effects of the Invention] According to the present invention configured as described above, the fuel supply amount can be finely adjusted in accordance with the amount of exhaust gas recirculated when the EGE valve opens and closes.
Disturbances in the air-fuel ratio when opening and closing the valve can be effectively suppressed. As a result, the E
It is possible to provide a fuel correction method for an internal combustion engine with excellent control accuracy that can effectively improve emissions when the GR valve opens and closes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図は本発明の一実施例を示し、第1図は
概略的な全体構成図、第2図は制御手順を示すフローチ
ャート図、第3図は制御設定条件を示す図である。第4
図は従来例を示す第3図相当の図、第5図は従来例にお
ける不具合を示す図である。 1・・・内燃機関(自動車用のエンジン)2・・・燃料
噴射弁 3・・・排気ガス再循環装置 5・・・電子制御装置 6・・・排気通路 7・・・吸気通路 8・・・排気還流通路 9・・・EGRバルブ
Figures 1 to 3 show one embodiment of the present invention, with Figure 1 being a schematic overall configuration diagram, Figure 2 being a flowchart showing the control procedure, and Figure 3 being a diagram showing control setting conditions. be. Fourth
The figure is a diagram corresponding to FIG. 3 showing a conventional example, and FIG. 5 is a diagram showing problems in the conventional example. 1... Internal combustion engine (automobile engine) 2... Fuel injection valve 3... Exhaust gas recirculation device 5... Electronic control device 6... Exhaust passage 7... Intake passage 8...・Exhaust recirculation passage 9...EGR valve

Claims (1)

【特許請求の範囲】[Claims] 吸気系に燃料を供給する燃料噴射弁と、大気圧と吸気圧
との差圧により作動するEGRバルブとを備え、このE
GRバルブを介して吸気系に還流する排気ガスの非還流
時に前記燃料噴射弁からの燃料噴射量を増量するように
した内燃機関の燃料補正方法であって、前記差圧が前記
EGRバルブの作動圧に達する前後で前記燃料噴射弁か
らの燃料噴射量を徐々に増減するようにしたことを特徴
とする内燃機関の燃料補正方法。
This E
A fuel correction method for an internal combustion engine in which the amount of fuel injected from the fuel injection valve is increased when exhaust gas is not recirculated to the intake system via the GR valve, the differential pressure causing the operation of the EGR valve. 1. A fuel correction method for an internal combustion engine, characterized in that the amount of fuel injected from the fuel injection valve is gradually increased or decreased before and after reaching the pressure.
JP1030771A 1989-02-08 1989-02-08 Fuel correction method for internal combustion engine Expired - Lifetime JP2524392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1030771A JP2524392B2 (en) 1989-02-08 1989-02-08 Fuel correction method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1030771A JP2524392B2 (en) 1989-02-08 1989-02-08 Fuel correction method for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH02211340A true JPH02211340A (en) 1990-08-22
JP2524392B2 JP2524392B2 (en) 1996-08-14

Family

ID=12312946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1030771A Expired - Lifetime JP2524392B2 (en) 1989-02-08 1989-02-08 Fuel correction method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2524392B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882037A (en) * 1981-11-11 1983-05-17 Honda Motor Co Ltd Electronic fuel supply controller having exhaust gas recirculation control function of internal-combustion engine
JPS59192838A (en) * 1983-04-14 1984-11-01 Nippon Denso Co Ltd Air-fuel ratio controlling method
JPS63109250A (en) * 1986-10-25 1988-05-13 Daihatsu Motor Co Ltd Air-fuel ratio control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882037A (en) * 1981-11-11 1983-05-17 Honda Motor Co Ltd Electronic fuel supply controller having exhaust gas recirculation control function of internal-combustion engine
JPS59192838A (en) * 1983-04-14 1984-11-01 Nippon Denso Co Ltd Air-fuel ratio controlling method
JPS63109250A (en) * 1986-10-25 1988-05-13 Daihatsu Motor Co Ltd Air-fuel ratio control device for internal combustion engine

Also Published As

Publication number Publication date
JP2524392B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
US5738126A (en) Apparatus for controlling a diesel engine with exhaust
JPS618443A (en) Air-fuel ratio control device
US5606955A (en) Apparatus for disposing of fuel vapor
JP2005054588A (en) Control device of internal combustion engine
JP2661396B2 (en) Failure diagnosis device for EGR control device
US4300516A (en) System and method for controlling exhaust gas recirculation
KR20190031589A (en) Control method and apparatus for internal combustion engine
JPH02211340A (en) Correction for fuel quantity in internal combustion engine
JP3907262B2 (en) Evaporative fuel purge system for engine
JP3005718B2 (en) Exhaust gas recirculation control system for diesel engine
JPH01240741A (en) Fuel supply amount control method for internal combustion engine
JPH03105042A (en) Fuel injection controller of diesel engine
JPH06123258A (en) Exhaust gas recirculation device for internal combustion engine
JPS618444A (en) Air-fuel ratio control device
JP2621032B2 (en) Fuel injection control device
JPH04166633A (en) Air-fuel ratio control method for internal combustion engine
JP2721025B2 (en) Control method of exhaust gas recirculation control device
JPS61155639A (en) Method for controlling idle of internal-combustion engine
JPH0223804Y2 (en)
JPH02201056A (en) Fuel injection control device of internal combustion engine
JP2721035B2 (en) Failure diagnosis method for exhaust gas recirculation control device
JP6003808B2 (en) Control device for internal combustion engine
JPH0338449Y2 (en)
JPS6139106Y2 (en)
JP2852303B2 (en) Control unit for diesel engine