JPH02211288A - Activating of water or substance containing water - Google Patents

Activating of water or substance containing water

Info

Publication number
JPH02211288A
JPH02211288A JP3136889A JP3136889A JPH02211288A JP H02211288 A JPH02211288 A JP H02211288A JP 3136889 A JP3136889 A JP 3136889A JP 3136889 A JP3136889 A JP 3136889A JP H02211288 A JPH02211288 A JP H02211288A
Authority
JP
Japan
Prior art keywords
water
far
infrared rays
fluid
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3136889A
Other languages
Japanese (ja)
Inventor
Kiyonori Niino
清憲 新納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GIJUTSU KAIHATSU CENTER KK
Original Assignee
NIPPON GIJUTSU KAIHATSU CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GIJUTSU KAIHATSU CENTER KK filed Critical NIPPON GIJUTSU KAIHATSU CENTER KK
Priority to JP3136889A priority Critical patent/JPH02211288A/en
Publication of JPH02211288A publication Critical patent/JPH02211288A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To improve the activating level of water in a short time by irradiating magnetized water (the liquid containing water) with far-infrared rays having the peak values of irradiation spectra within the wavelength range of 3-15mum. CONSTITUTION:A continuous circulation is made of water or the liquid containing water A (referred to hereinafter as fluid) introduced into a processing tank 1 through a pump 2, a magnetization tube 3 and a switching valve 4. During this circulation, the water is gradually magnetized to a predetermined magnetic force and the amplitude of the molecular vibration of the water becomes larger to bring the water in a state of being extremely easily activated. At the end of the magnetization, a switching valve 5 is opened and the switching valve 4 is closed to send the fluid A into an irradiating part 1b, whereby a radiator 6 irradiates the fluid A with far-infrared rays having the peak values of irradiation spectra within the wavelength range of 3-15mum and the far-infrared rays are absorbed by the water. This makes the amplitude of the water molecular vibration remarkably larger to cause the water to be highly activated in a short required time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水又は水を含有する物質の活性化方法の改良
に関するものであり、主として発酵や醸造、化学、食品
、水処理等の産業分野で利用されるものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an improvement in a method for activating water or water-containing substances, and is mainly used in industries such as fermentation, brewing, chemistry, food, and water treatment. It is used in the field.

(従来の技術) 水若しくは水を−含む物質内の水を活性化させることに
より、発酵時間の短縮、醸造に於ける熟成時間の短縮、
化学反応の促進、食品の腐敗の防止、植物の成長促進及
び食品の味覚の向上等を図れることが実証されており、
実用にも供されている。
(Prior art) By activating water in water or water-containing substances, it is possible to shorten fermentation time, shorten maturation time in brewing,
It has been proven that it can promote chemical reactions, prevent food spoilage, promote plant growth, and improve the taste of food.
It is also used for practical purposes.

而して、従前の水の活性化法としては、セラミック製の
遠赤外線放射体からの遠赤外線を水に照射し、該遠赤外
線を水に吸収させる方法が多く利用されている。また前
記遠赤外線放射体としては、放射スペクトルのピーク値
が水の分子共振周波数に近い波長領域(3〜15μm)
に存在する遠赤外線を放射する、セラミック製の遠赤外
線放射体が広く使用されている。
As a conventional method for activating water, a method is often used in which water is irradiated with far-infrared rays from a ceramic far-infrared radiator and the far-infrared rays are absorbed by the water. In addition, the far-infrared radiator has a wavelength range (3 to 15 μm) in which the peak value of the radiation spectrum is close to the molecular resonance frequency of water.
Ceramic far-infrared radiators that emit far-infrared rays present in the world are widely used.

ところで、前記遠赤外領域のエネルギーが水に吸収され
て水が活性化されると、物理的には水分子が水素イオン
H+と水酸イオンOH−に解離したり、外部から酸素や
窒素等の気体分子を取り込む力が増加したり(例えば溶
存酸素の増加)、或いは弱アルカリ性になる(PH勾7
.5程度)等の物性の変化が表れると報告されている。
By the way, when the energy in the far-infrared region is absorbed by water and activated, water molecules physically dissociate into hydrogen ions H+ and hydroxide ions OH-, and oxygen, nitrogen, etc. are absorbed from the outside. The ability to take in gas molecules increases (for example, an increase in dissolved oxygen), or it becomes weakly alkaline (PH gradient 7).
.. It has been reported that changes in physical properties such as (approximately 5) appear.

同、水を活性化することにより、前述の如き発酵時間や
熟成時間の短縮等の作用が奏される理由は、未が十分に
解明されてはいないが、水の分子運動が活発な状態にな
ることに全て起因するものと考えられている。
The reason why activating water shortens the fermentation time and ripening time as mentioned above is not fully understood, but the molecular movement of water becomes active. It is believed that all of this is due to the fact that

しかし、従前の水の活性化方法は、単に水中へ直接遠赤
外線放射体を浸漬するが、若しくは水の貯留容器の近傍
に遠赤外線放射体を配設し、周囲の熱を吸収することに
より放射体から放射される遠赤外線を水中へ照射するだ
けのものでるるため、水の活性化に相当長時間を必要と
するうえ、所謂活性化のレベルが低いという難点がめっ
た。
However, conventional water activation methods simply immerse a far-infrared radiator directly into the water, or place the far-infrared radiator near a water storage container and emit heat by absorbing the surrounding heat. Since the method simply irradiates the water with far-infrared rays emitted from the body, it takes a considerable amount of time to activate the water, and the level of activation is often low.

(発明が解決しようとする課題) 本発明は、従前の遠赤外線を照射する水の活性化法に於
ける上述の如き問題、即ち■水の活性化に相当長期間を
必要とし、短期日内に大量の活性水を得ることが困難な
こと、■活性化のレベルを高めることが困難なこと等の
問題を解決せんとするものであり、短期間内に高度に活
性化された大量の水又は水を含有する流体を容易に得ら
れる様にした活性化方法を提供するものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems in the conventional method of activating water by irradiating far infrared rays. It aims to solve problems such as the difficulty of obtaining large amounts of activated water and the difficulty of increasing the level of activation. The present invention provides an activation method that makes it easy to obtain a water-containing fluid.

(課題を解決するための手段) 従前から、水を磁化処理することにより、スケールの発
生防止や発生したスケールの除去、管路の腐食防止、水
中の微生物の発生抑制及び水耕栽培に於ける植物の成長
促進等の作用が奏されることが知られている。尚、これ
等の磁化処理をすることにより得る作用効果を理論的に
説明する定説は、未だ確立されてはいないが、概ね次の
(イ)及び(ロ)の理由によるものと想定されている。
(Means for solving the problem) Magnetizing water has long been used to prevent scale generation, remove generated scale, prevent corrosion of pipes, suppress the generation of microorganisms in water, and improve hydroponic cultivation. It is known to have effects such as promoting plant growth. Although a theory that theoretically explains the effects obtained by these magnetization treatments has not yet been established, it is generally assumed that the following reasons (a) and (b) are responsible. .

即ち、(イ)水が強力な磁界内を通過することにより、
水に含まれる塩類のイオン及び双極子モーメントが磁気
の影響を受けて変化し、その結果、塩類の結晶モーメン
トが変って強イオン化帯の分極が減少し、凝集若しくは
析出が減少する。(ロ)水中の塩類が析出して成長する
場合には、水中に浮遊している鉄などの強磁性微粉末が
核としての重要な機能を果すが、これ等の浮遊物が磁気
処理されて除去されたり或いは凝集して塊状となるため
、塩類の析出が減少する。
That is, (a) when water passes through a strong magnetic field,
The ions and dipole moments of salts contained in water change under the influence of magnetism, and as a result, the crystallization moment of the salts changes, reducing the polarization of the strongly ionized band and reducing aggregation or precipitation. (b) When salts in water precipitate and grow, fine ferromagnetic powder such as iron suspended in the water plays an important function as a nucleus. Since the salts are removed or aggregated into lumps, precipitation of salts is reduced.

本件発明者は、前記磁化処理水が奏する効用の中に植物
の成長の促進という事項のあることに着目し、磁化処理
によっても水分子の振動が活発な状態となる水の活性化
が起るか、若しくは水の活性化を起し易い状態が起生す
ることを感知した。
The inventor of the present invention has focused on the fact that one of the effects of the magnetized water is the promotion of plant growth, and the magnetization treatment also activates water, in which the vibrations of water molecules become active. It was sensed that there was a situation where the water was likely to become activated.

そして、当該磁化処理と遠赤外線の照射処理とを組合せ
ることズより、よりハイレベルな水を含有する物質の活
性化が可能なことを着想した。
Then, they came up with the idea that it is possible to activate a substance containing water to a higher level by combining the magnetization treatment with far-infrared irradiation treatment.

本件発明は前記着想とこれに基づく多くの活性化試験の
結果から創作されたものであり、水又は水を含有する物
質に磁界を加えてこれを磁化すると共に、前記水又は水
を含有する液体に放射スペクトルのピーク値が3μm−
15μmの波長領域にある遠赤外線を照射することを、
発明の基本構成とするものである。
The present invention was created from the above-mentioned idea and the results of many activation tests based on this idea, and it applies a magnetic field to water or a water-containing substance to magnetize it, and at the same time magnetizes the water or a water-containing liquid. The peak value of the radiation spectrum is 3μm-
By irradiating far infrared rays in the wavelength range of 15 μm,
This is the basic structure of the invention.

(作用) 水又は水を含有する物質に強磁界をかけてこれを磁化す
ることにより、水又は水を含有する物質は遠赤外線をよ
り吸収し易い状態となる。これにより、照射された遠赤
外線が効率よく吸収されることになり、遠赤外線照射の
みの場合に比較して、短期間内に高度に活性化きれるこ
とになる。
(Function) By applying a strong magnetic field to water or a water-containing substance and magnetizing it, the water or water-containing substance becomes more likely to absorb far infrared rays. As a result, the irradiated far-infrared rays are efficiently absorbed, and compared to the case of only irradiation with far-infrared rays, activation can be completed to a high degree within a short period of time.

尚、磁化処理を施した水等の方がより高度に活性化され
ると言うことの理論的な解析は未だ十分に行なわれてい
ない。しかし、水分子の結合力を核磁気共鳴分光法で観
測することにより、水分子の結合力の増大即ち水分子の
活性化が大幅にレベルアップすることが実証されている
It should be noted that a theoretical analysis of the fact that magnetized water or the like is more highly activated has not yet been sufficiently conducted. However, by observing the binding force of water molecules using nuclear magnetic resonance spectroscopy, it has been demonstrated that the binding force of water molecules is increased, that is, the activation of water molecules is significantly improved.

(実施例) 以下、図面に基づいて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail based on the drawings.

図面は、本発明に係る水等の活性化処理の説明図であり
、図に於いて1は処理槽、2は循環ポンプ、3は磁化処
理筒、4・5は切換バルブ、6はセラミック製遠赤外線
放射体である。
The drawing is an explanatory diagram of the activation treatment of water, etc. according to the present invention, and in the figure, 1 is a treatment tank, 2 is a circulation pump, 3 is a magnetization treatment cylinder, 4 and 5 are switching valves, and 6 is a ceramic product. It is a far-infrared radiator.

前記処理槽lは内部が2区画に分割されており、磁化処
理部1aで十分に磁化処理された水又は水を含有する物
質(以下流体等と呼ぶ)Aが、照射処理部1bへ送られ
る。
The inside of the treatment tank 1 is divided into two sections, and water or a water-containing substance (hereinafter referred to as fluid, etc.) A that has been sufficiently magnetized in the magnetization treatment section 1a is sent to the irradiation treatment section 1b. .

前記磁化処理筒3は筒体3aとその外方に巻回したコイ
ル3bとから形成されており、筒体3a内に形成された
磁界■(磁束密度1000〜8000ガウス)の中を流
体等が矢印入方向へ1〜3m/seCの速度で流通する
ことにより、磁化処理されて行く。
The magnetization treatment cylinder 3 is formed of a cylinder 3a and a coil 3b wound outside of the cylinder 3a, and a fluid or the like flows through a magnetic field (magnetic flux density 1000 to 8000 Gauss) formed inside the cylinder 3a. It is magnetized by flowing in the direction of the arrow at a speed of 1 to 3 m/secC.

尚、本実施例では電磁石を用いた磁化処理筒3としてい
るが、永久磁石を用いたものでもよく、また磁界Hと流
体等の流れ方向とを同一方向としているが、磁界■と流
れ方向とが直交する様に構成するのが望ましい。
In this embodiment, the magnetization tube 3 uses an electromagnet, but it may also use a permanent magnet, and although the magnetic field H and the flow direction of the fluid etc. are set in the same direction, the magnetic field It is desirable to configure the structure so that they are perpendicular to each other.

前記遠赤外線放射体6は、常温下で放射スペクトルのピ
ーク値が3μm y l 5μmの波長領域にある連合
せて形成されており、本実施例ではアルミニウムとシリ
カを主成分とする日本セラム株式会社製のレゾニウム板
が使用されている。
The far-infrared radiator 6 is formed of a material whose radiation spectrum has a peak value in a wavelength region of 3 μm y l 5 μm at room temperature, and in this embodiment, it is made of Nippon Ceram Co., Ltd. whose main components are aluminum and silica. A manufactured resonium plate is used.

冑、本実施例では前記遠赤外線放射体6を常温下で放射
スペクトルのピーク値が3〜15μmの波長領域にある
遠赤外線を放疾するセラミック製放射体としているが、
ヒータ等によって加熱することにより、前記波長領域の
遠赤外線を放射する放射体であってもよい。また、本実
施例では遠赤外線放射体6を液体A内へ浸漬する様にし
ているが、処理槽lがガラス等の場合には、槽壁の外表
面側に平板状の放射体6を貼着する様にしてもよい。
In this embodiment, the far-infrared radiator 6 is a ceramic radiator that emits far-infrared rays whose radiation spectrum has a peak value in a wavelength range of 3 to 15 μm at room temperature.
It may be a radiator that emits far infrared rays in the wavelength range by heating with a heater or the like. Further, in this embodiment, the far-infrared radiator 6 is immersed in the liquid A, but if the treatment tank l is made of glass or the like, a flat plate-shaped radiator 6 is pasted on the outer surface of the tank wall. You may also choose to wear it.

次に、水等の活性化法を説明する。Next, a method for activating water and the like will be explained.

処理槽1内へ流入した流体等(スラーりやエマルジョン
状の液体を含む)Aは、ポンプ2と磁化処理筒3と切換
パルプ4を通して連続的に循環流通され、1〜3 m/
S e cの流速で処理筒3内を流通しく平均10〜3
0回位い】する間に、所定の強度に順次磁化されて行く
。当該磁化処理により水分子の振動は強まり、水は極め
て活性化され易い状態になる。
Fluid etc. (including slurry and emulsion liquid) A that has flowed into the processing tank 1 is continuously circulated through the pump 2, the magnetization processing cylinder 3, and the switching pulp 4, and is circulated at a rate of 1 to 3 m/3.
An average of 10 to 3 flows through the processing cylinder 3 at a flow rate of S e
During about 0 times, it is sequentially magnetized to a predetermined strength. The magnetization treatment intensifies the vibrations of water molecules and puts the water in a state where it is extremely easy to be activated.

前記磁化処理が完了すると切換5を開及び切換弁4を閉
にし、流体等Aを照射処理部1bへ送り込む。照射処理
部1bへ送り込まれた流体等AICは、遠赤外線放射体
6からの遠赤外線が照射され、該遠赤外線が水に吸収さ
れる。これにより、水分子の振動の振幅が著しく大とな
り、水は所謂活性化された状態となる。尚、活性化され
た水の分子を核磁気共鳴分光法によって観察すると、水
分子の画像の線幅が著しく狭まくなっており、これによ
り水分子の結合力が強力になっていること、即ち水分子
の運動がより激しくなって活性化状態にあることが判る
When the magnetization process is completed, the switch 5 is opened and the switch valve 4 is closed, and the fluid A is sent to the irradiation processing section 1b. The AIC such as the fluid sent to the irradiation processing section 1b is irradiated with far infrared rays from the far infrared radiator 6, and the far infrared rays are absorbed by water. As a result, the amplitude of the vibration of the water molecules increases significantly, and the water enters a so-called activated state. Furthermore, when activated water molecules are observed using nuclear magnetic resonance spectroscopy, the line width of the water molecule image becomes significantly narrower, which indicates that the binding force of water molecules has become stronger. It can be seen that the movement of water molecules becomes more intense and is in an activated state.

照射処理部1bに於ける液体等Aの帯溜時間は、液体量
と遠赤外線の照射量とにより変るが、1m”程度の水中
へ1m3程度の放射板10放を組合せた放射体6を浸漬
した様な場合には、3〜10時間程度で高度に水を活性
化することが出来る。
The retention time of the liquid etc. A in the irradiation processing section 1b varies depending on the amount of liquid and the amount of far infrared rays irradiated, but the radiator 6, which is a combination of 10 radiation plates of approximately 1 m3, is immersed in approximately 1 m'' of water. In such cases, water can be highly activated in about 3 to 10 hours.

尚、本実施例では処理槽1内を磁化処理部1aと照射処
理部1bとに分割し、磁化処理を完了した後に照射処理
を行なう様にしているが、処理槽1内を区分せずに放射
体6を磁化処理部la内へ配設し磁化処理と照射処理と
を同時に行なうようにしても良い。
In this embodiment, the inside of the processing tank 1 is divided into the magnetization processing section 1a and the irradiation processing section 1b, and the irradiation processing is performed after the magnetization processing is completed, but the inside of the processing tank 1 is not divided into two. The radiator 6 may be disposed within the magnetization processing section la so that the magnetization processing and the irradiation processing can be performed simultaneously.

又、照射処理を行なう際に、流体等Aを強制的に流動若
しくは撹拌するようにしてもよい。
Further, when performing the irradiation treatment, the fluid A may be forced to flow or be stirred.

(発明の効果) 本発明は上述の通り、磁化処理と遠赤外線の照射処理と
を組み合せて水又は水を含有する物質を活性化するよう
にしているため、磁化処理若しくは遠赤外線照射処理を
単独で行なう場合に比較して、短かい所要時間でもって
より高度に活性化することが出来る。その結果、活性化
した物質等が長時間に亘って活性化状態を保持すること
とも相撲って、発酵時間や熟成時間の短縮、植物の発育
促進等の活性水による種々の作用効果が一層顕著なもの
となる。
(Effects of the Invention) As described above, the present invention combines magnetization treatment and far-infrared ray irradiation treatment to activate water or water-containing substances. It is possible to achieve a higher degree of activation in a shorter amount of time than in the case of . As a result, activated substances maintain their activated state for a long time, and the various effects of activated water, such as shortening fermentation and ripening times and promoting plant growth, are even more pronounced. Become something.

本発明は上述の通り優れた実用的効用、を奏するもので
ある。
As mentioned above, the present invention has excellent practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明による水又は水を含有する物質Aの活性
化処理の説明図である。 l 処理槽 2 循環ポンプ 3 磁化処理筒 6 セラミック製遠赤外放射体
The drawing is an explanatory diagram of the activation treatment of water or water-containing substance A according to the present invention. l Treatment tank 2 Circulation pump 3 Magnetization treatment tube 6 Ceramic far-infrared emitter

Claims (4)

【特許請求の範囲】[Claims] (1)水又は水を含有する液体に磁界を加えてこれを磁
化すると共に、前記水又は水を含有する液体に放射スペ
クトルのピーク値が3μm〜15μmの波長領域にある
遠赤外線を照射することを特徴とする水又は水を含有す
る物質の活性化方法
(1) Applying a magnetic field to water or a water-containing liquid to magnetize it, and irradiating the water or water-containing liquid with far-infrared rays whose radiation spectrum has a peak value in a wavelength range of 3 μm to 15 μm. A method for activating water or a substance containing water, characterized by
(2)磁化若しくは遠赤外線の照射を、水又は水を含有
する流体を流動若しくは撹拌させつつ行なうようにした
請求項(1)に記載の水又は水を含有する物質の活性化
方法
(2) The method for activating water or a water-containing substance according to claim (1), wherein the magnetization or far-infrared irradiation is performed while the water or a water-containing fluid is flowing or stirring.
(3)水又は水を含有する流体内で遠赤外線放射体を加
熱して遠赤外線を放射するようにした請求項(1)又は
請求項(2)に記載の水又は水を含有する物質の活性化
方法
(3) The water or water-containing substance according to claim (1) or claim (2), wherein the far-infrared radiator is heated in water or a fluid containing water to emit far-infrared rays. Activation method
(4)水又は水を含有する流体を先ず磁化したあと、こ
れに遠赤外線を照射するようにした請求項(1)、(2
)又は(3)に記載の水又は水を含有する物質の活性化
方法
(4) Claims (1) and (2) in which water or a fluid containing water is first magnetized and then is irradiated with far infrared rays.
) or the method for activating water or a substance containing water as described in (3)
JP3136889A 1989-02-10 1989-02-10 Activating of water or substance containing water Pending JPH02211288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3136889A JPH02211288A (en) 1989-02-10 1989-02-10 Activating of water or substance containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3136889A JPH02211288A (en) 1989-02-10 1989-02-10 Activating of water or substance containing water

Publications (1)

Publication Number Publication Date
JPH02211288A true JPH02211288A (en) 1990-08-22

Family

ID=12329307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3136889A Pending JPH02211288A (en) 1989-02-10 1989-02-10 Activating of water or substance containing water

Country Status (1)

Country Link
JP (1) JPH02211288A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0712807A3 (en) * 1994-11-18 1997-08-06 Innutec Innovative Umwelt Tech Process and apparatus for the treatment of microorganism
WO1997033845A1 (en) * 1996-03-12 1997-09-18 Heinz Loosen Method of rotting compostable material
JPWO2006075358A1 (en) * 2005-01-11 2008-06-12 福島 雅典 Vapor, liquid or solid surface activation treatment method and activation treatment apparatus, and vapor, liquid or solid activated using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218291A (en) * 1987-03-07 1988-09-12 Anmin Kogyo Kk Water treating apparatus
JPS6430690A (en) * 1987-07-27 1989-02-01 Yasuro Kuratomi Device for producing and supplying activated water for activating animal and plant
JPH02115094A (en) * 1988-10-25 1990-04-27 Toshiyuki Niki Treating process for service water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218291A (en) * 1987-03-07 1988-09-12 Anmin Kogyo Kk Water treating apparatus
JPS6430690A (en) * 1987-07-27 1989-02-01 Yasuro Kuratomi Device for producing and supplying activated water for activating animal and plant
JPH02115094A (en) * 1988-10-25 1990-04-27 Toshiyuki Niki Treating process for service water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0712807A3 (en) * 1994-11-18 1997-08-06 Innutec Innovative Umwelt Tech Process and apparatus for the treatment of microorganism
WO1997033845A1 (en) * 1996-03-12 1997-09-18 Heinz Loosen Method of rotting compostable material
JPWO2006075358A1 (en) * 2005-01-11 2008-06-12 福島 雅典 Vapor, liquid or solid surface activation treatment method and activation treatment apparatus, and vapor, liquid or solid activated using the same
JP4520470B2 (en) * 2005-01-11 2010-08-04 雅典 福島 Vapor, liquid or solid surface activation treatment method and activation treatment apparatus

Similar Documents

Publication Publication Date Title
Kirschvink Microwave absorption by magnetite: a possible mechanism for coupling nonthermal levels of radiation to biological systems
Kuznetsov et al. Smart” mediators for self-controlled inductive heating
Yadollahpour et al. Electromagnetic fields for the treatments of wastewater: a review of applications and future opportunities
JP2007125554A5 (en)
US20010035342A1 (en) System for delivering electromagnetic energy into a solution
Kobayashi et al. Studies of inorganic crystals in biological tissue: Magnetite in human tumor
CN102179005A (en) Magnetic nano particle magnetic-induction thermal focusing system based on complex magnetic field
JPH02211288A (en) Activating of water or substance containing water
JP2008110889A (en) Method for production of ferric oxide particle
Ahmed et al. Applications of magnetic field in food preservation
JP3640357B2 (en) Method and apparatus for delivering electromagnetic energy to a solution
JP2008251871A (en) Method for manufacturing magnetic oxide nanoparticle, and manufacturing apparatus of magnetic oxide nanoparticle
RU2492625C2 (en) Method of stimulation of seeds germination of agricultural crops
CN107735364B (en) Real-time sterilizing device for magnetized water
Carta et al. Possible non-thermal microwave effects on the growth rate of pseudomonas aeruginosa and staphylococcus aureus
CN109110823A (en) A kind of magnetic field hydro-thermal method synthesis CoFe2O4The method of nanoparticle
US20220351887A1 (en) Ferrofluid
CN103623406A (en) Magnetic nanoparticles with dual-heating function and preparation method thereof
RU2085508C1 (en) Method of treating liquids and free-running products
US20060111763A1 (en) Heat generating article for hyperthermia and method for preparation thereof
CN211316572U (en) High-frequency induction heating and ultrasonic wave combined heating device
Goncharuk et al. Quality and quantitative assessment of the impact of magnetic field and ultra sound on water with different concentration of deuterium
JP2011183377A (en) Denaturation treatment method for substance
Mohammed et al. Electromagnetic Treatment of Tigris Water samples in Salah-Elden Governorate
KR20140020595A (en) Apparatus for manufacturing light-nano wave water and manufacturing method thereof