JPH02211226A - Recovery of base - Google Patents

Recovery of base

Info

Publication number
JPH02211226A
JPH02211226A JP2964689A JP2964689A JPH02211226A JP H02211226 A JPH02211226 A JP H02211226A JP 2964689 A JP2964689 A JP 2964689A JP 2964689 A JP2964689 A JP 2964689A JP H02211226 A JPH02211226 A JP H02211226A
Authority
JP
Japan
Prior art keywords
base
solution
cation exchange
exchange membrane
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2964689A
Other languages
Japanese (ja)
Other versions
JP3026086B2 (en
Inventor
Yoshio Sugaya
良雄 菅家
Hideji Kishino
秀治 岸野
Hirofumi Horie
堀江 浩文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1029646A priority Critical patent/JP3026086B2/en
Publication of JPH02211226A publication Critical patent/JPH02211226A/en
Application granted granted Critical
Publication of JP3026086B2 publication Critical patent/JP3026086B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To efficiently remove base from a high viscosity base solution by using a fluorine-containing cation exchange membrane having specific ion exchange capacity and water content. CONSTITUTION:A base-containing solution is brought into contact with the single surface of a fluorine-containing cation exchange membrane composed of a repeating unit represented by formula I (wherein X is F or CF3, m is 0 or 1, n is 1-5, p and q are a positive number and p/q is l-7 and M is a cation such as an alkali metal, amine or the like), having ion exchange capacity of 0.6-2.5 milliequivalent/gram resin and containing 20-250wt.% of water and water or a dilute base solution is brought into contact with the other single surface thereof. By this method, the base is selectively diffused and dialyzed from the base-containing solution to be recovered and removed. By forming this cation exchange membrane into a hollow system or a hollow tube, the base can be efficiently recovered and removed from a high viscosity solution.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、イオン交換膜を使用した拡散透析により、塩
基含有溶液から塩基を効率よく選択的に回収または除去
するための新しい方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a new method for efficiently and selectively recovering or removing a base from a base-containing solution by diffusion dialysis using an ion exchange membrane.

紙、パルプ、再生セルロース工業における、苛性ソーダ
を含んだパルプ処理廃液、メタル処理工程からのアルカ
リ含有溶液、イオン交換樹脂再生過程からのアルカリ含
有溶液、さらには隔膜電解により得られるアルカリ含有
溶液などの塩基含有溶液中の塩基を選択的に回収し、又
該溶液から脱塩基することは、ある場合には資源の有効
利用を図るために、又ある場合には製造工程上の一つの
プロセスとして、さらには公害上の見地から是非とも必
要とされる手段である。
Bases in the paper, pulp and regenerated cellulose industries, such as pulp processing waste containing caustic soda, alkali-containing solutions from metal processing processes, alkali-containing solutions from ion exchange resin regeneration processes, and even alkali-containing solutions obtained by diaphragm electrolysis. Selective recovery of the base in the solution containing it and debasing from the solution may be carried out in some cases for the purpose of effective resource utilization, and in some cases as a process in the manufacturing process. This is an absolutely necessary measure from a pollution standpoint.

(従来の技術) 塩基含有溶液から塩基を回収または除去する手段として
は、塩基含有溶液を陽イオン交換膜を介して水と対置せ
しめ、塩基の濃度勾配にもとすく拡散透析により、塩基
を選択的に回収する方法が提案されている。
(Prior art) As a means of recovering or removing a base from a base-containing solution, the base-containing solution is placed opposite to water via a cation exchange membrane, and the base is selected by diffusion dialysis using a base concentration gradient. A method has been proposed to collect the waste.

(特公昭36−19463号公報)かかる拡散透析は、
特別な試薬や加熱などの手段を伴うことなく、簡便な装
置でしかも選択的に塩基が回収できるので、多くの産業
分野にて広範囲に利用されることが期待される。
(Special Publication No. 36-19463) Such diffusion dialysis is
Since bases can be selectively recovered using a simple device without special reagents or means such as heating, it is expected to be widely used in many industrial fields.

しかしながら従来の陽イオン交換膜は、一般に、塩基の
透過速度が小さく、そのため回収設備が大きくなる欠点
を有していた。
However, conventional cation exchange membranes generally have a low base permeation rate, and therefore have the disadvantage of requiring large recovery equipment.

かかる欠点を改善する目的で、出願人は、特定の物性を
有するエチレンと不飽和カルボン酸との共重合体からな
る陽イオン交換膜を拡散透析の隔膜と使用することを特
願昭52−6786号公報として提案した。
In order to improve these drawbacks, the applicant proposed the use of a cation exchange membrane made of a copolymer of ethylene and unsaturated carboxylic acid with specific physical properties as a diaphragm for diffusion dialysis in Japanese Patent Application No. 52-6786. It was proposed as a publication.

かかる方法により、塩基の透過速度は著しく改善された
が、使用中に膜が乾燥したり、または塩基含有溶液の濃
度が高い場合、塩基の透過速度が経時的に低下するなど
の欠点があった。
Although this method significantly improved the base permeation rate, it had drawbacks such as the base permeation rate decreasing over time if the membrane dried during use or if the concentration of the base-containing solution was high. .

(発明の解決しようとするrJIH点)本発明の目的は
、従来技術が有していた前述の欠点を解消しようとする
ものであり、更に合成繊維、プラスチック、ゴム等とア
ルカリを含有する高粘度の溶液、例えばビスコースレー
ヨンの製造過程で得られる、苛性ソーダを含有するビス
コース溶液のような高粘度の塩基溶液から効率よく塩基
を除去できる拡散透析方法を提供することを目的とする
(rJIH point to be solved by the invention) The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art, and furthermore, it is an object of the present invention to solve the above-mentioned drawbacks of the prior art. An object of the present invention is to provide a diffusion dialysis method that can efficiently remove a base from a highly viscous base solution such as a viscose solution containing caustic soda obtained in the process of manufacturing viscose rayon.

(問題点を解決するための手段) 本発明は、前述の問題点を解決すべ(なされたものであ
り、陽イオン交換膜の片面Iこ塩基を含有する溶液を接
触し、もう一方の片面に水もしくは希薄塩基溶液を接触
せしめ、塩基を含有する溶液から塩基を選択的に拡散透
析せしめる塩基の回収において、陽イオン交換膜のイオ
ン交換容量が0.6〜2.5ミリ当量/グラム樹脂、含
水率が20〜250重量%の含フッ素陽イオン交換膜か
らなることを特徴とする塩基の回収方法を提供するもの
である。
(Means for Solving the Problems) The present invention has been made to solve the above-mentioned problems by contacting one side of a cation exchange membrane with a solution containing a base, and contacting the other side with a solution containing a base. In the recovery of a base by contacting with water or a dilute base solution and selectively diffusing and dialyzing the base from a solution containing the base, the ion exchange capacity of the cation exchange membrane is 0.6 to 2.5 meq/g resin, The present invention provides a method for recovering a base characterized by comprising a fluorine-containing cation exchange membrane having a water content of 20 to 250% by weight.

本発明に使用される含フッ素陽イオン交換膜の重合体は
、基本的には上記の特定の物性を有する含フッ素陽イオ
ン交換膜が使用される。これは、後で説明するように食
塩電解用陽イオン交換1に使用することが知られている
が、食塩電解用陽イオン交換膜が塩基(OH)を透過さ
せないことが要求されているのに対し、本発明の塩基の
拡散透析用陽イオン交換膜としては、逆に塩基の透過性
が大きいことが、要求される点で両者は基本的に異なり
、本発明で上記の特定の物性、特に大きい含水率を有す
ることとはいえ、食塩電解に使用されるのと同種の膜が
使用されることはきわめて意外なことである。
As the polymer of the fluorine-containing cation exchange membrane used in the present invention, a fluorine-containing cation exchange membrane having basically the above-mentioned specific physical properties is used. This is known to be used in cation exchange 1 for salt electrolysis, as will be explained later, but it is required that the cation exchange membrane for salt electrolysis does not allow base (OH) to permeate. On the other hand, the cation exchange membrane for base diffusion dialysis of the present invention is fundamentally different in that it is required to have high base permeability. It is quite surprising that a membrane of the same type as that used for salt electrolysis is used, albeit with a high water content.

また先に述べたように、特定の含水率を有するエチレン
と不飽和カルボン酸との共重合体からなる陽イオン交換
膜を塩基の拡散透析に使用することがすでに知られてい
るが、該陽イオン交換膜は、使用中に塩基の透過性が低
下したり、乾燥により塩基の透過性が著しく低下するな
どの欠点を有していた。かかる欠点を改善する方法につ
いて、本発明者は鋭意研究をした結果、以外にも、食塩
電解用陽イオン交換膜として知られている含フッ素陽イ
オン交換膜を使用することによりかかる欠点が改善され
ることを見出し本発明を完成せしめた。
Furthermore, as mentioned earlier, it is already known that a cation exchange membrane made of a copolymer of ethylene and unsaturated carboxylic acid having a specific moisture content is used for diffusion dialysis of bases. Ion exchange membranes have had drawbacks such as a decrease in base permeability during use and a significant decrease in base permeability upon drying. As a result of intensive research into ways to improve these drawbacks, the present inventor found that such drawbacks can be improved by using a fluorine-containing cation exchange membrane known as a cation exchange membrane for salt electrolysis. They discovered this and completed the present invention.

ここで、なぜ特定の含水率を有する含フッ素陽イオン交
換膜を使用することにより、塩基の透過性の低下が防止
されるかは、明らかではないが、おそらく以下の理由に
よるものと考えられる。
Here, it is not clear why the use of a fluorine-containing cation exchange membrane having a specific water content prevents a decrease in base permeability, but it is probably due to the following reasons.

テトラフルオロエチレンと酸性基を含有するパーフルオ
ロビニルエーテルからなるアルカリイオンのアイオノマ
ーは、ガラス転移温度が高く、全(熱可塑性を示さずポ
リマーの構造が安定である。一方、エチレンと不飽和カ
ルボン酸との共重合体からなるアイオノマーは、室温で
はアルカリイオンなどでイオン架橋されているが、ガラ
ス転移温度は低く、高温ではイオン架橋が破壊され熱可
塑性を示し、ポリマーの構造が変わりやすい。このため
エチレン系のアイオノマーを塩基の拡散透析用膜と使用
した場合でも、使用中に、含水率の低下や、乾燥により
ポリマーの構造が変化して含水率が低下すると塩基の透
過性が低下するが、テトラフルオロエチレン系の含フッ
素アイオノマーからなる拡散透析膜は、ポリマー構造が
安定なため含水率が変わらず塩基の透過性が変化しない
と説明される。
An alkali ion ionomer consisting of tetrafluoroethylene and perfluorovinyl ether containing an acidic group has a high glass transition temperature, exhibits no thermoplasticity, and has a stable polymer structure. Ionomers, which are made of copolymers of Even when using a base ionomer as a membrane for base diffusion dialysis, the permeability of bases decreases during use, as the water content decreases or the structure of the polymer changes due to drying. It is explained that a diffusion dialysis membrane made of a fluoroethylene-based fluorine-containing ionomer has a stable polymer structure, so the water content does not change and the base permeability does not change.

しかしかかる説明は、本発明の理解のために述べたもの
であり、本発明をなんら制限することはない。
However, such explanation is provided for the purpose of understanding the present invention, and does not limit the present invention in any way.

以下に本発明を更に詳しく説明すると、本発明に使用す
る陽イオン交換膜は、含水率が20〜250重量%、イ
オン交換容量が0.6〜265ミリ当量/グラム樹脂の
含フッ素陽イオン交換膜が使用される。
To explain the present invention in more detail below, the cation exchange membrane used in the present invention has a water content of 20 to 250% by weight and an ion exchange capacity of 0.6 to 265 milliequivalents/gram resin. A membrane is used.

含水率が20重量%以下では、塩基の透過速度が低く、
特には25重量%以上が好ましい。また含水率が250
重量%以上では、塩基と他の不純物、例えば中性塩、非
電解質との分離性が低下し、かり強度低下がおきるので
特には150重量%以下が好ましい。かかる含水率が、
上記の範囲を有していても、イオン交換容量が小さい場
合には、塩基の選択透過性が低下するので、好ましくは
0.6以上、特には1.0!り当量/グラム樹脂以上が
使用される。
When the water content is 20% by weight or less, the base permeation rate is low;
Particularly preferred is 25% by weight or more. Also, the moisture content is 250
If the content exceeds 150% by weight, the separation between the base and other impurities such as neutral salts and non-electrolytes will decrease, resulting in a decrease in strength, so 150% by weight or less is particularly preferred. This moisture content is
Even if it has the above range, if the ion exchange capacity is small, the selective permselectivity of the base will decrease, so it is preferably 0.6 or more, especially 1.0! equivalent weight per gram of resin or more is used.

かかる物性を有する含フッ素陽イオン交換膜は、般式が −(CF2CF2) e −(CF2CF)q −0(
CF2CF2)−(CF2)、lA  (1)ム A : C00M、  SO3M  又はPo2(OM
hXはFまたはCFs、mは0または1.nは1〜5、
pおよびqは正の数であってその比p/qは1〜16で
ある。Mは水素、アルカリ金属、アルカリ土類金属、金
属、アンモニウムまたはアミンのカチオンであらわされ
る含フッ素陽イオン交換膜が例示される。
A fluorine-containing cation exchange membrane having such physical properties has the general formula -(CF2CF2) e -(CF2CF)q -0(
CF2CF2)-(CF2), lA (1) MuA: C00M, SO3M or Po2(OM
hX is F or CFs, m is 0 or 1. n is 1 to 5,
p and q are positive numbers and the ratio p/q is 1-16. Examples include fluorine-containing cation exchange membranes in which M is hydrogen, an alkali metal, an alkaline earth metal, a metal, ammonium, or an amine cation.

なかでも、AがC00M、p/qが1〜7である含フッ
素陽イオン交換膜は、イオン交換容量が大きく、機械的
強度の大きな共重合体が得られ、中性塩や非電解質の透
過性が小さ(、塩基の選択透過性が優れているのでとく
に好ましく使用される。また必要に応じ、他の第三成分
を含有せしめることができる。
Among them, fluorine-containing cation exchange membranes in which A is C00M and p/q is 1 to 7 have a large ion exchange capacity and a copolymer with high mechanical strength, and have low permeability of neutral salts and non-electrolytes. It is particularly preferably used because it has low permselectivity and excellent permselectivity for bases. If necessary, it can contain other third components.

該含フッ素陽イオン交換膜は、それらの前駆体重合物、
例えばAがC0OR(Rはアルキル基) 、CN、CO
P、又は502Fなどの熱可塑性樹脂を加熱圧縮成型、
溶融押出成型などの手段により、またはそれらの前駆体
重合物あるいはイオン交換樹脂の懸濁液、乳化液、溶液
を塗布−乾燥などによって膜状に加工することができる
。又、かかる陽イオン交換膜は、前述した特定の物性を
有する共重合体を、単独で、膜状に加工する他、寸法安
定性、取扱性等の実用的な強度を付与するために、多孔
性基材により、補強することができる。かかる多孔性基
材は、イオン交換体層に埋め込んで、補強された複合陽
イオン交換膜として使用できる他、塩基の透過性を増加
する目的で、イオン交換体の薄膜層と多孔性基材層との
複層陽イオン交換膜とすることができる。
The fluorine-containing cation exchange membrane comprises precursor polymers thereof,
For example, A is COOR (R is an alkyl group), CN, CO
Heat compression molding of thermoplastic resin such as P or 502F,
It can be processed into a film by means such as melt extrusion molding, or by coating and drying a suspension, emulsion, or solution of a precursor polymer or ion exchange resin. In addition, such cation exchange membranes are made by processing a copolymer having the above-mentioned specific physical properties alone into a membrane, and also by forming a porous membrane in order to provide practical strength such as dimensional stability and ease of handling. Reinforcement can be achieved using a flexible base material. Such a porous substrate can be used as a reinforced composite cation exchange membrane by being embedded in an ion exchanger layer, or can be used as a composite cation exchange membrane with a thin layer of ion exchanger and a porous substrate layer for the purpose of increasing base permeability. It can be a multi-layer cation exchange membrane.

膜の形状は、一般的な平面状だけではな(、袋状、中空
糸、中空管などが使用される。特に、塩基を含有する溶
液の粘度が、lOポイズ以上の高粘度溶液では、平膜状
のフィルタープレス型透析槽は、原液側と回収液側との
圧バランスが困難になり、膜の破損や膜で区画された各
室に高粘度の溶液を均等に流すことが困難になることか
ら、本発明の陽イオン交換膜を内径が50μ〜10mm
好ましくは200 μ〜4mmq膜厚が1μ〜1mm好
ましくはlOμ〜400μの中空糸あるいは中空管とし
たホローファイバー型モジ1−ルを使用することにより
、高粘度溶液から、効率よ(塩基を回収することができ
る。そのような高粘度溶液としては、ビスコースレーヨ
ンやセロハン製造におけるキサントゲン酸ナトリウムの
アルカリ水溶液あるいは各種高分子を含有するアルカリ
溶液からのアルカリの回収に好ましく使用される。
The shape of the membrane is not limited to the general planar shape (bag-like, hollow fiber, hollow tube, etc.).Especially, in the case of a high viscosity solution containing a base with a viscosity of 10 poise or higher, In flat membrane filter press type dialysis tanks, it is difficult to balance the pressure between the raw solution side and the recovered liquid side, which can lead to damage to the membrane and difficulty in uniformly flowing a high viscosity solution into each chamber divided by the membrane. Therefore, the cation exchange membrane of the present invention has an inner diameter of 50μ to 10mm.
By using a hollow fiber type module, preferably 200μ to 4mmq, with a membrane thickness of 1μ to 1mm, preferably 10μ to 400μ, in the form of hollow fibers or hollow tubes, bases can be efficiently recovered from high viscosity solutions. Such a high viscosity solution is preferably used for recovering alkali from an alkaline aqueous solution of sodium xanthate or an alkaline solution containing various polymers in the production of viscose rayon or cellophane.

か(して得られる膜は、イオン交換基に変換されてない
場合には、加水分解する。本発明において、イオン交換
樹脂の含水率をある特定な範囲にするには膜の加水分解
条件またはその後の処理条件が重要になる場合がある。
(If the membrane obtained is not converted into an ion exchange group, it is hydrolyzed. In the present invention, in order to maintain the water content of the ion exchange resin within a certain range, the hydrolysis conditions of the membrane or Subsequent processing conditions may be important.

例えば、含水率が本発明の範囲より小さいイオン交換容
量が低い膜では、加水分解後、水あるいは水溶性有機溶
媒等で膨潤処理を行なうか、又は加水分解時に水溶性有
機溶媒の存在下で加水分解することが好ましい。いずれ
にしろ、本発明の含水率が得られるように、適時処理条
件を選択することにより、高性能のアルカリ拡散透析膜
が得られる。
For example, for membranes with low ion exchange capacity whose water content is lower than the range of the present invention, swelling treatment with water or a water-soluble organic solvent may be performed after hydrolysis, or hydration may be performed in the presence of a water-soluble organic solvent during hydrolysis. Decomposition is preferred. In any case, a high-performance alkali diffusion dialysis membrane can be obtained by appropriately selecting treatment conditions so as to obtain the water content of the present invention.

かくて本発明の陽イオン交換膜の片側に塩基を含有する
溶液を接触させ、もう一方の片側に水もしくは希薄溶液
を接触せしめることにより、既知の拡散透析の方法によ
り塩基を選択的に透過せしめることができる。
Thus, by contacting one side of the cation exchange membrane of the present invention with a solution containing a base and the other side with water or a dilute solution, the base can be selectively permeated by the known method of diffusion dialysis. be able to.

次に本発明を実施例により説明するが、それに先立ち測
定方法について述べる。
Next, the present invention will be explained with reference to examples, but first a measurement method will be described.

*含水率の測定 拡散透析に使用する膜または同一条件で作成したイオン
交換体層の25℃の純水中の重量をwl。
*Measurement of water content The weight of the membrane used for diffusion dialysis or the ion exchanger layer prepared under the same conditions in pure water at 25°C is wl.

その膜を130℃真空乾燥した後の重量をW2を求め、
次式にしたがって求めた。
The weight of the film after vacuum drying at 130°C is determined as W2,
It was calculated according to the following formula.

含水率−(w + −W2/ W2) X 100なお
、本発明はかかる実施例に限定されるものではない。
Water content - (w + -W2/W2) X 100 Note that the present invention is not limited to these examples.

実施例 (実施例1) テトラフルオロエチレンとCF2CF2 (CF2) 
3COOCH3とのイオン交換容量1.25!り当量/
グラム樹脂の共重合体Aを、溶融押出し成型し、膜厚5
0ミクロンの共重合Aフィルムを得た。該フィルムAは
、苛性ソーダ水溶液で加水分解せしめ、ついで純水中で
1時間煮沸処理せしめた。
Example (Example 1) Tetrafluoroethylene and CF2CF2 (CF2)
Ion exchange capacity with 3COOCH3 is 1.25! Equivalent /
Copolymer A of Gram resin was melt-extruded to a film thickness of 5.
A 0 micron copolymer A film was obtained. The film A was hydrolyzed with an aqueous caustic soda solution and then boiled in pure water for 1 hour.

かくして得た膜(有効面積A m2)の片側に、苛性ソ
ーダ2.6モル/L、アルミン酸ソーダ1.3モル/L
を含む溶液をおき、反対側に水をおき、画室の液温を2
5℃とし、2時間(透析時間t)透析し、水側に移動し
た苛性ソーダ及びアルミン酸ソーダのモル数m1画室の
濃度差ΔC(モル/L)から次の式によって、拡散透析
係数Uを求めた。
On one side of the thus obtained membrane (effective area A m2), 2.6 mol/L of caustic soda and 1.3 mol/L of sodium aluminate were added.
Place a solution containing water on the other side, and set the temperature of the liquid in the painting chamber to 2.
Dialysis was carried out at 5°C for 2 hours (dialysis time t), and the diffusion dialysis coefficient U was calculated from the concentration difference ΔC (mol/L) in the m1 compartment, which was the number of moles of caustic soda and sodium aluminate that moved to the water side, using the following formula. Ta.

lJ=m/(AXΔcXt) その結果、UNaO[+=4、 UAl=0.036U
AI/ UNaOB= 110であった。また、護膜の
含水率は25重量%であった。
lJ=m/(AXΔcXt) As a result, UNaO[+=4, UAl=0.036U
AI/UNaOB=110. Moreover, the water content of the protective film was 25% by weight.

(比較例1) 実施例1において、純水による煮沸処理を行なわない以
外、全く同様にして測定したところ、護膜の含水率は1
2重量%で、UNaOH= 0 、8、UAI=0.0
3、UAI/ UNaOH= 150であった。
(Comparative Example 1) Measurements were made in exactly the same manner as in Example 1, except that the boiling treatment with pure water was not performed, and the water content of the protective film was 1.
At 2% by weight, UNaOH = 0, 8, UAI = 0.0
3, UAI/UNaOH = 150.

(実施例2) テトラフルオロエチレンとCF2−CFO(CF2) 
3cOOcH3とのイオン交換容量1.8ミリ当量/グ
ラム樹脂の共重合体Bを、溶融押出し成型し、膜厚50
ミクロンの共重合Bフィルムを得た。該フィルムBは、
苛性ソーダ水溶液で加水分解せしめと後、二分割し一方
の膜を純水で1時間煮沸処理せしめた。
(Example 2) Tetrafluoroethylene and CF2-CFO (CF2)
Copolymer B with an ion exchange capacity of 1.8 meq/g resin with 3cOOcH3 was melt-extruded to a film thickness of 50
A micron copolymer B film was obtained. The film B is
After hydrolysis with a caustic soda aqueous solution, the membrane was divided into two parts and one of the membranes was boiled in pure water for 1 hour.

か(して得た二枚の膜の拡散透析係数及び含水率を実施
例1と同様にして求めた。結果を表−1に示す。
The diffusion dialysis coefficient and water content of the two membranes obtained were determined in the same manner as in Example 1. The results are shown in Table 1.

(実施例3) テトラフルオロエチレンとCF2冨CFOCF2CF(
CFり0−(CF2) 2S02Fとのイオン交換容量
1.1ミリ当量/グラム樹脂の共重合体Cを、溶融押出
し成型し、膜厚50ミクロンのフィルムCを得た。該フ
ィルムCは、苛性カリのジメチルスルホキシド水溶液で
加水分解せしめた後、純水中で煮沸処理を行なった。
(Example 3) Tetrafluoroethylene and CF2-rich CFOCF2CF (
A copolymer C having an ion exchange capacity of 1.1 meq/g resin with CFRI0-(CF2)2S02F was melt-extruded to obtain a film C having a thickness of 50 microns. The film C was hydrolyzed with a dimethyl sulfoxide aqueous solution of caustic potash, and then boiled in pure water.

か(して得た膜の拡散透析係数及び含水率を実施例1と
同様にして求めた。結果を表−1に示す。
The diffusion dialysis coefficient and water content of the obtained membrane were determined in the same manner as in Example 1. The results are shown in Table 1.

(実施例4) テトレフルオロエチレンとCFzlICFO(CF2)
3COOCH3とのイオン交換容量1.44!す当量/
グラム樹脂の共重合体りを、溶融押出し成型し、内径4
50μ外径550μの中空糸(膜厚50μ)を得た。該
中空糸りは、苛性ソーダ水溶液で加水分解せしめと後、
純水中で1時間煮沸処理せしめた。
(Example 4) Tetrefluoroethylene and CFzlICFO (CF2)
Ion exchange capacity with 3COOCH3 is 1.44! Equivalent /
A copolymer of gram resin is melt-extruded and molded to an inner diameter of 4.
A hollow fiber having an outer diameter of 50μ and an outer diameter of 550μ (film thickness of 50μ) was obtained. After hydrolyzing the hollow fiber with a caustic soda aqueous solution,
It was boiled in pure water for 1 hour.

か(して得られた中空糸120本を束ね、第1図に示す
ようなモジュールを作成した。中空糸の有効長は約60
cmであった。該モジュールの中空糸の内側に、ヘミセ
ルロース27 g/L1苛性ソーダ206 g/Lを含
有する溶液を、90mL/hrで流通せしめ、−方中空
糸の外側の外筒内に、向流方向で150mL/hrの純
水を供給したところ、ヘミセルロース2g/L1苛性ソ
ーダ135 g/Lの溶液が120mL/hrで回収で
きた。
The 120 hollow fibers obtained in this manner were bundled to create a module as shown in Figure 1.The effective length of the hollow fibers was approximately 60 mm.
It was cm. A solution containing 27 g/L of hemicellulose and 206 g/L of caustic soda was flowed inside the hollow fibers of the module at 90 mL/hr, and 150 mL/L was flowed in the outer cylinder on the outside of the hollow fibers in the countercurrent direction. When pure water was supplied at a rate of 120 mL/hr, a solution containing 2 g/L of hemicellulose and 135 g/L of caustic soda was recovered.

(実施例5) 実施例2で使用したイオン交換容量1.8ミリ当量/グ
ラム樹脂の共重合体Bを溶融押出し成型し、ついで苛性
ソーダで加水分解せしめて、内径1.9mm。
(Example 5) Copolymer B having an ion exchange capacity of 1.8 meq/g resin used in Example 2 was melt-extruded and then hydrolyzed with caustic soda to give an inner diameter of 1.9 mm.

外径2.1mmの中空管を得た。かくして得た中空管、
有効長60cm40本を束ね第1図に示す様のモジュー
ルを作成した。外モジュールの中空管の内側にポリビニ
ルアルコール180グラム/L1苛性ソータ40g/L
の粘度260ポイズの溶液を1kg/cm2で圧入し1
00mmL/hrで流通せしめ、一方中空管の外側の外
筒内に、向流方向で100 m L / h rの純水
を供給したところ、苛性ソーダ30 g / Lの溶液
が110mL/hrで回収できた。
A hollow tube with an outer diameter of 2.1 mm was obtained. The hollow tube thus obtained,
A module as shown in Fig. 1 was created by bundling 40 pieces with an effective length of 60 cm. Polyvinyl alcohol 180g/L1 caustic sorter 40g/L inside the hollow tube of the outer module
A solution with a viscosity of 260 poise was injected at 1 kg/cm2.
When pure water was supplied at 100 mL/hr in the countercurrent direction into the outer cylinder outside the hollow tube, a solution of 30 g/L of caustic soda was recovered at 110 mL/hr. did it.

【図面の簡単な説明】[Brief explanation of the drawing]

第一図は、本発明で使用される一例の塩基回収用装置の
縦断面概念図である。 !、中空糸状陽イオン交換膜 2、処理液人口   3、処理液(透析液)出口4、回
収液人口   5、回収液(拡散液)出口6、透析装置
    7、隔壁
FIG. 1 is a conceptual longitudinal cross-sectional view of an example of a base recovery device used in the present invention. ! , Hollow fiber cation exchange membrane 2, Processing liquid population 3, Processing liquid (dialysate) outlet 4, Recovery liquid population 5, Recovery liquid (diffusion liquid) outlet 6, Dialysis device 7, Partition wall

Claims (4)

【特許請求の範囲】[Claims] (1)陽イオン交換膜の片面に塩基を含有する溶液を接
触し、もう一方の片面に水もしくは希薄塩基溶液を接触
せしめ、塩基を含有する溶液から塩基を選択的に拡散透
析せしめる塩基の回収において、陽イオン交換膜のイオ
ン交換容量が0.6〜2.5ミリ当量/グラム樹脂、含
水率が20〜250重量%の含フッ素陽イオン交換膜か
らなることを特徴とする塩基の回収方法
(1) Recovery of base by selectively diffusing and dialyzing the base from the base-containing solution by contacting one side of the cation exchange membrane with a solution containing a base and contacting the other side with water or a dilute base solution. A method for recovering a base, characterized in that the cation exchange membrane has an ion exchange capacity of 0.6 to 2.5 milliequivalents/gram resin and a fluorine-containing cation exchange membrane having a water content of 20 to 250% by weight.
(2)含フッ素陽イオン交換膜が、一般式 ▲数式、化学式、表等があります▼(1) XはFまたはCF_3、mは0または1、nは1〜5、
pおよびqは正の数であってその比p/qは1〜7であ
る。Mは、アルカリ金属、アルカリ土類金属、金属、ア
ンモニウムまたはアミンのカチオンであらわされる繰り
返し単位よりなる請求項(1)の塩基回収方法
(2) The fluorine-containing cation exchange membrane has the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (1) X is F or CF_3, m is 0 or 1, n is 1 to 5,
p and q are positive numbers and the ratio p/q is 1-7. The base recovery method according to claim (1), wherein M is a repeating unit represented by an alkali metal, alkaline earth metal, metal, ammonium or amine cation.
(3)含フッ素陽イオン交換膜が、中空糸または中空管
であることを特徴とする請求項(1)又は(2)の回収
方法
(3) The recovery method according to claim (1) or (2), wherein the fluorine-containing cation exchange membrane is a hollow fiber or a hollow tube.
(4)塩基を含有する溶液が、粘度10ポイズ以上の高
粘度溶液であることを特徴とする請求項(3)の回収方
(4) The recovery method according to claim (3), wherein the base-containing solution is a high viscosity solution with a viscosity of 10 poise or more.
JP1029646A 1989-02-10 1989-02-10 Base recovery method Expired - Lifetime JP3026086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1029646A JP3026086B2 (en) 1989-02-10 1989-02-10 Base recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1029646A JP3026086B2 (en) 1989-02-10 1989-02-10 Base recovery method

Publications (2)

Publication Number Publication Date
JPH02211226A true JPH02211226A (en) 1990-08-22
JP3026086B2 JP3026086B2 (en) 2000-03-27

Family

ID=12281865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1029646A Expired - Lifetime JP3026086B2 (en) 1989-02-10 1989-02-10 Base recovery method

Country Status (1)

Country Link
JP (1) JP3026086B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393180A (en) * 1977-01-26 1978-08-15 Asahi Glass Co Ltd Diffusing and dialyzing for solution containing base
JPS53120688A (en) * 1977-03-31 1978-10-21 Asahi Chem Ind Co Ltd Hydrophilic membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393180A (en) * 1977-01-26 1978-08-15 Asahi Glass Co Ltd Diffusing and dialyzing for solution containing base
JPS53120688A (en) * 1977-03-31 1978-10-21 Asahi Chem Ind Co Ltd Hydrophilic membrane

Also Published As

Publication number Publication date
JP3026086B2 (en) 2000-03-27

Similar Documents

Publication Publication Date Title
US3723306A (en) Separation of ions or molecules from mixtures using graft-polymerized or polymer deposited ion exchange or permselective materials
US4056467A (en) Hollow fibres
US5180750A (en) Anion exchanger
EP0369787B1 (en) Membrane for separation of water-alcohol mixed liquid and process for preparation thereof
US4012324A (en) Crosslinked, interpolymer fixed-charge membranes
US4071454A (en) Hollow polyvinyl alcohol fibers
JPH0223214B2 (en)
US6913696B1 (en) Separation of components of organic liquids
EP0436720B1 (en) Hydrolyzed membrane and process for its production
JPH02211226A (en) Recovery of base
Uragami et al. Studies on syntheses and permeabilities of special polymer membranes. 27. Concentration of poly (styrene sulphonic acid) in various aqueous solutions using poly (vinylidene fluoride) membranes
JPH0271829A (en) Novel method for recovering acid
JP3165740B2 (en) Separation membrane and method for producing the same
JP2828690B2 (en) Multi-layer anion exchange membrane
JPS5820643B2 (en) Sannotou Sekihouhou
JPS588505A (en) Semi-permeable composite membrane
JPS6350041B2 (en)
JPS5820642B2 (en) Alkalino Tousekihouhou
CN115532074A (en) Heterogeneous tubular cation exchange membrane and preparation method and application thereof
JPS6014984A (en) Method for removing ion and fine particle
JP2828691B2 (en) Multi-layer anion exchange membrane
JPS5857442B2 (en) Method for producing a new cation exchange membrane
JPS58180535A (en) Ion-exchangeable hollow fiber and production thereof
JPH0947638A (en) Acid recovering process
JPH02245035A (en) Cation exchanger