JPH02211121A - Constant speed exhaust device and control device therefor and control method for constant speed exhaust device - Google Patents

Constant speed exhaust device and control device therefor and control method for constant speed exhaust device

Info

Publication number
JPH02211121A
JPH02211121A JP1031111A JP3111189A JPH02211121A JP H02211121 A JPH02211121 A JP H02211121A JP 1031111 A JP1031111 A JP 1031111A JP 3111189 A JP3111189 A JP 3111189A JP H02211121 A JPH02211121 A JP H02211121A
Authority
JP
Japan
Prior art keywords
exhaust
piezoelectric element
valve
constant speed
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1031111A
Other languages
Japanese (ja)
Other versions
JP2819141B2 (en
Inventor
Hiroyuki Yokoi
博之 横井
Kenji Nukui
貫井 健司
Kourin Kan
咸 洪林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Holon Holdings Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP1031111A priority Critical patent/JP2819141B2/en
Publication of JPH02211121A publication Critical patent/JPH02211121A/en
Application granted granted Critical
Publication of JP2819141B2 publication Critical patent/JP2819141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable constant speed and quick exhaust processes and the free adjustment of an exhaust quantity via a single operation body by setting the polarization direction of a pair of piezoelectric ceramics used for the open and close mechanism of a valve mechanism in a way reversed from the case of the conventional bimetal. CONSTITUTION:A metal plate 3 is placed between piezoelectric ceramics 1 and 2, integrated with the ceramics 1 and 2, and so arranged as to reverse a polarization direction from the conventional constitution, thereby enabling the elongation of the plate 3 upon voltage application. One end of a piezoelectric operation element 4 is fixed and the other end is provided with a valve 5 comprising rubber and the like. One end of an exhaust port 6 is continuous to the side of an arm body 53. In a constant speed exhaust condition, voltage is applied to the piezoelectric ceramic 1 and the piezoelectric operation element 4 is displaced lower. Also, the valve 5 is placed near the opening of the exhaust port 6 and air A from the arm body 53 is thereby discharged at the predetermined speed. For discharging quickly air stagnating in the arm body 53, voltage is applied to the piezoelectric ceramic 2 and the whole of the piezoelectric operation element 4 is deflected up, thereby setting a large gap between the valve 5 and the exhaust port 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は特定の空間内に圧送した気体を定速で排出する
装置及び同装置に係わる方法に関し、特に自動血圧計に
好適に利用できる定速排気装置および同装置の制御装置
、更にその制御方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a device for discharging gas pumped into a specific space at a constant rate and a method related to the device, and in particular to a device that can be suitably used in an automatic blood pressure monitor. The present invention relates to a quick exhaust device, a control device for the device, and a control method thereof.

〔従来の技術および発明が解決しようとする課題〕自動
血圧計では腕帯に対する空気の圧送及び、血圧測定用の
定速排気共に自動的に行われる。
[Prior Art and Problems to be Solved by the Invention] In an automatic blood pressure monitor, air is automatically pumped into the arm cuff and constant-speed exhaust for blood pressure measurement is performed automatically.

まず定速排気機構の一つとして、ゴム円筒に対してスリ
ットを形成し、加圧された腕帯側の圧力とゴム円筒の弾
性とをバランスさせることにより定速排気を行い、血圧
測定が終了した後は電磁弁を用いて腕帯内の空気を急速
に放出する機構がある。
First, as a constant-speed exhaust mechanism, a slit is formed in the rubber cylinder, and constant-speed exhaust is performed by balancing the pressure on the pressurized cuff side and the elasticity of the rubber cylinder, and blood pressure measurement is completed. After that, there is a mechanism that uses a solenoid valve to rapidly release the air inside the cuff.

第12図はこの機構の構成概念を示す。FIG. 12 shows the structural concept of this mechanism.

血圧被測定者の腕に腕帯53を装着したならばポンプ駆
動回路51は中央処理装置50の指令によりポンプ52
を駆動させ、腕帯53に対して空気を圧送する。圧力セ
ンサ54は腕帯53内の圧力をモニターし、圧力信号を
中央処理装置50に送っている。腕帯内圧力が予め設定
した値になったならば中央処理装置50は定速排気弁5
5を作動させ、腕帯内の空気を定速で排気し、この間に
血圧の測定を行う。次に血圧測定が終了したならば電磁
弁駆動回路56を介して急速排気の電磁弁57を作動さ
せ、腕帯53内に残留する空気を急速に排出する。しか
しこの定速排気機構では次のような問題がある。
When the arm cuff 53 is attached to the arm of the person being measured for blood pressure, the pump drive circuit 51 activates the pump 52 according to a command from the central processing unit 50.
is driven to pump air to the cuff 53. Pressure sensor 54 monitors the pressure within cuff 53 and sends a pressure signal to central processing unit 50 . When the pressure inside the arm cuff reaches a preset value, the central processing unit 50 activates the constant speed exhaust valve 5.
5, the air in the cuff is exhausted at a constant speed, and blood pressure is measured during this time. Next, when the blood pressure measurement is completed, the electromagnetic valve 57 for quick exhaust is activated via the electromagnetic valve drive circuit 56, and the air remaining in the cuff 53 is rapidly exhausted. However, this constant speed exhaust mechanism has the following problems.

即ち被測定者の腕の太さの違いによって、より具体的に
は腕の太さき違いに基づく腕帯容量の相違によって定速
排気時の排気速度が相違してしまい、これにより血圧測
定精度に悪影響を与えてしまうという問題がある。
In other words, due to differences in the thickness of the subject's arms, or more specifically, due to differences in arm cuff capacity based on differences in arm size, the pumping speed during constant-speed pumping will differ, which may affect the accuracy of blood pressure measurement. The problem is that it can have a negative impact.

第13図はこの排気速度の相違を示し、同図から明らか
なように、ポンプをOFFして定速排気を行う際、腕が
細い場合には排気速度が高くなり、太い場合にその速度
が低下する。第14図は腕帯容量を小容量(300cc
)と大容量(600cc)に分けた場合の排気速度の相
違を実測したものであるが、容量の大小により排気速度
が大幅に相違することが確認できた。またこのような問
題の外に、機構の構成上、定速排気用の機構とは別個に
急速排気用に電磁弁を設けているため、装置全体が複雑
かつ高価となっている。
Figure 13 shows the difference in pumping speed.As is clear from the figure, when the pump is turned off and pumping is performed at a constant speed, if the arm is thin, the pumping speed will be high, and if the arm is thick, the speed will be lower. descend. Figure 14 shows the armband capacity in a small capacity (300cc).
) and large capacity (600 cc), and it was confirmed that the pumping speed differed significantly depending on the size of the capacity. In addition to these problems, due to the structure of the mechanism, a solenoid valve for rapid exhaust is provided separately from the mechanism for constant-speed exhaust, making the entire device complicated and expensive.

これに対して上述の機構の問題点を改善するものとして
、排気装置は電磁弁のみとし、この電磁弁により定速・
急速の両方の排気を行うようにした機構が提案されてい
る。
On the other hand, in order to improve the problems of the above-mentioned mechanism, the exhaust system is equipped with only a solenoid valve.
Mechanisms have been proposed that provide rapid exhaustion of both sides.

第15図はこの定速・急速排気共用方式の機構を示す。FIG. 15 shows the mechanism of this constant speed/rapid exhaust system.

この図において、中央処理装置50の指令によりポンプ
52が作動すると同時に定排/急排共用型の電磁弁61
は閉となり、ポンプ52から圧送された空気は容量タン
ク58を経て腕帯53に供給される。腕帯内圧力が所定
の値となったならばポンプ52はOFFとなり、以後定
速排気モードとなる。この場合電磁弁作動の特性上、同
電磁弁61のON・OFF作動により段階的な排気59
を行うことにより定速排気を実施せざるを得ない。この
段階的排気59(第16図参照)を行う行程において、
電磁弁を開として空気を抜いた後回弁を閉とする時に空
気圧の不安定状態(空気圧リップル)が生じ、この現象
がコロトコフ音、オシロメトリック法の何れの方法によ
るとを問わず、血圧値判定精度に悪影響を与えていた。
In this figure, when the pump 52 is activated in response to a command from the central processing unit 50, a solenoid valve 61 for constant discharge/sudden discharge is activated.
is closed, and the air pumped from the pump 52 is supplied to the cuff 53 via the capacity tank 58. When the pressure inside the cuff reaches a predetermined value, the pump 52 is turned off, and the mode is then set to constant speed exhaust mode. In this case, due to the characteristics of the solenoid valve operation, the exhaust 59 is stepped by ON/OFF operation of the solenoid valve 61.
By doing so, constant speed exhaust must be performed. In the step of performing this stepwise exhaust 59 (see FIG. 16),
An unstable state of air pressure (air pressure ripple) occurs when the solenoid valve is opened to remove air and then the valve is closed, and whether this phenomenon is caused by Korotkoff sound or the oscillometric method, blood pressure values This had a negative impact on judgment accuracy.

このため圧力センサ54側に対する空気圧リップルの伝
達量を少なくするよう小径部Rを形成したり、さらには
前記空気圧リップルを可能な限り吸収するための容量タ
ンク5日を配置したすせねばならならず、これらメカニ
カルフィルターを設けるため結局この構成でも機構の単
純化は事実上達成できていない。また更に各種機構部の
制御および空気圧リップルのソフトウェア的除去処理等
のため、機構制御を含めたソフトウェア部分の負担が大
きくなるという問題もある。
For this reason, it is necessary to form a small diameter portion R to reduce the amount of air pressure ripple transmitted to the pressure sensor 54 side, and furthermore, it is necessary to arrange a capacity tank to absorb as much of the air pressure ripple as possible. However, due to the provision of these mechanical filters, even with this configuration, the mechanism cannot actually be simplified. Furthermore, there is a problem in that the burden on the software section including the mechanism control increases because of the control of various mechanical sections and the software-based removal process of air pressure ripples.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は以上に示した従来構成の問題点に鑑み構成した
ものである。
The present invention has been constructed in view of the problems of the conventional configurations described above.

即ち、本発明は後述の従来構成の如く排気用いる弁機構
は一種類とし、この弁機構により定速排気、急速排気の
何れも行えるよう構成し、電磁弁の場合と相違して定速
排気を非段階的に滑らかに行え、さらに排気速度を自由
に調節できるようにすることにより腕帯容量の如何に係
わりなく正確な血圧値測定を可能とするように構成する
That is, the present invention uses one type of valve mechanism for exhaust as in the conventional configuration described later, and is configured so that both constant-speed exhaust and rapid exhaust can be performed by this valve mechanism. The configuration is such that it can be performed smoothly in a non-step manner, and furthermore, by freely adjusting the pumping speed, it is possible to accurately measure the blood pressure value regardless of the cuff capacity.

以上の技術目的を達成するため、弁機構の開閉機構とし
て圧電素子等の一対の圧電素子を用い、かつ一対の圧電
セラミックの分極方向を従来型バイモルフとは逆に設定
することによりバイモルフの変形範囲を広げ、一つの作
動体で定速排気およびその排出量調整、急速排気および
その排出量調整等を自由に行えるよう構成する。
In order to achieve the above technical objectives, a pair of piezoelectric elements such as a piezoelectric element is used as the opening/closing mechanism of the valve mechanism, and the polarization direction of the pair of piezoelectric ceramics is set opposite to that of the conventional bimorph. The structure is expanded so that constant speed exhaust and adjustment of the exhaust amount, rapid exhaust and adjustment of the exhaust amount, etc. can be performed freely with one operating body.

〔作用〕[Effect]

弁駆動部であるバイモルフを構成する一対の圧電素子の
何れか一方に電圧を印加することによりバイモルフを所
定の方向に変形させ、もって弁開度を自由に調節する。
By applying a voltage to either one of the pair of piezoelectric elements constituting the bimorph, which is a valve driving section, the bimorph is deformed in a predetermined direction, thereby freely adjusting the valve opening degree.

腕帯側からの空気は弁開度に合わせて排出されるので、
定速排気時、急速排気時を問わず排気速度は中央処理装
置の命令通りに行われ、正確な血圧値判定を達成する。
Air from the arm cuff side is discharged according to the valve opening, so
Regardless of whether the pump is at constant speed or during rapid pumping, the pumping speed is determined according to the instructions from the central processing unit, thereby achieving accurate blood pressure value determination.

〔実施例〕〔Example〕

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

先ず第1図および第2図を用いて、本発明の中心的機構
である弁開閉装置を構成するバイモルフ(以下「圧電素
子作動部材」または単に「作動部材」と称する)につい
て説明する。
First, a bimorph (hereinafter referred to as a "piezoelectric actuating member" or simply "actuating member") constituting a valve opening/closing device, which is the central mechanism of the present invention, will be explained with reference to FIGS. 1 and 2.

第1図は一般型バイモルフの、第2図は発明の弁駆動装
置である圧電素子作動部材の作動状態を各々示す。
FIG. 1 shows the operating state of a general type bimorph, and FIG. 2 shows the operating state of a piezoelectric element actuating member which is a valve driving device of the invention.

先ず第1図により従来構成およびその作動状態を示す。First, FIG. 1 shows a conventional structure and its operating state.

1′および2′は圧電セラミック等の圧電素子(以下「
圧電セラミック」とする)、3′はこれら圧電セラミッ
ク1′と2′の間に配置した金属板である。この部材の
一方の圧電セラミック1′に電圧を印加するとこの圧電
セラミック1′は伸び、部材全体としてはF1方向に変
位する。また圧圧電セラミック2′は前記圧電セラミッ
ク1′と分極方向をあわせて張り合わせである。従って
圧電セラミック1′に電圧を印加すると部材全体はF1
方向に変位し、圧電セラミック2′にも電圧を印加する
とこの圧電セラミック2′は収縮するため部材全体とし
てはその変形が更に大きくなるという作動特性を有して
いる。
1' and 2' are piezoelectric elements such as piezoelectric ceramics (hereinafter referred to as "
3' is a metal plate placed between these piezoelectric ceramics 1' and 2'. When a voltage is applied to one piezoelectric ceramic 1' of this member, this piezoelectric ceramic 1' expands, and the member as a whole is displaced in the F1 direction. Further, the piezoelectric ceramic 2' is laminated to the piezoelectric ceramic 1' with the polarization direction aligned. Therefore, when a voltage is applied to the piezoelectric ceramic 1', the entire member becomes F1.
When the piezoelectric ceramic 2' is displaced in the direction and a voltage is also applied to the piezoelectric ceramic 2', the piezoelectric ceramic 2' contracts, so that the deformation of the entire member becomes even larger.

第2図の圧電素子作動部材は、圧電セラミック1および
2の間に金属板3を介在配置して一体的に形成してあり
、その構成自体は第1図のものと同じである。但し圧電
セラミック1および2ともに、電圧を印加すると伸びる
よう従来構成とは分極方向が逆になろうように各々配置
しである。このため圧電セラミックlに対して電圧を印
加するとこの圧電セラミック1が伸びるため圧電素子作
動部材全体ではF1方向に変位する。反対に圧電セラミ
ック2に対して電圧を印加するとこの圧電セラミック2
が伸びて圧電素子作動部材全体ではF2方向に変位する
ことになる。また何れの方向に対する変位でも印加する
電圧を調整することによりその変位量を調整することが
可能である。
The piezoelectric element operating member shown in FIG. 2 is integrally formed with a metal plate 3 interposed between piezoelectric ceramics 1 and 2, and its structure itself is the same as that of FIG. 1. However, both piezoelectric ceramics 1 and 2 are arranged so that their polarization directions are opposite to those of the conventional configuration so that they expand when a voltage is applied. Therefore, when a voltage is applied to the piezoelectric ceramic 1, the piezoelectric ceramic 1 expands, and the piezoelectric element operating member as a whole is displaced in the F1 direction. Conversely, when a voltage is applied to the piezoelectric ceramic 2, the piezoelectric ceramic 2
expands, and the piezoelectric element actuating member as a whole is displaced in the F2 direction. Further, the amount of displacement can be adjusted by adjusting the applied voltage for displacement in any direction.

第3図および第4図は第2図に示す圧電素子作動部材を
弁作動部材として用いた排気装置の構成および作動状態
を示す。
3 and 4 show the structure and operating state of an exhaust system using the piezoelectric element actuating member shown in FIG. 2 as a valve actuating member.

符号4は圧電素子作動部材であり、その構成は第2図に
示すように各々電圧を印加するごとにより伸びるように
それぞれ分極方向を設定した圧電セラミック1及び2と
、その間に配置した金属板3とにより一体的に構成しで
ある。この圧電素子作動部材4の一端は装置本体側に固
定され(図示せず)、電圧を印加してもその位置が変化
しないようになっている。一方他端にはゴム等の密閉性
の良好な材料から成る弁5が取り付けである。6はこの
弁5にその開口部が対向位置する排気ポートであり、他
端はゴム管等を介して腕帯53側に連通している。
Reference numeral 4 denotes a piezoelectric element actuating member, and as shown in FIG. 2, it consists of piezoelectric ceramics 1 and 2 whose polarization directions are set so as to expand each time a voltage is applied, and a metal plate 3 disposed between them. It is integrally constituted by. One end of this piezoelectric element actuating member 4 is fixed to the main body of the device (not shown), so that its position does not change even if a voltage is applied. On the other hand, a valve 5 made of a material with good sealing properties such as rubber is attached to the other end. Reference numeral 6 denotes an exhaust port whose opening is located opposite to the valve 5, and the other end communicates with the arm cuff 53 via a rubber tube or the like.

第3図に示す圧電素子作動部材は定速排気中の状態を示
し、第4図は急速排気中の状態を示す。
The piezoelectric element actuating member shown in FIG. 3 shows the state during constant speed evacuation, and FIG. 4 shows the state during rapid evacuation.

先ず定速排気状態では圧電セラミック1側に電圧を印加
することにより圧電素子作動部材4を下側に変位させ、
その先端に位置する弁5を排気ポート6の開口部に近接
位置させ、腕帯53から流出して来る空気Aを予め設定
した速度で排出する。
First, in the constant speed exhaust state, by applying a voltage to the piezoelectric ceramic 1 side, the piezoelectric element actuating member 4 is displaced downward,
The valve 5 located at the tip thereof is located close to the opening of the exhaust port 6, and the air A flowing out from the cuff 53 is discharged at a preset speed.

この場合圧電セラミック1に対して印加する電圧を調整
して圧電素子作動部材4の変位量を調節し、これにより
排気ポート6の開口と弁5との間隙を調整し、以て排気
速度を調整する。図中の符号W1は定速排気中の弁の調
整範囲を示し、その範囲は一般的に数十μmである。
In this case, the voltage applied to the piezoelectric ceramic 1 is adjusted to adjust the amount of displacement of the piezoelectric element actuating member 4, thereby adjusting the gap between the opening of the exhaust port 6 and the valve 5, and thereby adjusting the exhaust speed. do. The symbol W1 in the figure indicates the adjustment range of the valve during constant speed exhaust, and the range is generally several tens of μm.

第4図は急速排気中の圧電素子作動部材の変位状態を示
す。
FIG. 4 shows the displacement state of the piezoelectric element actuating member during rapid evacuation.

血圧測定が終了し、腕帯53内に残留する空気を急速に
排気する場合には、圧電素子作動部材4の圧電セラミッ
ク2に対して電圧を印加し、圧電素子作動部材4全体を
上方に反り返らせて弁5と排気ポート開口との間隙を大
きく設定する。これにより腕帯53側から流出する空気
を急速に排出する。なおこの場合も、必要があれば圧電
セラミック2に印加する電圧を調節することよりその間
隙を調整することは可能である。
When the blood pressure measurement is completed and the air remaining in the cuff 53 is to be rapidly exhausted, a voltage is applied to the piezoelectric ceramic 2 of the piezoelectric element actuating member 4 to warp the entire piezoelectric element actuating member 4 upward. In return, the gap between the valve 5 and the exhaust port opening is set large. As a result, air flowing out from the cuff 53 side is rapidly exhausted. In this case as well, it is possible to adjust the gap by adjusting the voltage applied to the piezoelectric ceramic 2, if necessary.

第5図は以上に示した圧電素子作動部材からなる排気装
置の作動を制御する機構を示す。
FIG. 5 shows a mechanism for controlling the operation of the exhaust device comprising the piezoelectric element actuating member shown above.

先ず、血圧の被測定者が腕帯を装着し血圧測定可能な状
態となり、血圧針のスイッチ(図示せず)をONとした
ならば中央処理装置7は定速排気コントロール回路8に
対して指令信号を発し、圧電素子作動部材4の圧電セラ
ミック1に対して電圧を印加して圧電素子作動部材4を
変位さる。
First, when the person to be measured for blood pressure wears a wrist cuff and becomes ready for blood pressure measurement, and turns on the blood pressure needle switch (not shown), the central processing unit 7 issues a command to the constant speed exhaust control circuit 8. A signal is generated, a voltage is applied to the piezoelectric ceramic 1 of the piezoelectric element actuating member 4, and the piezoelectric element actuating member 4 is displaced.

これにより弁5を排気ポート6の開口に圧接し、排気ポ
ート6を密閉する。続いてポンプ駆動回路9を介してポ
ンプ10を作動させて空気を腕帯53に圧送する。腕帯
53の圧力は常時圧力センサ11で監視され、その測定
値は中央処理装置7に出力される。中央処理装置7は腕
帯53内の圧力が設定した値となったならばポンプ10
の作動を停止して血圧測定モードに入る。
This brings the valve 5 into pressure contact with the opening of the exhaust port 6, sealing the exhaust port 6. Subsequently, the pump 10 is operated via the pump drive circuit 9 to pump air into the cuff 53. The pressure of the cuff 53 is constantly monitored by the pressure sensor 11, and its measured value is output to the central processing unit 7. The central processing unit 7 activates the pump 10 when the pressure inside the cuff 53 reaches a set value.
stops operating and enters blood pressure measurement mode.

血圧測定モードに入ったならば、中央処理装置7は定速
排気コントロール回路8を介して圧電素子作動部材4を
変位させて弁5と排気ポート6と間に間隙を形成して、
腕帯53側の空気を予め設定した速度で排気する。この
場合も圧力センサ11は腕帯53内の圧力を監視し、そ
の測定値を中央処理装置7に出力している。中央処理装
置7はこのフィードバックされた測定値に基づいて実際
の排気速度をリアルタイムで求め、排気速度が設定値に
なるよう弁5の開度調整を行う。
When the blood pressure measurement mode is entered, the central processing unit 7 displaces the piezoelectric element actuating member 4 via the constant speed exhaust control circuit 8 to form a gap between the valve 5 and the exhaust port 6.
The air on the arm cuff 53 side is exhausted at a preset speed. In this case as well, the pressure sensor 11 monitors the pressure within the cuff 53 and outputs the measured value to the central processing unit 7. The central processing unit 7 determines the actual exhaust speed in real time based on the fed-back measurement value, and adjusts the opening degree of the valve 5 so that the exhaust speed becomes the set value.

このようにして予め設定したとおりに正確に定速排気を
行い、この間に血圧値の判定を行う。続いて血圧値の判
定が終了したならば、中央処理装置7は急速排気コント
ロール回路12を介して圧電素子作動部材4の圧電セラ
ミック2に対して電圧を印加することにより弁5を大き
く開き、腕帯53に残留している空気を2.速に放出す
る。
In this way, constant speed exhaustion is performed accurately as preset, and during this time the blood pressure value is determined. Subsequently, when the blood pressure value has been determined, the central processing unit 7 applies a voltage to the piezoelectric ceramic 2 of the piezoelectric element actuating member 4 via the rapid exhaust control circuit 12 to widen the valve 5 and release the arm. 2. Remove the air remaining in the band 53. Release quickly.

第6図は以上の装置を用いた場合の排気状態を示す。こ
の図からも明らかなとおりポンプOFF後、定速排気を
行う場合、第12図に示す従来型のゴム円筒を用いた装
置同様に滑らかに定速排気をすることができる。
FIG. 6 shows the exhaust state when the above device is used. As is clear from this figure, when constant-speed exhaust is performed after the pump is turned off, constant-speed exhaust can be performed smoothly as in the conventional device using a rubber cylinder shown in FIG.

次にこの装置による定速排気状態を実測した試験結果を
第8図に示す。
Next, FIG. 8 shows the test results of actually measuring the constant speed exhaust state using this device.

この試験は第14図の従来装置の場合と同様、腕帯容量
を小容量(300cc)と大容量(600cc)に分け
た場合の排気速度の相違を実測したものであるが、従来
装置が容量の大小により排気速度が大幅に相違したのに
対して、本装置ではその速度に殆ど差が生じないことが
確認できた。なお、排気速度は4mmHg/secとし
た。
Similar to the case of the conventional device shown in Figure 14, this test measured the difference in pumping speed when the armband capacity was divided into small capacity (300cc) and large capacity (600cc). While the pumping speed differed greatly depending on the size of the pump, it was confirmed that with this device, there was almost no difference in the speed. Note that the pumping speed was 4 mmHg/sec.

また第9図は血圧計としての吸気量及び排気量を測定し
た結果を示す。図中符号G1は腕帯に対する加工時状態
を、G2は定速排気状態を、G3は急速排気状態を各々
示すが、この図からも明らかなとおり定速排気状態G2
において非常に安定した定速排気が実現しており、且つ
血圧値測定後の急速排気も非常に迅速に行えることが確
認できた。
Moreover, FIG. 9 shows the results of measuring the intake amount and exhaust amount using the sphygmomanometer. In the figure, G1 indicates the state during machining of the arm cuff, G2 indicates the constant speed exhaust state, and G3 indicates the rapid exhaust state. As is clear from this figure, the constant speed exhaust state G2
It was confirmed that very stable constant-speed evacuation was achieved and that rapid evacuation after blood pressure measurement was also performed very quickly.

第7図は以上に示した圧電素子作動部材を血圧計に組み
込む場合の構成の一例を示す。
FIG. 7 shows an example of a configuration in which the piezoelectric element actuating member described above is incorporated into a blood pressure monitor.

14は取り付け台であり、この台自体は血圧計本体内に
固定される。圧電素子作動部材4の後端部(図の右側)
には上下の圧電セラミックlおよび2の間に配置されて
金属板3が突出しており、この金属板3の突出部3aを
取り付け台14の段部14aに配置する。この状態で保
合部材12を取り付け金工4に対して螺子等の固定手段
で固定することにより前記突出部3aを挟持し、以て圧
電素子作動部材4全体を片持に支持する。圧電素子作動
部材4の下部には弁5が取り付けてあり、圧電素子作動
部材4を所定の位置に配置することよりこの弁5は取り
付け台14を挿通して開口している排気ポート6の開口
部に近接位置し、圧電素子作動部材4の作動により弁の
開閉動作を行う。
Reference numeral 14 denotes a mounting base, and this base itself is fixed within the body of the blood pressure monitor. Rear end of piezoelectric element actuating member 4 (right side in the figure)
A metal plate 3 is disposed between the upper and lower piezoelectric ceramics 1 and 2 and protrudes therefrom, and the protrusion 3a of this metal plate 3 is disposed on the step 14a of the mounting base 14. In this state, the retaining member 12 is fixed to the mounting metalwork 4 with a fixing means such as a screw, thereby sandwiching the protrusion 3a, thereby supporting the entire piezoelectric element actuating member 4 in a cantilevered manner. A valve 5 is attached to the lower part of the piezoelectric element actuating member 4, and by arranging the piezoelectric element actuating member 4 at a predetermined position, the valve 5 is inserted through the mounting base 14 and opens the exhaust port 6. The piezoelectric element operating member 4 opens and closes the valve by operating the piezoelectric element operating member 4.

なお、圧電素子作動部材4の配置等、定速排気装置の構
成は図示のものに限る必要はなく、血圧計の構成により
、排気ポートを圧電素子作動部材の上部に配置するなど
、その構成は適宜変更可能である。
Note that the configuration of the constant-speed exhaust device, such as the arrangement of the piezoelectric element actuating member 4, is not limited to that shown in the drawings, and the configuration may be modified, such as arranging the exhaust port above the piezoelectric element actuating member, depending on the configuration of the blood pressure monitor. It can be changed as appropriate.

第10図及び第11図は前記圧電素子作動部材を用いた
血圧計の定速排気制御の一例を示す。
FIGS. 10 and 11 show an example of constant speed exhaust control of a blood pressure monitor using the piezoelectric actuating member.

この制御装置は基本的には、第10図に示すように空気
量を直接調整する作動部分である圧電素子作動部材4、
弁5及び排気ポート6の組み合わせと、圧力センサ11
と、中央処理装置7と、この中央処理装置7の指令によ
りデジタル信号をアナログ化し、DC電圧を圧電素子作
動部材4に印加するDA変換部13とから構成されてい
る。
This control device basically consists of a piezoelectric element actuating member 4, which is an actuating part that directly adjusts the amount of air, as shown in FIG.
Combination of valve 5 and exhaust port 6 and pressure sensor 11
, a central processing unit 7 , and a DA converter 13 that converts a digital signal into an analog signal according to a command from the central processing unit 7 and applies a DC voltage to the piezoelectric element actuating member 4 .

先ず腕帯を被測定者の腕に装着し、ポンプ10により空
気を圧送して腕帯53内の圧力を所定の値とし、続いて
血圧値測定動作を行う。
First, the arm cuff is attached to the arm of the person to be measured, and the pump 10 pumps air to bring the pressure inside the cuff 53 to a predetermined value, and then the blood pressure value measurement operation is performed.

第10図および第11図において、血圧値測定に当たっ
て、先ず中央処理装置7は、圧力センサ11を介して一
定時間(例えば1秒間または1心泊)腕帯53内の圧力
をモニターし1.予め設定しである排気速度となるよう
圧電素子作動部材4の弁5と排気ポート6との間隙を設
定する。この設定された間隙は中央処理装置7内で演算
処理されてその設定間隙に対応する圧電素子作動部材の
変形量が設定され、圧電素子変形信号がデジタル出力さ
れる。このデジタル信号はD/A変換部13において直
流(DC)電圧としてアナログ出力される。このDC電
圧により圧電素子作動部材4は変形して弁5の開度を設
定し定速排気を行う。この定速排気は圧力センサ11に
よりモニターされており、その測定結果は中央処理装置
7にフィードバックされ、定速排気が設定値で行われて
いれば血圧値の測定を行う。血圧値の測定が終了したな
らば圧電素子作動部材4を反対方向に変位させ、腕帯内
の残存空気を急速に排出する。
10 and 11, in measuring the blood pressure value, the central processing unit 7 first monitors the pressure within the cuff 53 for a certain period of time (for example, 1 second or 1 heartbeat) via the pressure sensor 11. The gap between the valve 5 of the piezoelectric element actuating member 4 and the exhaust port 6 is set so that a preset exhaust speed is achieved. This set gap is arithmetic processed in the central processing unit 7, the amount of deformation of the piezoelectric element actuating member corresponding to the set gap is set, and a piezoelectric element deformation signal is digitally output. This digital signal is output as an analog direct current (DC) voltage in the D/A converter 13. This DC voltage deforms the piezoelectric element actuating member 4 to set the opening degree of the valve 5 and perform constant-speed exhaust. This constant speed exhaust is monitored by a pressure sensor 11, and the measurement results are fed back to the central processing unit 7, and if the constant speed exhaust is performed at the set value, the blood pressure value is measured. When the measurement of the blood pressure value is completed, the piezoelectric element actuating member 4 is displaced in the opposite direction to rapidly discharge the remaining air in the cuff.

〔効果〕〔effect〕

本発明は以上に説明した如く、弁の開閉機構として圧電
セラミック等の圧電素子を用い、かつ−対の圧電セラミ
ックの分極方向を従来型バイモルフとは逆に設定するよ
う構成して弁作動部材を構成したので、その作動部材の
変形範囲が広(、つの作動体で定速排気及び急速排気を
確実に行え、かつ定速排気中の排出量調整、栄、速排気
中の排出量調整も自由に実施することができ、特にこの
装置を自動血圧計に用いた場合は、血圧値の測定を迅速
且つ正確に行うことができる。
As explained above, the present invention uses a piezoelectric element such as a piezoelectric ceramic as a valve opening/closing mechanism, and configures the polarization direction of the pair of piezoelectric ceramics to be set opposite to that of the conventional bimorph, so that the valve actuating member is configured. Because of the structure, the deformation range of the operating member is wide (constant speed exhaust and rapid exhaust can be reliably performed with one operating body, and the exhaust amount can be freely adjusted during constant speed exhaust, Sakae, and rapid exhaust. In particular, when this device is used in an automatic blood pressure monitor, blood pressure values can be measured quickly and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の圧電素子作動部材との比較のために示
すバイモルフの作動原理図、第2図は本発明の圧電素子
作動部材の作動原理図、第3図は圧電素子作動部材を用
いた定速排気装置の定速排気状態における主要部縦断面
図、第4図は第3図に示す定速排気装置の急速排気状態
を示す主要部縦断面図、第5図は定速排気装置の構成例
を示すブロック図、第6図は第5図に示す装置の排気状
態を示す線図、第7図は定速排気装置の弁開閉部の構成
例を示す分解斜視図、第8図は異なる腕帯容量に於ける
第5図に示す装置の定速排気状態を示す線図、第9図は
同装置の加圧/定速排気/急速排気の状態を示す線図、
第10図は定速排気装置の制御状態の一例を示すブロッ
ク図、第11図は第1O図に示す装置の制御方法を示す
フロー図、第12図は定速排気弁と急速排気弁とを有す
る従来装置のブロック図、第13図は第12図に示す装
置を用いた場合の異なる腕帯容量における定速排気状態
を示す線図、第14図は同装置の異なる腕帯容量におけ
る定速排気状態の実測値を示す線図、第15図は定速排
気と急速排気を一つの電磁弁で行う別の従来装置のブロ
ック図、第16図は第15図に示す装置の定速排気状態
を示す線図である。 1.2・・・圧電セラミック 3・・・金属板   4・・・圧電素子作動部材5・・
・弁  6・・・排気ポート 7・・・中央処理装置  8・・・定速排気コントロー
ル回路   10・ 11・・・圧力センサ ントロール回路  13・ 14・・・取り付け台 ポンプ ・・・急速排気コ D/A変換装置 ・・・腕帯 図面の浄書(内容に変更なし) 第3図 第4図 第5図 第6図 呼量 (シに) 吟r11 (see) 時間 (sec) 第11図 時間 (sec) 第12図 時間 (Sぺ) 第15図 第16図 時間 (sec) 手 続 主nt 正 書 (自発) 平成1年3月15日 6、補正の内容 別紙のとおり 但し、 (1)別紙図面は浄書図面(内容に変更なし)(2)委
任状は本補正により補充 3゜ 4゜ 定速排気装置並びに同装置の制御装置および定速排気装
置の制御方法 補正をする者 事件との関係  特許出願人 住所 東京都練馬区大泉学園町2丁目23番22号名称
 株式会社 ニー・アンド・デイ 代表者  古 川  陽 代理人 〒102  Ta (264)6862住所 
東京都千代田区麹町3丁目1番8号筏
Fig. 1 is a diagram of the operating principle of a bimorph shown for comparison with the piezoelectric actuating member of the present invention, Fig. 2 is a diagram of the operating principle of the piezoelectric actuating member of the present invention, and Fig. 3 is a diagram showing the principle of operation of the piezoelectric actuating member of the present invention. Fig. 4 is a vertical cross-sectional view of the main parts of the constant-speed exhaust system shown in Fig. 3 in a rapid exhaust state, and Fig. 5 is a longitudinal cross-sectional view of the main parts of the constant-speed exhaust system shown in Fig. 3 in a rapid exhaust state. 6 is a diagram showing the exhaust state of the device shown in FIG. 5, FIG. 7 is an exploded perspective view showing an example of the configuration of the valve opening/closing part of the constant speed exhaust device, and FIG. 8 is a block diagram showing an example of the configuration of the device shown in FIG. is a diagram showing the constant speed exhaust state of the device shown in FIG. 5 at different arm cuff capacities, FIG. 9 is a diagram showing the pressurization / constant speed exhaust / rapid exhaust state of the same device,
Fig. 10 is a block diagram showing an example of the control state of the constant speed exhaust device, Fig. 11 is a flow diagram showing the control method of the device shown in Fig. 1O, and Fig. 12 shows the constant speed exhaust valve and the rapid exhaust valve. 13 is a diagram showing the constant speed exhaust state at different arm cuff capacities when using the device shown in FIG. 12, and FIG. A diagram showing actual measured values of exhaust conditions. Figure 15 is a block diagram of another conventional device that performs constant-speed exhaust and rapid exhaust with one solenoid valve. Figure 16 shows the constant-speed exhaust condition of the device shown in Figure 15. FIG. 1.2...Piezoelectric ceramic 3...Metal plate 4...Piezoelectric element operating member 5...
・Valve 6...Exhaust port 7...Central processing unit 8...Constant speed exhaust control circuit 10・ 11...Pressure sensor troll circuit 13・ 14...Mounting base pump...Rapid exhaust controller D /A converter... Engraving of armband drawing (no change in content) Fig. 3 Fig. 4 Fig. 5 Fig. 6 Call volume (shini) ginr11 (see) Time (sec) Fig. 11 Time ( sec) Fig. 12 Time (Spe) Fig. 15 Fig. 16 Time (sec) Proceeding person nt Authorized letter (spontaneous) March 15, 1999 6 Contents of amendments As per the attached sheet However, (1) Attached drawings is an engraving drawing (no change in content) (2) Power of attorney is supplemented by this amendment 3゜4゜ Constant speed exhaust system, control device for the same device, and control method of constant speed exhaust system Relationship with the case of the person amending the control method of the constant speed exhaust system Patent Applicant address: 2-23-22 Oizumi Gakuencho, Nerima-ku, Tokyo Name: Knee & Day Co., Ltd. Representative: Yo Furukawa Agent: 102 Ta (264) 6862 Address:
Raft, 3-1-8 Kojimachi, Chiyoda-ku, Tokyo

Claims (6)

【特許請求の範囲】[Claims] (1)腕帯等、加圧気体を充填した空間から気体を所定
の速度で排出する装置であって、電圧を印加することよ
りそれぞれが伸びるような分極方向をもって、一対の圧
電素子を直接に、または金属板等の部材を介して間接に
張り合わせて圧電素子作動部材を構成し、この圧電素子
作動部材に取り付けた弁を前記加圧空間の気体を排出す
る排気部に近接位置させ、圧電素子作動部材の各圧電素
子に対して印加する電圧を変化させることにより定速排
気および急速排気の何れをも行えるよう弁機構を構成し
たことを特徴とする定速排気装置。
(1) A device that discharges gas at a predetermined speed from a space filled with pressurized gas, such as an arm cuff, which directly connects a pair of piezoelectric elements with polarization directions such that they each expand when a voltage is applied. or a piezoelectric element actuating member is constructed by laminating them indirectly through a member such as a metal plate, and a valve attached to the piezoelectric element actuating member is positioned close to an exhaust part for discharging gas from the pressurized space, and the piezoelectric element is A constant speed exhaust device characterized in that a valve mechanism is configured to perform both constant speed exhaust and rapid exhaust by changing the voltage applied to each piezoelectric element of the actuating member.
(2)圧電素子作動部材の圧電素子のうち一方に電圧を
印加することにより弁を前記排気部に近接させ、さらに
この電圧を変化させることにより排気部と弁との間隙の
調整を行って定速排気中の排気速度の調整を行う制御部
と、他方の圧電素子に電圧を印加することにより弁を排
気部から離間させて両者の間隙を大きくし、以て急速排
気を行う制御部とを有することを特徴とする特許請求の
範囲第(1)項記載の定速排気装置。
(2) By applying a voltage to one of the piezoelectric elements of the piezoelectric element actuating member, the valve is moved closer to the exhaust section, and by further changing this voltage, the gap between the exhaust section and the valve is adjusted and fixed. A control unit that adjusts the exhaust speed during rapid exhaust, and a control unit that applies a voltage to the other piezoelectric element to separate the valve from the exhaust unit to increase the gap between the two, thereby performing rapid exhaust. A constant speed exhaust device according to claim (1), characterized in that:
(3)圧電素子作動部材の一端を片持に支持する取り付
け台と、取り付け台に開口した排気ポートと、この排気
ポートの開口部に対向位置するよう圧電素子作動部材に
取り付けた弁とからなることを特徴とする定速排気装置
(3) Consisting of a mounting base that supports one end of the piezoelectric element actuation member in a cantilevered manner, an exhaust port opening in the mounting base, and a valve attached to the piezoelectric element operation member so as to be positioned opposite to the opening of the exhaust port. A constant speed exhaust device characterized by:
(4)腕帯等の加圧空間内の圧力を測定する圧力センサ
と、この圧力センサの測定信号を入力する中央処理装置
と、中央処理装置のデジタル信号に対応した直流電圧を
出力するDA変換部とからなり、このDA変換部から出
力された直流電圧により弁開閉用の圧電素子作動部材を
変位させるように構成したことを特徴とする定速排気装
置の制御装置。
(4) A pressure sensor that measures the pressure in a pressurized space such as an arm cuff, a central processing unit that inputs the measurement signal of this pressure sensor, and a DA converter that outputs a DC voltage corresponding to the digital signal of the central processing unit. 1. A control device for a constant speed exhaust system, characterized in that the controller is configured to displace a piezoelectric element operating member for opening and closing a valve using a direct current voltage output from the DA converter.
(5)腕帯等の加圧空間から排出される気体の排気速度
を設定し、次に設定排気速度に対応する弁と排気部との
間隙を設定し、設定した間隙に対応する移動量を実現す
るための電圧を圧電素子作動部材に印加することを特徴
とする定速排気装置の制御方法。
(5) Set the exhaust speed of the gas exhausted from the pressurized space such as an arm cuff, then set the gap between the valve and the exhaust part that corresponds to the set exhaust speed, and calculate the amount of movement corresponding to the set gap. 1. A method for controlling a constant speed exhaust device, the method comprising: applying a voltage to a piezoelectric element actuating member to achieve the desired effect.
(6)前記設定した間隙に対応する圧電素子作動部材の
移動量を圧電素子変形信号としてデジタル出力し、この
デジタル出力を直流電圧値にアナログ出力し、この直流
電圧により圧電素子作動部材を変形させ、さらに実際の
排気速度を制御部にフィードバックするようにしたこと
を特徴とする特許請求の範囲第(5)項記載の定速排気
装置の制御方法。
(6) The amount of movement of the piezoelectric element actuating member corresponding to the set gap is digitally output as a piezoelectric element deformation signal, this digital output is outputted as an analog DC voltage value, and the piezoelectric element actuating member is deformed by this DC voltage. The method for controlling a constant speed exhaust system according to claim 5, further comprising feeding back the actual exhaust speed to the control section.
JP1031111A 1989-02-13 1989-02-13 Constant speed exhaust device and control method of constant speed exhaust device Expired - Lifetime JP2819141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1031111A JP2819141B2 (en) 1989-02-13 1989-02-13 Constant speed exhaust device and control method of constant speed exhaust device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1031111A JP2819141B2 (en) 1989-02-13 1989-02-13 Constant speed exhaust device and control method of constant speed exhaust device

Publications (2)

Publication Number Publication Date
JPH02211121A true JPH02211121A (en) 1990-08-22
JP2819141B2 JP2819141B2 (en) 1998-10-30

Family

ID=12322290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1031111A Expired - Lifetime JP2819141B2 (en) 1989-02-13 1989-02-13 Constant speed exhaust device and control method of constant speed exhaust device

Country Status (1)

Country Link
JP (1) JP2819141B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288531A (en) * 2005-04-07 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> Sphygmomanometer and method for controlling sphygmomanometer
JP2015070969A (en) * 2013-10-03 2015-04-16 シチズンホールディングス株式会社 Sphygmomanometer
US20150255705A1 (en) * 2014-03-06 2015-09-10 Stmicroelectronics Sa Method of manufacturing bistable strips having different curvatures

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140333703A1 (en) * 2013-05-10 2014-11-13 Matthews Resources, Inc. Cantilevered Micro-Valve and Inkjet Printer Using Said Valve
US11639057B2 (en) 2018-05-11 2023-05-02 Matthews International Corporation Methods of fabricating micro-valves and jetting assemblies including such micro-valves
CN112368149B (en) 2018-05-11 2023-01-13 马修斯国际公司 System and method for sealing a microvalve used in a jetting assembly
MX2020012076A (en) 2018-05-11 2021-03-25 Matthews Int Corp Electrode structures for micro-valves for use in jetting assemblies.
US11794476B2 (en) 2018-05-11 2023-10-24 Matthews International Corporation Micro-valves for use in jetting assemblies
WO2019215672A1 (en) 2018-05-11 2019-11-14 Matthews International Corporation Systems and methods for controlling operation of micro-valves for use in jetting assemblies

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781328A (en) * 1980-09-12 1982-05-21 Tno Indirect non-invading type continuous blood pressure measuring apparatus
JPS58168305U (en) * 1982-05-04 1983-11-10 オムロン株式会社 Blood pressure monitor exhaust control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781328A (en) * 1980-09-12 1982-05-21 Tno Indirect non-invading type continuous blood pressure measuring apparatus
JPS58168305U (en) * 1982-05-04 1983-11-10 オムロン株式会社 Blood pressure monitor exhaust control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288531A (en) * 2005-04-07 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> Sphygmomanometer and method for controlling sphygmomanometer
JP4562580B2 (en) * 2005-04-07 2010-10-13 日本電信電話株式会社 Sphygmomanometer and control method of sphygmomanometer
JP2015070969A (en) * 2013-10-03 2015-04-16 シチズンホールディングス株式会社 Sphygmomanometer
US20150255705A1 (en) * 2014-03-06 2015-09-10 Stmicroelectronics Sa Method of manufacturing bistable strips having different curvatures
US10312431B2 (en) * 2014-03-06 2019-06-04 Stmicroelectronics Sa Method of manufacturing bistable strips having different curvatures

Also Published As

Publication number Publication date
JP2819141B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
JPH02211121A (en) Constant speed exhaust device and control device therefor and control method for constant speed exhaust device
US6164933A (en) Method of measuring a pressure of a pressurized fluid fed through a diaphragm pump and accumulated in a vessel, and miniature pump system effecting the measurement
JP3952321B2 (en) Suck back valve
JP5599023B2 (en) Discharge device
US8905940B2 (en) Flow rate control valve and blood pressure information measurement device including the same
JPH09512075A (en) Micro pump
JP2004533856A (en) Closed loop flow control for IV fluid delivery
US7244224B2 (en) Pump driving unit for driving a pump used for supporting or substitution of cardiac function
TWI437975B (en) Blood pressure measuring device capable of accurately measuring blood pressure
EP0576328B1 (en) Automatic sphygmomanometer
JP4860358B2 (en) Sphygmomanometer exhaust valve and sphygmomanometer using the same
FI80198C (en) Pressure control system and device for automatic noninvasive blood pressure cuff
JP2721240B2 (en) Method and apparatus for controlling cuff pressure in a sphygmomanometer
WO2019054122A1 (en) Sphygmometric electrode unit, and sphygmometer
US11698066B2 (en) Pressure-controlling device, and pressure-using apparatus
US5632278A (en) Device for automatically measuring the blood pressure
JPH1061602A (en) Hydraulic driving device and in-mold molten metal level controller in continuous molding facilities
JPH06159539A (en) Blood pressure measuring device
JP7346939B2 (en) Medical inflation/deflation drive device
JPH039727A (en) Pressure drop rate controller of pressure cuff and bag for blood pressure measuring apparatus
JPH0242253Y2 (en)
JPH0369530B2 (en)
JPH02154738A (en) Automatic blood pressure measuring instrument
JPH09144919A (en) Check valve and automatic hemomanometer equipped therewith
JPH01280694A (en) Piezoelectric vibrator pump device