JPH02211112A - Microwave absorption and heat generation type cooking container - Google Patents

Microwave absorption and heat generation type cooking container

Info

Publication number
JPH02211112A
JPH02211112A JP3249889A JP3249889A JPH02211112A JP H02211112 A JPH02211112 A JP H02211112A JP 3249889 A JP3249889 A JP 3249889A JP 3249889 A JP3249889 A JP 3249889A JP H02211112 A JPH02211112 A JP H02211112A
Authority
JP
Japan
Prior art keywords
microwave
cooking container
heat generation
heat
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3249889A
Other languages
Japanese (ja)
Inventor
Nobushige Arai
洗 暢茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3249889A priority Critical patent/JPH02211112A/en
Publication of JPH02211112A publication Critical patent/JPH02211112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cookers (AREA)

Abstract

PURPOSE:To enable the efficient baking of a food, for example, frozen pizza of small to large size with a scorched line by providing a microwave absorption and heat generation metal oxide film on the surface of the cooking container base material of density quality and lithia ceramic. CONSTITUTION:A microwave absorption and heat generation metal oxide film 3 (e.g. tin oxide) is formed on the surface of a cooking container base material 2 made of density quality and lithia ceramic, thereby making a microwave absorption and heat generation cooking container 1. This container 1 is placed in a microwave oven and, for example, a microwave of 500W output is irradiated, thereby enabling heat generation up to 400 to 500 deg.C in three minutes. By using the aforesaid container 1, it is possible to efficiently bake a food such as pizza of small to large size with scorching.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、マイクロ波吸収発熱性調理容器に関し、こ
とに調理原料を電子レンジで焦げ目を付けて焼き上げる
ために用いられる。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a microwave-absorbing exothermic cooking container, which is particularly used for browning and baking cooking ingredients in a microwave oven.

(ロ)従来の技術 従来、電子レンジはマグネトロンから放射されたマイク
ロ波をオーブン庫内に導いて調理原料に照射し、調理原
料を発熱させて調理を行うので、焦げ目をつけて焼き上
げる調理に適さなかった。
(B) Conventional technology Conventionally, microwave ovens guide microwaves emitted from a magnetron into the oven chamber and irradiate the cooking ingredients to heat the ingredients for cooking, so they are suitable for browning and baking. There wasn't.

そこで、」:記オーブン庫内にシーズヒータを配備し、
マイクロ波以外に上記シーズヒータから放射される熱を
利用して調理原料の加熱を行うようにした電子レンジが
開発されたが熱源としてマグネトロンとシーズヒータの
2種類の加熱手段を設けなければならないことから、コ
ストアップの要因となると共に、構成が複雑化し、装置
全体が大型化するという問題点があった。
Therefore, we installed a sheathed heater inside the oven.
A microwave oven has been developed that uses heat radiated from the sheathed heater in addition to microwaves to heat cooking ingredients, but two types of heating means, a magnetron and a sheathed heater, must be provided as heat sources. Therefore, there are problems in that it increases the cost, complicates the configuration, and increases the size of the entire device.

近年、マイクロ波の照射により発熱する発熱物質(例え
ば炭化珪素やフエライl−)と無機断熱基材(例えばガ
ラスやセラミック)とを接合形成して2重構造としたプ
レートからなる発熱体や炭化珪素系セラミック成形板の
発熱体、さらにマイクロ波透過性のガラス、陶磁器、セ
ラミックスの表面にマイクロ波吸収発熱性の電気伝導性
金回酸化物薄膜を形成しマイクロ波の照射のみで誘電加
熱と熱放射による加熱の両方を行うことができる発熱体
が開発されている。
In recent years, heating elements made of double-layered plates made by bonding a heat-generating substance (e.g. silicon carbide or ferrite) and an inorganic heat-insulating base material (e.g. glass or ceramic) that generate heat when irradiated with microwaves, or silicon carbide, have been developed. A microwave-absorbing, exothermic, electrically conductive gold dioxide thin film is formed on the heating element of the system ceramic molded plate, and on the surface of microwave-transparent glass, ceramics, and ceramics, allowing dielectric heating and thermal radiation using only microwave irradiation. Heating elements have been developed that are capable of both heating and heating.

(ハ)発明が解決しようとする課題 マイクロ波を透過しない金属製の製パン容器の外表面(
外周全体)にマイクロ波吸収発熱性を呈するSIC,フ
ェライト等の材料をコーティングしたマイクロ波吸収発
熱性製パン容器に収納されたパン用原料を電子レンジ内
でマイクロ波を照射することにより150〜160℃に
加熱して焦げ目をつけてパンを焼き上げるホームベーカ
リ−用単機能型電子レンジが製品化されている。近年、
さらに冷凍食品に焦げ目をつける電子レンジの調理法が
普及してきていることから、マイクロ波で発熱する温度
が高温化してきており、例えば小型から大型までの冷凍
ピザを焼くために、3分位の短時間で400〜500℃
に発熱するマイクロ波吸収発熱性調理容器が要望されて
いるが、前記従来のマイクロ波吸収発熱性調理容器は、
例えば直径200〜300mm。
(c) Problem to be solved by the invention The outer surface of a metal bread-making container that does not transmit microwaves (
150-160 A single-function microwave oven for home bakeries that heats bread to ℃ and browns it has been commercialized. recent years,
Furthermore, as microwave cooking methods for browning frozen foods have become popular, the temperature generated by microwaves has become higher. 400-500℃ in a short time
There is a demand for a microwave-absorbing exothermic cooking container that generates heat, but the conventional microwave-absorbing exothermic cooking container is
For example, the diameter is 200 to 300 mm.

厚み1〜【01の凹状容器に出力500wのマイクロ波
を3分間照射しても、300℃の発熱温度が限度であっ
た。
Even when a concave container with a thickness of 1 to 01 was irradiated with microwaves with an output of 500 W for 3 minutes, the exothermic temperature was only 300°C.

この発明は、前記従来の問題を解決するためになされた
ものであり、3分間位の短時間で400〜500℃に発
熱するマイクロ波吸収発熱性調理容器を提供しようとす
るものである。
This invention was made to solve the above-mentioned conventional problems, and aims to provide a microwave-absorbing exothermic cooking container that generates heat to 400 to 500° C. in a short period of about 3 minutes.

(ニ)課題を解決するための手段 この発明者は、3分間位の短時間で450〜500°C
に発熱するマイクロ波吸収発熱性調理容器を提供するた
め、セラミックの調理容器基材について鋭意研究を行っ
たところ、緻密質のリチア系セラミックの表面に形成し
たマイクロ波吸収発熱性金属酸化膜は、7(を気任導度
が著しく高いという事実を見出し、この発明に至った。
(d) Means for Solving the Problem This inventor has developed a method for heating 450 to 500°C in a short period of about 3 minutes.
In order to provide a microwave-absorbing, exothermic cooking container that generates heat, we conducted intensive research on ceramic cooking container base materials, and found that the microwave-absorbing, exothermic metal oxide film formed on the surface of the dense lithium ceramic was This invention was achieved by discovering the fact that 7() has a significantly high level of energy conductivity.

この発明によれば、緻密質のリチア系セラミックの調理
容器基材面に、マイクロ波吸収発熱性金属酸化物膜を有
してなるマイクロ波吸収発熱性調理容器が提供される。
According to the present invention, there is provided a microwave-absorbing heat-generating cooking container having a microwave-absorbing heat-generating metal oxide film on the cooking container base material surface made of dense lithium ceramic.

O4記緻密質のリチア系セラミックの調理容器基材は、
例えば、リチアキ石、ペタル石、ユークリプタイト、ベ
ニウンモ、チンワルドウンモ、マナンドナイト、トリフ
イル石、リシオフィライト、アンブリゴ石、フレモンタ
イト、シラフラー石等のリヂウム鉱物、この中でも好ま
しくはリヂアギ石、ペタル石を用い、これを粉砕して得
られる平均粒径、通常1.0〜3.0μmの粉末に、例
えばポリビニルアルコール、メチルセルロース等のバイ
ンダー及び水を配合して混練、圧練を行って混練上とし
、この混練上を押出成形機又は圧縮成形機等の成形機を
用いて所定形状に成形し、次に形くずれしないように枠
にはめた状態で、通常500℃以下の温度で乾燥し、バ
インダーを蒸発又は燃焼さU゛て除去し、この後、通常
500〜1300℃の温度で焼成して、βスボジウメン
組織を主成分としかつ緻密な成形体を作製して用いるこ
とができる。前記混練上は、通常nQ記リすウ11鉱物
の粉末を90〜110fTfm部、前記バインダーを2
0〜30重量部、水を20〜30重臣部、本節粘土、カ
オリン等の他の鉱物を3〜7重量部を混合して作製ずろ
ことができる。
O4 The dense lithium ceramic cooking container base material is
For example, lydium minerals such as lysiakite, petalite, eucryptite, beniunmo, chinwaldeunmo, manandonite, triphyllite, lysiophyllite, ambrigoite, fremontite, and silafurite, among which lydiumite and petalite are preferred. A powder having an average particle diameter of usually 1.0 to 3.0 μm obtained by pulverizing the powder is mixed with a binder such as polyvinyl alcohol or methyl cellulose and water and kneaded and pressed to form a kneaded mixture. This kneaded surface is molded into a predetermined shape using a molding machine such as an extrusion molding machine or a compression molding machine, and then dried at a temperature of usually 500°C or less while being placed in a frame to prevent the shape from deforming. It is removed by evaporation or combustion, and then fired at a temperature of usually 500 to 1,300°C to produce a dense molded body containing β-subodium structure as a main component. During the kneading process, 90 to 110 fTfm of powder of the 11 minerals listed in nQ and 2 parts of the binder are added.
It can be prepared by mixing 0 to 30 parts by weight, 20 to 30 parts by weight of water, and 3 to 7 parts by weight of other minerals such as Honbushi clay and kaolin.

+iir記焼成は、通常500〜600℃から1220
〜1300℃まで徐々に昇温して、通常45〜55時間
行うのがよく、少なくとも1220℃〜1300℃の温
度で、通常3〜5時間保持して行うのが適している。
+iir firing is usually from 500 to 600°C to 1220°C.
It is preferable to gradually raise the temperature to ~1300°C, usually for 45 to 55 hours, and suitably maintain the temperature at least 1220°C to 1300°C, usually for 3 to 5 hours.

この発明におけるマイクロ波吸収発熱性金属酸化物膜は
、調理容器に収容された調理原料を加熱するためのもの
であって、通常102〜103Ω/cm”の面積抵抗率
を有し、マイクロ波を吸収して発熱することができ、通
常0.1〜!μmの膜厚を有するのが適しており、例え
ば酸化スズ、酸化アンチモン、フヱライ!・等を、この
中でも好ましくは酸化スズを用いて前記リチア系セラミ
ックの堪j理容器基材面に蒸着法又はゾルコーティング
法等によって形成することができる。また前記マイク【
1波吸収発熱性金属酸化物膜は、前記リチア系セラミッ
クの調理容器基材面上に、直接接して形成してらよいが
、耐熱性黒色顔料層を介在させて形成する方がマイクロ
波の照射によってマイクロ波吸収発熱性調理容器から放
射される赤外線が、加熱効率の寄与率の高い1〜4μm
の波長の赤外線をより多く含むので調理原料を効率よく
かつ程よい色調に焦げ1]を付けて焼き上げることがで
きるので好ましい。
The microwave-absorbing exothermic metal oxide film in this invention is for heating cooking ingredients contained in a cooking container, and typically has a sheet resistivity of 102 to 103 Ω/cm'', and has a microwave-absorbing exothermic metal oxide film. It is suitable to have a film thickness of usually 0.1 to !μm, which can absorb heat and generate heat. It can be formed on the base material surface of a lithium-based ceramic treatment container by a vapor deposition method or a sol coating method.
The single-wave absorbing exothermic metal oxide film may be formed directly on the lithium-based ceramic cooking container base material surface, but it is better to form it with a heat-resistant black pigment layer interposed therebetween to prevent microwave irradiation. The infrared rays emitted from the microwave-absorbing exothermic cooking container are 1 to 4 μm in diameter, which has a high contribution rate to heating efficiency.
It is preferable because it contains more infrared rays with a wavelength of , so cooking ingredients can be baked efficiently and with a moderate color tone.

前記耐熱性黒色顔料層は、前記リチア系セラミックの調
理容器基材の内面上又は外面上又は内外両面上のいずれ
かに、例えば遷移金属の酸化物から成る耐熱黒色顔料粉
末と無機バインダー等からなる塗布液を、例えば印刷法
、吹付は法、浸漬法等で塗布し、乾燥後、通常1100
〜1250℃で焼成して、通常膜厚20〜100μmに
形成することができる。前記塗布液は、例えば銅、クロ
ム、マンガン、コバルト等の遷移金属の酸化物系耐熱黒
色顔料を25〜35重量部、例えばAQtOs  Bt
us  5ift系(軟化点900℃) 、LitO+
  hatos  5iot系(軟化点1100℃)等
の低熱膨張率の無機バインダーを90〜110重量部、
例えばエチルセルロース、テルピネオール等の粘結剤を
5〜15重量部、この低粘度調整剤、界面活性剤等を少
はと水50〜80重li1部を添加して作製することが
できる。
The heat-resistant black pigment layer is formed of a heat-resistant black pigment powder made of a transition metal oxide, an inorganic binder, etc., on either the inner surface, the outer surface, or both the inner and outer surfaces of the lithium ceramic cooking container base material. The coating liquid is applied by, for example, a printing method, a spraying method, a dipping method, etc., and after drying, it is usually
It can be fired at ~1250°C to form a film with a normal thickness of 20-100 μm. The coating liquid contains 25 to 35 parts by weight of a heat-resistant black pigment based on an oxide of a transition metal such as copper, chromium, manganese, or cobalt, such as AQtOs Bt.
US 5ift system (softening point 900℃), LitO+
90 to 110 parts by weight of an inorganic binder with a low coefficient of thermal expansion such as hatos 5iot type (softening point 1100 ° C.),
For example, it can be prepared by adding 5 to 15 parts by weight of a binder such as ethyl cellulose or terpineol, a low viscosity modifier, a surfactant, etc., and 1 part of 50 to 80 parts by weight of atomized water.

(ホ)作用 緻密なリチア系セラミック組織が、表面に、高電気伝導
度の酸化スズ層を容易に形成さU・、温度上昇とともに
電気抵抗が低下してマイクロ波吸収発熱性金属酸化物膜
にマイクロ波吸収表面電流を流し易くし、その熱絶縁性
によってマイクロ波吸収発熱温度を」ユ界させ、多くの
遠赤外線を放射して被調理物の焦げ目付けを促進する。
(E) Effect: The dense lithium-based ceramic structure easily forms a tin oxide layer with high electrical conductivity on the surface, and as the temperature rises, the electrical resistance decreases, forming a microwave-absorbing exothermic metal oxide film. It facilitates the flow of microwave absorption surface current, limits the microwave absorption exothermic temperature due to its thermal insulating properties, and emits a large amount of far infrared rays to promote browning of the food to be cooked.

(へ)実施例 この発明の実施例を図を用いて説明する。(f) Example Embodiments of the invention will be described with reference to the drawings.

実施例! Li、04%以上、^12,0.20%、S i Ot
74%、水分1%以下からなるペタライト(Li、O・
^12ffiO1・8SiOz)の粉末と本節粘土を1
00:5の割合で混合し、平均粒径2μmの混合粉末と
し、この混合粉末100重量部、バインダーのメチルセ
ルロースを22重量部及び水24重量部を混合し、ロー
ル型混練機を用いて混綽、圧練を行い混練上を作製する
Example! Li, 04% or more, ^12, 0.20%, Si Ot
Petalite (Li, O,
^12ffiO1・8SiOz) powder and Honbushi clay 1
100 parts by weight of this mixed powder, 22 parts by weight of methylcellulose as a binder and 24 parts by weight of water were mixed in a ratio of 00:5, and kneaded using a roll kneader. , perform kneading to prepare a kneaded surface.

次に、前記混練上を圧縮成型機を用いて11且状に成形
し、この成形体を、型くずれしないように枠にはめて電
気炉に入れ、2℃/分の昇温速度で室温から500℃ま
で昇温して乾燥し、500℃に1時間保持することによ
りバインダーを焼却除去し、更に500℃から1260
℃まで44時間かけて徐々に昇温し、1260℃に4時
間保持して焼成し、βスボジュウメン組織を主成分とし
た緻密なリチア系セラミックの直径200IIffi、
厚さ3mmの調理容器基材を作製した。
Next, the kneaded surface was molded into a 11-shaped shape using a compression molding machine, and this molded product was placed in a frame so as not to lose its shape and placed in an electric furnace, and the temperature was increased from room temperature to 500 °C at a heating rate of 2 °C/min. The temperature was raised to 1260°C, the binder was removed by incineration, and the binder was removed by incineration by holding at 500°C for 1 hour.
The temperature was gradually raised to 1260°C over 44 hours, and then fired at 1260°C for 4 hours to produce a dense lithium-based ceramic with a diameter of 200Iffi, whose main component was a β-subodumene structure.
A cooking container base material with a thickness of 3 mm was produced.

次に、塩化第二スズの水溶液にアンモニア水をフェノー
ルフタレインが着色するところまで加えてゲルを生成し
、このゲルを、水洗後退mにアンモニア及び水を加えて
5nOtlO%に調整し、オートクレーブを用いて22
0℃で4時間の水熱処理を行ってSnO*ゲル塗布液を
作製し、この塗布液を第1図に示すように前記リチア系
セラミックの調理容器基材2の裏面中心部に直径120
IIII11の範囲に塗布し、100℃で1時間乾燥後
500℃で30分間焼成を行って、膜厚的1μ■、面積
抵抗率10”〜1G3Ω/cm”のマイクロ波吸収発熱
性酸化スズ膜3を形成し、マイクロ波吸収発熱性調理容
器lを作製した。
Next, aqueous ammonia is added to the aqueous solution of stannic chloride until phenolphthalein becomes colored to form a gel, and this gel is adjusted to 5nOtlO% by adding ammonia and water to the water-washing tank, and the autoclave is heated. using 22
Hydrothermal treatment was performed at 0° C. for 4 hours to prepare a SnO* gel coating solution, and this coating solution was applied to the center of the back surface of the lithium ceramic cooking container base material 2 with a diameter of 120 mm as shown in FIG.
III11, dried at 100°C for 1 hour, and baked at 500°C for 30 minutes to form a microwave-absorbing exothermic tin oxide film 3 with a film thickness of 1μ and a sheet resistivity of 10” to 1G3Ω/cm”. A microwave absorbing exothermic cooking container 1 was prepared.

次に、第2図に示すように前記マイクロ波吸収発熱性調
理容器1をセラミック質のシール接着剤5を用いて皿状
体4に配設してマイク【1波吸収発熱性調理具6を作成
し、このマイクロ波吸収発熱性調理具6を第3図に示ず
ようにマグネトロン7、導波管8、マイクロ波照射口9
、加熱室10からなる電子レンジ11に配設し、出力5
00Wのマイクロ波を照射したところ、第4図に示すよ
うに前記マイクロ波吸収発熱性調理容器1は、照射時間
3分間で450℃に達し、従来のマイクロ波吸収発熱性
調理容器に比べて昔しい発熱性の向上が確認された。
Next, as shown in FIG. 2, the microwave-absorbing heat-generating cooking container 1 is placed on a dish-shaped body 4 using a ceramic sealing adhesive 5, and a microphone [1-wave absorbing heat-generating cooking utensil 6] is attached. This microwave absorbing exothermic cooking utensil 6 is connected to a magnetron 7, a waveguide 8, and a microwave irradiation port 9 as shown in FIG.
, is installed in a microwave oven 11 consisting of a heating chamber 10, and has an output of 5.
When irradiated with 00W microwave, the microwave absorbing exothermic cooking container 1 reached 450°C in 3 minutes of irradiation time as shown in Fig. 4, which was higher than the conventional microwave absorbing exothermic cooking container 1. A significant improvement in heat generation properties was confirmed.

実施例2 実施例日こおいて、リチア系セラミックのマイクロ波吸
収発熱性調理容器の裏面全体に、銅酸化物系耐熱黒色顔
料20重量部、AQtOs  11tOs−8i鵠系(
軟化点900℃)のガラスフリット80重量部、エチル
セルロース5重量部、ポリビニルブチラール2ffl量
部、界面活性剤1重量部、ジブチルフタレート5重量部
、テルピネオール3重量部からなる塗布液を印刷法によ
って塗布し、1190℃で焼成して膜厚45gmの耐熱
性黒色被膜を形成し、この耐熱性黒色被膜の上にマイク
ロ波吸収発熱性酸化スズ膜を形成し、この他は実施例1
と同様にしてリチア系セラミックのマイクロ波吸収発熱
性調理容器を作製した。このリチア系セラミックのマイ
クロ波吸収発熱性調理容器は、実施例1と同様に良好な
発熱特性を呈することを確認し、冷凍の大型ピザを効率
よく焦げ目を付けて程よい色調に焼き上げることができ
ることを確認した。
Example 2 On the day of the example, 20 parts by weight of a copper oxide heat-resistant black pigment, AQtOs 11tOs-8i (
A coating solution consisting of 80 parts by weight of glass frit with a softening point of 900°C, 5 parts by weight of ethyl cellulose, 2 ffl parts of polyvinyl butyral, 1 part by weight of a surfactant, 5 parts by weight of dibutyl phthalate, and 3 parts by weight of terpineol was applied by a printing method. , a heat-resistant black film with a film thickness of 45 gm was formed by firing at 1190°C, and a microwave-absorbing exothermic tin oxide film was formed on this heat-resistant black film.
A microwave-absorbing exothermic cooking container made of lithian ceramic was produced in the same manner as described above. It was confirmed that this microwave-absorbing heat-generating cooking container made of lithian ceramic exhibited good heat-generating properties as in Example 1, and it was possible to efficiently brown a large frozen pizza and bake it to a suitable color tone. confirmed.

比較例1 実施例1において、混練上成形体を1260℃まで昇温
する代りに1150℃まで昇温し、1150℃で4時間
保持して焼成し、この他は実施例!と同様にしてマイク
ロ波吸収発熱性調理容器を作製した。このマイクロ波吸
収発熱性調理容器は、リチア系セラミックスが多孔質で
あり、マイクロ波吸収発熱性酸化スズ膜の面積抵抗率は
107〜10”Q/c+++1であり、出力500Wの
マイクロ波を照射したところ第4図に示すように発熱性
が劣っていた。
Comparative Example 1 In Example 1, instead of raising the temperature of the kneaded compact to 1260°C, the temperature was raised to 1150°C, and the temperature was held at 1150°C for 4 hours for firing. A microwave-absorbing exothermic cooking container was prepared in the same manner as described above. This microwave absorbing exothermic cooking container is made of porous lithium ceramics, the microwave absorbing exothermic tin oxide film has an area resistivity of 107 to 10"Q/c+++1, and is irradiated with microwaves with an output of 500 W. However, as shown in FIG. 4, the heat generation property was poor.

比較例2 実施例1において、リチア系セラミックの調理容器基材
を用いる代りに、主原料として、Sin、、1to3、
LltOlそれに、ジルコニアなどの結晶核形成剤と若
干の添加物を加えて調合した結晶化ガラス用組成物を約
1700℃の高温で溶融し、−般ガラス同様にプレス成
形加工し、ひずみ抜き徐冷に付して非晶質のガラスとし
、この非晶質ガラスを結晶化用トンネル窯を用いて90
0〜1200℃に加熱焼成して得られた結晶化ガラスを
用い、この他は実施例1と同様にしてマイクロ波吸収発
熱性調理容器を作製した。このマイクロ波吸収発熱性調
理容器は、第4図に示すように発熱性が低かった。
Comparative Example 2 In Example 1, instead of using the lithium ceramic cooking container base material, Sin, 1to3,
A composition for crystallized glass prepared by adding a crystal nucleating agent such as zirconia and some additives to LltOl is melted at a high temperature of about 1700°C, press-formed in the same manner as ordinary glass, and then slowly cooled to remove strain. This amorphous glass is heated to 90°C using a tunnel kiln for crystallization.
A microwave absorbing exothermic cooking container was produced in the same manner as in Example 1 except for using crystallized glass obtained by heating and firing at 0 to 1200°C. This microwave-absorbing exothermic cooking container had low exothermic properties as shown in FIG.

(ト)発明の効果 この発明によれば、3分間で400〜500℃に発熱す
るマイクロ波吸収発熱性調理容器を提供することができ
る。この発明のマイクロ波吸収発熱性調理容器を用いる
ことにより、例えば小型から大型までの冷凍ピザを効率
的に焦げ目をつけて焼き上げることができる。
(G) Effects of the Invention According to the present invention, it is possible to provide a microwave-absorbing exothermic cooking container that generates heat to 400 to 500° C. in 3 minutes. By using the microwave-absorbing exothermic cooking container of the present invention, it is possible to efficiently brown and bake, for example, frozen pizzas ranging in size from small to large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施例で作製したマイクロ波吸収
発熱性調理容器の説明図、第2図は、この発明の実施例
で作製したマイクロ波吸収発熱性調理容器によって構成
された調理具の説明図、第3図は、この発明の実施例で
用いた第2図の調理具を電子レンジに配設した説明図、
第4図は、この発明の実施例及び比較例のマイクロ波吸
収発熱性調理容器の発熱性を示すグラフ図である。 1・・・・・・マイクロ波吸収発熱性調理容器、2・・
・・・・リチア系セラミックの調理容器基材、3・・・
・・・マイクロ波吸収発熱性酸化スズ膜、4・・・・・
・皿状体、    5・・・・・・シール接着剤、6・
・・・・・マイクロ波吸収発熱性調理具、7・・・・・
・マグネトロン、訃・・・・・導波管、9・・・・・・
マイクロ波照射口、10・・・・・・加熱室、11・・
・・・・電子レンジ。 第1図 1!2W1 13  図
FIG. 1 is an explanatory diagram of a microwave-absorbing heat-generating cooking container produced in an example of the present invention, and FIG. 2 is a cooking utensil constituted by a microwave-absorbing heat-generating cooking container produced in an example of the present invention. FIG. 3 is an explanatory diagram of the cooking utensil shown in FIG. 2 used in the embodiment of this invention arranged in a microwave oven.
FIG. 4 is a graph showing the exothermic properties of the microwave-absorbing exothermic cooking containers of Examples and Comparative Examples of the present invention. 1...Microwave absorbing exothermic cooking container, 2...
...Lithia ceramic cooking container base material, 3...
...Microwave absorbing exothermic tin oxide film, 4...
・Dish-shaped body, 5... Seal adhesive, 6.
...Microwave absorbing exothermic cooking utensil, 7...
・Magnetron, ... waveguide, 9...
Microwave irradiation port, 10... Heating chamber, 11...
····microwave oven. Figure 1 1!2W1 13 Figure

Claims (1)

【特許請求の範囲】 1、緻密質のリチア系セラミックの調理容器基材面に、
マイクロ波吸収発熱性金属酸化物膜を有してなるマイク
ロ波吸収発熱性調理容器。 2、緻密質のリチア系セラミックの調理容器基材面とマ
イクロ波吸収発熱性金属酸化物膜の間に耐熱性黒色被膜
が介在してなる請求項1のマイクロ波吸収発熱性調理容
器。
[Claims] 1. On the surface of the dense lithium ceramic cooking container base material,
A microwave-absorbing exothermic cooking container comprising a microwave-absorbing exothermic metal oxide film. 2. The microwave-absorbing heat-generating cooking container according to claim 1, wherein a heat-resistant black coating is interposed between the dense lithium ceramic cooking container base material surface and the microwave-absorbing heat-generating metal oxide film.
JP3249889A 1989-02-10 1989-02-10 Microwave absorption and heat generation type cooking container Pending JPH02211112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3249889A JPH02211112A (en) 1989-02-10 1989-02-10 Microwave absorption and heat generation type cooking container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3249889A JPH02211112A (en) 1989-02-10 1989-02-10 Microwave absorption and heat generation type cooking container

Publications (1)

Publication Number Publication Date
JPH02211112A true JPH02211112A (en) 1990-08-22

Family

ID=12360661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3249889A Pending JPH02211112A (en) 1989-02-10 1989-02-10 Microwave absorption and heat generation type cooking container

Country Status (1)

Country Link
JP (1) JPH02211112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040033869A (en) * 2002-10-16 2004-04-28 권원선 Electronic oven type cooker, and process method of cooker
CN105734481A (en) * 2014-12-10 2016-07-06 辽宁法库陶瓷工程技术研究中心 Preparation method of high-temperature-resistant nano wave absorbing agent and wave absorbing coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040033869A (en) * 2002-10-16 2004-04-28 권원선 Electronic oven type cooker, and process method of cooker
CN105734481A (en) * 2014-12-10 2016-07-06 辽宁法库陶瓷工程技术研究中心 Preparation method of high-temperature-resistant nano wave absorbing agent and wave absorbing coating

Similar Documents

Publication Publication Date Title
US4822966A (en) Method of producing heat with microwaves
EP0333423B1 (en) Heat generating container for microwave oven
CN100349498C (en) Electric-heating film and manufacturing method thereof
CN110740532A (en) heating assembly, preparation method thereof and kitchen appliance
JPH02211112A (en) Microwave absorption and heat generation type cooking container
EP2982614B1 (en) Device for microwave cooking
JP3799454B2 (en) Firing furnace
JP5850821B2 (en) Powder for microwave-absorbing heating element, microwave-absorbing heating element using the powder, and production method thereof
JPH0829053B2 (en) Method of baking foods
JPH11118158A (en) Heating cooker
JPH0195227A (en) Heat generating element for microwave oven
JP2007172870A (en) Manufacturing method of plasma display panel
CN217013643U (en) Baking tray and heat storage oven
CN215773613U (en) Planar heating body heating electric oven
JPH01167532A (en) Heat generating body for microwave oven
JPH0527831Y2 (en)
JPH04278123A (en) Microwave oven
KR200284908Y1 (en) Cooker having a ceramic heating element
JPH0247555B2 (en)
JPS6314014A (en) Heater utilizing electromagnetic wave
JPH0528715Y2 (en)
JPH0613174A (en) Microwave oven
JPH01166723A (en) Heating material absorbing microwave
JPH024871A (en) Microwave absorbing exothermic coating
JPH01164319A (en) Heating unit for high-frequency heater