JPH02210068A - Polyvinyl alcohol based synthetic fiber for rubber reinforcing - Google Patents

Polyvinyl alcohol based synthetic fiber for rubber reinforcing

Info

Publication number
JPH02210068A
JPH02210068A JP1400589A JP1400589A JPH02210068A JP H02210068 A JPH02210068 A JP H02210068A JP 1400589 A JP1400589 A JP 1400589A JP 1400589 A JP1400589 A JP 1400589A JP H02210068 A JPH02210068 A JP H02210068A
Authority
JP
Japan
Prior art keywords
strength
cord
fiber
pva
crosslinking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1400589A
Other languages
Japanese (ja)
Other versions
JP2672623B2 (en
Inventor
Masanori Sato
真紀 佐藤
Shizuo Iwasaki
静雄 岩崎
Norie Watanabe
訓江 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP1400589A priority Critical patent/JP2672623B2/en
Publication of JPH02210068A publication Critical patent/JPH02210068A/en
Application granted granted Critical
Publication of JP2672623B2 publication Critical patent/JP2672623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title fiber for rubber reinforcing remarkably improved in fatigue resistance by subjecting a high-strength PVA based synthetic fiber having strength of specific value or above to crosslinking treatment with an organic titanium and then treating the fiber with an adhesive. CONSTITUTION:A high-strength PVA based synthetic fiber having >=15g/d dope strength is treated with a liquid for crosslinking treatment obtained by diluting an organotitanium with water or an organic solvent to give a synthetic fiber containing 0.01-0.1wt.% organic titanium, which is then treated with a normal RFL adhesive to provide the PVA based synthetic fiber for rubber reinforcement causing no lowering of strength of the fiber (or tire cord) also after practical running when the fiber is applied to air tire and having excellent effects.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐疲労性の大幅改良されたゴム補強用として
のポリビニルアルコール系合成繊維(以下rPVA繊維
」と略記する)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to polyvinyl alcohol-based synthetic fibers (hereinafter abbreviated as rPVA fibers) for use in rubber reinforcement that have significantly improved fatigue resistance.

(従来の技術) 従来、PVA繊維はゴム補強材料として広〈産業用繊維
として使用されてきた。しかし、この繊維は耐疲労性が
劣り、また元来水に可溶であるというポリマー特性を有
している為に、耐熱水性に劣るという欠点を有している
。従って、屈曲歪を多く受けるタイヤを始めとするゴム
補強用コードとしては、使用が極めて限定されていた。
(Prior Art) Conventionally, PVA fibers have been widely used as rubber reinforcing materials and as industrial fibers. However, this fiber has poor fatigue resistance, and since it has a polymer characteristic of being inherently soluble in water, it has the disadvantage of poor hot water resistance. Therefore, its use as a rubber reinforcing cord for tires, etc., which are subjected to a large amount of bending strain, has been extremely limited.

ところが、今日、特開昭59−130314号および同
59−100710号各公報に見られる様に超高分子量
(例えば平均分子量40万以上)化によってPVA繊維
の高強力化が可能となった。しかし、かかる超高分子量
のPVAポリマーを工業的に生産することは難しく、ま
た、製造面の困難さからコスト的にもポリエステルやナ
イロン等の一般のゴム補強用コードに供される繊維に比
し大幅に割高となり、商業的に競争力を持ち得ないもの
であった。
However, as seen in JP-A-59-130314 and JP-A-59-100710, it has now become possible to increase the strength of PVA fibers by increasing the molecular weight (for example, average molecular weight of 400,000 or more). However, it is difficult to industrially produce such ultra-high molecular weight PVA polymer, and due to manufacturing difficulties, it is also less expensive than fibers used in general rubber reinforcing cords such as polyester and nylon. It was significantly more expensive and could not be commercially competitive.

以上の様な背景から、PVAポリマーを従来のPVA繊
維の分子量より若干大きい程度の分子量とすることで、
工業的にも比較的容易にかつ多量に高強力PVA繊維を
供給出来る方法が見い出され(例えば特開昭60−12
6311号および同60−126312号等記載)、ゴ
ム補強用コードとして工業的、商業的に用いることの見
通しがついた。この様にして供給された高強力PVA繊
維はアラミド繊維には強力および弾性率の面でともに及
ばないものの、従来のナイロンやポリエステル等の繊維
よりは大幅に強度も向上し、−見、ゴム補強用コードと
して十分使用可能なものと考えられた。また、かかる方
法で得られた高強力PVA繊維は特開昭61=1087
13号公報にも記述されている様に従来のPVA繊維に
比し機械的な歪入力に対しても大幅に改善される為、ゴ
ム補強用タイヤコードとしての耐疲労性も十分実用に耐
え得るものと考えられた。
From the above background, by making the PVA polymer have a molecular weight slightly larger than that of conventional PVA fibers,
Industrially, a method for supplying high-strength PVA fibers in large quantities was discovered relatively easily (for example, in Japanese Patent Laid-Open No. 60-12
No. 6311 and No. 60-126312, etc.), and it is expected to be used industrially and commercially as a rubber reinforcing cord. Although the high-strength PVA fibers supplied in this way are not comparable to aramid fibers in terms of strength and elastic modulus, they are significantly stronger than conventional fibers such as nylon and polyester, and are reinforced with rubber. It was considered that the code was sufficiently usable as a commercial code. In addition, the high strength PVA fiber obtained by this method is
As described in Publication No. 13, it is significantly improved against mechanical strain input compared to conventional PVA fibers, so its fatigue resistance as a tire cord for rubber reinforcement is sufficient for practical use. It was considered a thing.

一方、従来のPVA繊維の繊維性能向上手段としては特
公昭47−8186号、同48−7887号、同48−
9210号、同48−32623号、同48−3262
4号、同48−9209号、同52−25602号およ
び同53−1368号等の公報記載の手段が知られてお
り、耐湿熱性、高温時での初期モジュラス等の改良が図
れてきた。
On the other hand, as conventional means for improving the fiber performance of PVA fibers, Japanese Patent Publications Nos. 47-8186, 48-7887, and 48-
No. 9210, No. 48-32623, No. 48-3262
4, No. 48-9209, No. 52-25602, and No. 53-1368 are known, and improvements have been made in heat and humidity resistance, initial modulus at high temperatures, etc.

しかし、上記特開昭60−126311号および同第6
0−126312号等記載の方法で得られる高強力PV
A繊維は下記の第1表に示す様に15g/d以上の強度
を有しているのに対し、従来の改良PVA繊維では高々
フィラメントの強度が11g/dに過ぎなかった。
However, the above-mentioned Japanese Patent Application Laid-open No. 60-126311 and No. 6
High strength PV obtained by the method described in No. 0-126312 etc.
As shown in Table 1 below, the A fiber has a strength of 15 g/d or more, whereas the filament strength of the conventional improved PVA fiber was only 11 g/d at most.

従って、かかる高強力PVA繊維では従来のPVA繊維
に比し強力、耐疲労性ともに大幅に改善された為、ゴム
補強用繊維として極めて有望であると考えられた。
Therefore, since such high-strength PVA fibers have significantly improved strength and fatigue resistance compared to conventional PVA fibers, they are considered to be extremely promising as fibers for reinforcing rubber.

(発明が解決しようとする問題点) しかしながら本発明者らは、上記特開昭60−1263
11号および同60−126312号等記載の方法によ
り得られた高強力PVA繊維は耐疲労性に関して重大な
欠点を有していることを明らかにした。すなわち、この
ままでは全くタイヤコードとしての耐疲労性が不足し、
通常の実地走行でもコード切れ (以下rCBUJ :
コードブレーキングアップと呼ぶ)が発生し、タイヤ安
全上到底実用には適さないことを明らかにした。以下、
この点につき更に詳細に説明する。
(Problems to be Solved by the Invention) However, the present inventors
It has been revealed that the high-strength PVA fibers obtained by the methods described in No. 11 and No. 60-126312 have a serious drawback in terms of fatigue resistance. In other words, as it is, the fatigue resistance as a tire cord is completely insufficient,
The cord breaks even during normal driving (rCBUJ:
It was revealed that this system was completely unsuitable for practical use due to tire safety concerns. below,
This point will be explained in more detail.

下記の第2表に示す各種繊維材料を同表に示す撚り数で
カーカスプライのコードとして用いたタイヤサイズ19
5/70 SR14の乗用車用タイヤを試作し、これら
タイヤにつき、カーカスプライのコードの強力保持率を
ドラム走行および実地走行後に新品時のコード強力との
対比で評価した。得られた結果を第2表に併記する。尚
、カーカスプライコードの強力保持率の測定個所は、第
1図に示すタイヤの×印の部分とした。
Tire size 19 using various fiber materials shown in Table 2 below with the number of twists shown in the same table as carcass ply cord.
5/70 SR14 passenger car tires were prototyped, and the cord strength retention rate of the carcass ply was evaluated in comparison with the cord strength when new after drum running and actual running. The obtained results are also listed in Table 2. The strength retention rate of the carcass ply cord was measured at the part marked with an x on the tire shown in FIG.

第2表から明らかな様に、高強力PVA繊維のドラム走
行後の強力保持率はポリエステル繊維とほぼ同等であっ
たが、実地走行後のコード強力保持率はポリエステル繊
維が90%以上であるのに対して、高強力PVA繊維は
20〜40%にまで低下してしまい、また場合によって
はCBtJが発生し、タイヤパンクの寸前の状態であっ
た。
As is clear from Table 2, the strength retention rate of high-strength PVA fibers after drum running was almost the same as that of polyester fibers, but the cord strength retention rate after actual running was 90% or more for polyester fibers. On the other hand, the strength of high-strength PVA fibers decreased to 20 to 40%, and in some cases, CBtJ occurred, and the tire was on the verge of puncture.

上記の実地走行試験は通常の車輌に試験タイヤを取り付
け、内圧も通常内圧(通常は1゜7 kg/cm”)で
試験を実施したものであるが、これはあくまでタイヤ使
用条件としては管理状態におかれたものであり、一般市
場では過剰積載や時として内圧1.Okg/CIm”以
下という異常状態で使用されることもあり得る為、管理
状態下で実地走行5万す走行時のコード強力保持率が2
0〜40%であったということは、一般市場での安全性
を全く保証出来ないと判断せざるを得ず、このままでは
到底実用には供し得ないと判断された。
The above practical driving test was conducted with the test tires mounted on a normal vehicle and at normal internal pressure (normally 1°7 kg/cm"), but this is only a controlled condition for tire usage conditions. In the general market, it may be overloaded or used under abnormal conditions such as internal pressure of less than 1.0kg/CIm'', so the code after 50,000 miles of actual driving under controlled conditions. Strong retention rate is 2
Since it was 0 to 40%, it had to be determined that safety in the general market could not be guaranteed at all, and it was determined that the product could not be put to practical use as it was.

上述”の様に、タイヤドラム試験や所謂チューブ疲労試
験等のLABO試験では検出出来ない様な現象はPVA
繊維特異な現象と考えられる為、本発明者らは上記の様
な疲労原因の徹底的究明を実施すべき、更に次のような
試験を行った。まず、下記の第3表に示す各種繊維材料
を同表に示す条件下でベルトコードとして用いた第2図
に示すフォールドベルト構造の、タイヤサイズP235
/75 R15の乗用車用タイヤを試作した。これらタ
イヤにつき、前述の様にして実地走行後のベルトコード
の強力保持率を評価した。得られた結果を第3表に併記
する。尚、ベルトコードの強力保持率の測定個所は、第
2図に示す×印の部分とした。
As mentioned above, phenomena that cannot be detected by LABO tests such as tire drum tests and so-called tube fatigue tests are caused by PVA.
Since this phenomenon is thought to be unique to fibers, the present inventors further conducted the following tests in order to thoroughly investigate the cause of fatigue as described above. First, a tire size P235 of the fold belt structure shown in Fig. 2 using various fiber materials shown in Table 3 below as belt cord under the conditions shown in the same table.
/75 Prototype of R15 passenger car tire was made. Regarding these tires, the strength retention rate of the belt cord after actual running was evaluated as described above. The obtained results are also listed in Table 3. The location where the strength retention rate of the belt cord was measured was the area marked with an x in FIG. 2.

上記第3表から明らかな様に、高強力PVA繊維をベル
トコードとして使用してもコードの強力保持率は、新品
時対比約60%にまで低下し、やはり耐疲労性に大きな
問題があることが判明した。
As is clear from Table 3 above, even when high-strength PVA fibers are used as belt cords, the strength retention rate of the cords decreases to about 60% compared to when they were new, indicating that fatigue resistance is still a major problem. There was found.

従って本発明の目的は、例えば空気入りタイヤに適用し
た場合には実地走行後も殆どコード強力の低下を生ずる
ことのない耐疲労性の大幅に向上したゴム補強用PVA
繊維コードを入手することのできる技術を提供すること
にある。
Therefore, an object of the present invention is to provide a rubber reinforcing PVA with significantly improved fatigue resistance that hardly causes a decrease in cord strength even after actual running when applied to pneumatic tires, for example.
The object of the present invention is to provide a technique by which fiber cords can be obtained.

(問題点を解決するための手段) 本発明者は前記実地走行後の高強力PVA繊維コードの
強力低下原因につき鋭意検討した結果、以下に示す知見
を得た。
(Means for Solving the Problems) The inventor of the present invention has made the following findings as a result of intensive investigation into the cause of the decrease in the strength of the high-strength PVA fiber cord after the above-mentioned actual running.

まず、実地走行後タイヤから取り出したコードをエポキ
シ樹脂中に埋め込み、ミクロトームで切断した該コード
横断面を観察したところ、上撚りと下撚りの交錯面近傍
のフィラメントが著しく変形し、フィラメント10本以
上が凝集束化していることが分かった。通常フィラメン
トはコードにかかる歪をフィラメント−本−本に分散す
る役割を有する為、フィラメントが凝集し歪を均一に分
散することが出来なくなればフィラメントまたはコード
の強力低下は促進されてしまうことになる。
First, when we embedded the cord taken out from the tire in an epoxy resin after actual driving and observed the cross section of the cord cut with a microtome, we found that the filaments near the intersecting plane of the first and second twists were significantly deformed, and more than 10 filaments were found. was found to be agglomerated into bundles. Normally, the filament has the role of dispersing the strain applied to the cord between the filament and the cord, so if the filament aggregates and the strain cannot be evenly distributed, the strength of the filament or cord will decrease more quickly. .

次に、この様なフィラメント凝集体現象を更に明確化す
る為に、上撚り、下撚りをほぐし、上撚りと下撚りが接
しているコード界面を顕微鏡で観察した。するとやはり
フィラメントは数本〜数十本単位であたかもプレスされ
た様にフィルム状になっている形跡が認められ、フィラ
メント元来の役割と考えられる歪入力の緩和を図ること
は不可能であることが分かった。この様なフィラメント
同士の凝集現象はポリエステル、アラミド繊維には認め
られず、PVA繊維のみに見られる現象であった。
Next, in order to further clarify such filament agglomeration phenomenon, the upper twist and lower twist were loosened, and the cord interface where the upper twist and the lower twist were in contact was observed under a microscope. As a result, it was found that the filaments were formed into a film-like shape in units of several to several tens of filaments, as if they had been pressed, and it was impossible to alleviate the strain input, which is thought to be the original role of filaments. I understand. Such a phenomenon of aggregation between filaments was not observed in polyester or aramid fibers, but was a phenomenon observed only in PVA fibers.

一方、ドラム走行(2万り走行、コード強力保持率60
%)したコードでは一部で上記フィラメント凝集現象が
若干認められるものの、その程度は極めて小さく、ドラ
ム走行においてはフィラメント各1本ずつに歪入力がま
だ均一に分散されているもと考えられる。また、従来の
PVA繊維ではドラム走行でも4700kmでCBUが
発生してしまっているが、前記高強力PVA繊維は2万
りでも残強力が60%であり、従来のPVA繊維と較べ
大幅に耐疲労性が改良されていることが分かる。しかし
、この様に改良された高強力PVA繊維でも実地走行後
のコードで大きく強力低下するという現象は従来の知見
からは到底予測することの出来ない現象であった。
On the other hand, drum running (20,000 miles running, strong cord retention rate 60
%), the filament aggregation phenomenon described above is observed in some areas, but the extent is extremely small, and it is thought that the strain input is still uniformly distributed to each filament during drum running. In addition, conventional PVA fibers generate CBU after 4,700 km of drum running, but the high-strength PVA fibers have a residual strength of 60% even when running at 20,000 km, and are significantly more resistant to fatigue than conventional PVA fibers. It can be seen that the properties have been improved. However, even with this improved high-strength PVA fiber, the strength of the cord decreases significantly after being run on the ground, a phenomenon that could not have been predicted based on conventional knowledge.

そこで本発明者らは、実地走行後とドラム走行後のコー
ドおよびフィラメントを詳細に観察することにより、以
下の相違を見い出した。即ち、(1)実地走行において
は走行と停止をくり返す為、100°C〜常温までの不
規則な温度履歴を繰り返して受ける。
The inventors of the present invention have found the following differences by closely observing the cord and filament after actual running and after running on a drum. That is, (1) during actual driving, the vehicle repeatedly runs and stops, so it is repeatedly subjected to irregular temperature history from 100° C. to room temperature.

(2)実地走行においては、コードの受ける歪入力も不
規則に絶えず変化し、これに従い、フィラメント同士の
こすれ個所、こすれ入力も変化することになる。
(2) During actual running, the strain input received by the cord constantly changes irregularly, and accordingly, the locations where the filaments rub against each other and the rubbing input also change.

(3)これに対してドラム走行におけるコードは絶えず
100℃以上の高温下にあり、フィラメント自体の軟化
によりフィラメント同士のこすれ入力を緩和し易い。
(3) On the other hand, the cord during drum running is constantly exposed to high temperatures of 100° C. or higher, and the rubbing force between the filaments is easily alleviated by the softening of the filaments themselves.

上記知見は、ドラム走行後のコードのフィラメントはフ
ィラメント同士のこずれがフィラメント中の一箇所に集
中することにより所謂バイアス状カット面を有するのに
対し、実地走行後のコードのフィラメント面には多数箇
所でフィラメント同士のこすれ傷が見られ、またバイア
ス状カット面だけを見てもバイアス状カットの中に数箇
所のこすれ傷跡が見られることによっても説明される。
The above findings indicate that the filaments of the cord after running on a drum have a so-called bias cut surface due to the misalignment between the filaments concentrating in one place in the filament, whereas the filament surface of the cord after running on the drum has a large number of cut surfaces. This can also be explained by the fact that rubbing scratches between the filaments can be seen in some places, and even when looking only at the bias cut surface, there are several rubbing scars in the bias cut.

以上説明した様なフィラメント凝集束化によるフィラメ
ント入力を減少させ、高強力PVA繊維のコードの耐疲
労性を高める為には、フィラメント凝集を阻止すれば良
いという知見に基づき、本発明は以下に示す考察の下に
なされたものである。
Based on the knowledge that it is sufficient to prevent filament aggregation in order to reduce the filament input due to filament aggregation and bundling as described above and increase the fatigue resistance of the cord of high-strength PVA fibers, the present invention has been developed as follows. This was done after careful consideration.

即ち、PVA繊維は元来分子内に水素結合を有している
為、僅かな水の存在によっても水素結合が水分子と親和
性を持ち、このことがPVA繊維自体が凝集し易いとい
う欠点となっていると考えられる。また、所謂水分子は
PVA繊維の非晶部に浸入し、PVA繊維非晶部の膨潤
を引き起こすことが、例えばガラス転移点の低下等を招
く結果となっていると考えられる。
In other words, since PVA fibers originally have hydrogen bonds within their molecules, the hydrogen bonds have an affinity for water molecules even in the presence of a small amount of water, and this has the disadvantage that PVA fibers themselves tend to aggregate. It is thought that it has become. Furthermore, it is thought that so-called water molecules penetrate into the amorphous portion of the PVA fiber and cause the amorphous portion of the PVA fiber to swell, resulting in, for example, a decrease in the glass transition point.

尚、前記高強力PVA繊維では高強力発現の一手段とし
て非晶部の緻密化や、高配向化により高強力を可能とし
ており、特開昭61−108713号公報では、かかる
高強力PVA繊維の耐蒸圧性も向上することが報告され
ているが、これだけではまだまだ実地走行後のコードの
耐疲労性を向上させることは不可能であることは、前述
の結果から見て明らかであった。
In the above-mentioned high-strength PVA fiber, high strength is achieved by making the amorphous part denser and highly oriented as a means of achieving high strength. Although it has been reported that the vapor pressure resistance is also improved, it is clear from the above results that it is still impossible to improve the fatigue resistance of the cord after actual running with this alone.

そこで本発明者らは、フィラメントに架橋処理を施せば
フィラメント同士の凝集摩滅を防止することができ、こ
れにより実地走行での高強力PVA繊維コードの強力低
下を実質的に阻止し、耐疲労性を付与することが出来る
と考え、OH基をもつPVA繊維に対し種々の架橋剤の
検討を行った。
Therefore, the present inventors have found that by crosslinking the filaments, it is possible to prevent the filaments from coagulating and abrading each other, thereby substantially preventing a decrease in the strength of the high-strength PVA fiber cord during actual running, and improving fatigue resistance. We investigated various crosslinking agents for PVA fibers having OH groups.

例えば、ホルムアルデヒドやホウ酸を用いて架橋された
PVA繊維は耐熱性が向上することはよく知られている
。しかし、このような架橋は強力が低下したり、曲げに
よる圧縮歪に対して脆くなる可能性が高いといった問題
があった。実際に、ホウ酸を用いて架橋されたPVA繊
維に圧縮歪を加えたところ、耐疲労性は劣っていた。
For example, it is well known that PVA fibers crosslinked using formaldehyde or boric acid have improved heat resistance. However, such crosslinking has problems such as a decrease in strength and a high possibility of becoming brittle against compressive strain due to bending. In fact, when compressive strain was applied to PVA fibers crosslinked using boric acid, the fatigue resistance was poor.

そこで、本発明者らは、好ましい架橋剤を見出せれば耐
疲労性が改良されるとの考えの下に鋭意検討を行ったと
ころ、有機チタンが架橋剤として優れていることを見出
した。チタンはPVA繊維のOH基と反応すると次式 のような架橋を形成する。しかし、このような反応は、
結合力が強いために反応のコントロールが難しく、PV
A繊維の強力を著しく低下させる。
Therefore, the present inventors conducted extensive studies based on the idea that fatigue resistance would be improved if a preferable crosslinking agent was found, and found that organic titanium is an excellent crosslinking agent. When titanium reacts with the OH groups of PVA fibers, it forms a crosslink as shown in the following formula. However, such a reaction
Due to the strong bonding force, it is difficult to control the reaction, and the PV
A: Significantly reduces the strength of the fibers.

そこで本発明者らは、PVA繊維のOH基とTiを間接
的に結合させれば強力低下の少ない架橋が形成されると
いう考えの下に、Tiに有機物を付加させたものを架橋
剤として用いたところ、PVA繊維の耐疲労性を向上さ
せることに成功し、本発明を完成するに至った。
Therefore, the present inventors used Ti as a crosslinking agent with an organic substance added thereto, based on the idea that a crosslink with less loss of strength could be formed by indirectly bonding the OH groups of PVA fibers with Ti. However, they succeeded in improving the fatigue resistance of PVA fibers and completed the present invention.

すなわち、本発明は原糸強度として15 g/d以上を
有するPVA繊維を有機チタンを用いて架橋処理した後
、接着剤処理したゴム補強用PVA繊維コードに関する
ものである。
That is, the present invention relates to a PVA fiber cord for rubber reinforcement in which PVA fibers having a yarn strength of 15 g/d or more are cross-linked using organic titanium and then treated with an adhesive.

本発明における有機チタンとしては、Ti (OR) 
4で表わされるアルコキシド、Ti(OR)4−11(
OCOR’ )。
As the organic titanium in the present invention, Ti (OR)
Alkoxide represented by 4, Ti(OR)4-11(
OCOR').

で表わされるアシレート、Ti(OR)a−、AnやT
i(OH)4−a +Anなどで表わされるキレートが
考えられる。一般にこれらの化合物は加水分解しやすい
ので、水の存在下では使用出来ないが、水に対して比較
的安定といわれるキレートにOH基を付与すると加水分
解せず水に可溶になる。
Acylate expressed as Ti(OR)a-, An or T
A chelate represented by i(OH)4-a +An or the like can be considered. Generally, these compounds are easily hydrolyzed and cannot be used in the presence of water, but if an OH group is added to a chelate, which is said to be relatively stable in water, it becomes soluble in water without being hydrolyzed.

具体的にはアルコシトにはTi(0−isocsHt)
n、Ti(0−ncJ*) a、Ti (OCHzCH
(CH3)C4HQ) a、Ti(0−C+Jzs)a
などがあり、またアシレートとしてはTi (0−nC
JJ 5(OCOCIグH3S) 、Ti(0−icd
h)(OCOC+tHffs)sなどが考えられ、更に
チタンキレートとしてはTi(0−icJt)z(QC
(CH3)CHCOCH3) z 、Ti(Oll)z
 (OCH(CH3)COOH) zなどが考えられる
。特に、Ti(OH)z (OCI((CH3)COO
H) !は水に安定でかつ可溶であるため、産業的、工
業的にも期待が大きい。
Specifically, Ti (0-isocsHt) is used for alcocyto.
n, Ti (0-ncJ*) a, Ti (OCHzCH
(CH3)C4HQ) a, Ti(0-C+Jzs)a
etc., and the acylate is Ti (0-nC
JJ 5 (OCOCIg H3S), Ti (0-icd
h) (OCOC+tHffs)s, and further titanium chelates include Ti(0-icJt)z(QC
(CH3)CHCOCH3)z, Ti(Oll)z
(OCH(CH3)COOH) z, etc. can be considered. In particular, Ti(OH)z (OCI((CH3)COO
H)! Since it is stable and soluble in water, it has great expectations from an industrial and industrial perspective.

これらの架橋剤は、水又はその他の有機溶媒に希釈した
処理剤として使用する。この処理剤をフィラメント表面
のみに付着させるか、あるいはフィラメントの内部まで
浸透させるかで表面架橋、内部架橋といった二種類の架
橋形態が考えられる。
These crosslinking agents are used as processing agents diluted in water or other organic solvents. Two types of crosslinking are possible, surface crosslinking and internal crosslinking, depending on whether the treatment agent is attached only to the filament surface or permeates into the inside of the filament.

これら形態はともに疲労改良効果があるが、特に表面架
橋は摩擦疲労に効果があり、これに対し内部架橋は摩擦
・圧縮歪下において効果を発揮する。
Both of these forms have a fatigue improving effect, but surface crosslinking is particularly effective against frictional fatigue, whereas internal crosslinking is effective under friction and compressive strain.

表面架橋は、原糸又は生コードの表面に処理剤を付着さ
せ、その後熱処理を施すことで架橋反応を行わしめるこ
とができる。
Surface crosslinking can be carried out by attaching a treatment agent to the surface of the yarn or raw cord and then subjecting it to heat treatment to cause a crosslinking reaction.

また、内部架橋は、原糸あるいは生コードを水、その他
の有機溶媒にて膨潤させ、架橋剤をフィラメント内部ま
で浸透させた後、余分な架橋剤を洗い流し、乾燥熱処理
することで架橋反応を行わしめることができる。あるい
は、紡糸原液中に架橋剤を投入し、紡糸後、熱を加える
ことによって架橋反応を行わしめてもよい。
Internal crosslinking is achieved by swelling the raw yarn or raw cord with water or other organic solvent, allowing the crosslinking agent to penetrate into the inside of the filament, washing away the excess crosslinking agent, and performing a dry heat treatment to carry out the crosslinking reaction. It can be tightened. Alternatively, the crosslinking reaction may be carried out by adding a crosslinking agent to the spinning stock solution and applying heat after spinning.

それぞれの架橋方法について更に詳しく説明する。Each crosslinking method will be explained in more detail.

先ず表面架橋法としては、架橋剤を水及び有機溶媒に溶
解して0.5重量%以上2置火%以下になるようにする
。次に、PVA繊維を上記処理液中に浸漬した後、乾燥
熱処理を施す。処理温度は150“C以上240″C以
下が好ましい。架橋処理に供するPVA繊維は、−原糸
、生コードどちらでもがまわないが、好ましくは原糸処
理した後油剤を付与し撚りをかけるのがよい。
First, in the surface crosslinking method, a crosslinking agent is dissolved in water and an organic solvent to a concentration of 0.5% by weight or more and 2% by weight or less. Next, the PVA fibers are immersed in the above treatment liquid and then subjected to dry heat treatment. The treatment temperature is preferably 150"C or more and 240"C or less. The PVA fibers to be subjected to crosslinking treatment may be either raw yarn or raw cord, but it is preferable to apply an oil agent and twist the fibers after treatment.

次に内部架橋法であるが、この方法では先ず架橋剤を1
重量%以上5置火%以下になるよう水又は有機溶媒に希
釈した液に原糸または生コードを浸漬する。この際、温
度をかけることによりpvA繊維のアモルファス部を膨
潤させ、架橋剤がフィラメント内部まで入り込むように
する。温度は50″C以上80°C以下が好ましく、浸
漬時間は1o分以上40分以内がよい。その後、表面に
付着した余分な架橋剤を洗い流した後、乾燥熱処理を行
なう。
Next is the internal crosslinking method, in which a crosslinking agent is first added.
The yarn or raw cord is immersed in a solution diluted with water or an organic solvent to a concentration of 5% by weight or more and 5% by weight or less. At this time, the amorphous portion of the pvA fiber is swollen by applying temperature, so that the crosslinking agent penetrates into the inside of the filament. The temperature is preferably 50"C or more and 80°C or less, and the immersion time is preferably 10 minutes or more and 40 minutes or less. Thereafter, after washing away excess crosslinking agent adhering to the surface, a dry heat treatment is performed.

この乾燥は100″C以下で行ない、熱処理は150°
C以上240°C以下の温度で行なう。
This drying is done at 100″C or less, and the heat treatment is at 150°C.
The temperature is 240°C or higher.

一方、′紡糸原液中に架橋剤を投入する方法においては
、先ずPVAをDMSO等の溶媒に溶かして5〜50重
量%になるようにする。
On the other hand, in the method of adding a crosslinking agent to the spinning dope, PVA is first dissolved in a solvent such as DMSO to a concentration of 5 to 50% by weight.

さらにこの紡糸原液に、有機チタンを溶媒に溶かして5
0重量%とじたものを最終的にPVAのTi含有量が0
.01〜0.1重量%になるように投入する。
Furthermore, organic titanium was dissolved in a solvent to this spinning stock solution.
The final Ti content of PVA is 0% by weight.
.. 01 to 0.1% by weight.

その後、この紡糸原液を紡糸工程へ供するが、紡糸は乾
式、湿式あるいはその両者を組み合わせた乾・湿式法の
いずれでもかまわない。紡糸後、凝固浴を通過したPV
A繊維はメタノール浴中で延伸し、さらに160℃〜2
40°Cの高温下で延伸するとともに架橋反応を行なわ
しめることができる。
Thereafter, this spinning stock solution is subjected to a spinning process, and the spinning process may be a dry method, a wet method, or a combination of both. PV passed through coagulation bath after spinning
A fiber is stretched in a methanol bath and further heated to 160℃~2
The crosslinking reaction can be carried out while stretching at a high temperature of 40°C.

その後、油剤を塗布し、撚糸することにより生コードを
入手できる。
After that, a raw cord can be obtained by applying an oil agent and twisting the yarn.

このようにして得られたコードを通常のRFL接着剤処
理することにより、ゴム補強用コードとして用いること
が出来る。
By treating the cord thus obtained with an ordinary RFL adhesive, it can be used as a rubber reinforcing cord.

尚、このようにして得られたコードのTi含有量は0.
01〜0.1重量%になるのが好ましい。この理由は、
0.01重量%未満では疲労性改良効果があまりなく、
一方0.1重量%を超えると改良効果は飽和し、強力低
下、接着低下を起こす心配があるからである。
Incidentally, the Ti content of the cord thus obtained was 0.
The amount is preferably 0.01 to 0.1% by weight. The reason for this is
If it is less than 0.01% by weight, the effect of improving fatigue properties is not so great.
On the other hand, if it exceeds 0.1% by weight, the improvement effect will be saturated, and there is a risk that strength and adhesion will decrease.

(実施例) 次に本発明を実施例に基づき説明する。(Example) Next, the present invention will be explained based on examples.

−1〜4  ″ 12 ここでは、紡糸原液中に架橋剤を投入して架橋を行なっ
た例を示す。
-1 to 4'' 12 Here, an example will be shown in which crosslinking was performed by adding a crosslinking agent to the spinning dope.

先ず、重合度3500の完全ケン化型(ケン化度99.
5%以上)のPVAの20重量%のDMSO溶液をつく
り、この溶液に架橋剤を溶剤で50重四%とじたものを
投入し、PVA100に対し0.05重置火のTiを含
有するように調整した。架橋剤としては、下記の第4表
に示す有機チタン架橋剤のうち■のTi(O4socJ
t) aをi−プロパツールで希釈したもの、■のTi
(0−nc41(J4をn−ブタノールで希釈したもの
、■のTi(0−icJy)t (QC(CHs)CI
ICOCR8) zをi−プロパツールで希釈したもの
、■のTi(Off)z  (OCR(CHs)COO
H) xを水で希釈したものを夫々実施例1.2,3.
4とした。
First, completely saponified type with a degree of polymerization of 3500 (degree of saponification 99.
A 20% by weight DMSO solution of PVA (5% or more) was prepared, and a crosslinking agent mixed with 50% by weight and 4% by solvent was added to this solution, so that the content of Ti was 0.05% by weight per 100% PVA. Adjusted to. As a crosslinking agent, among the organic titanium crosslinking agents shown in Table 4 below, Ti (O4socJ
t) a diluted with i-propatool, ■Ti
(0-nc41 (J4 diluted with n-butanol, ■Ti(0-icJy)t (QC(CHs)CI
ICOCR8) z diluted with i-proper tool, ■Ti(Off)z (OCR(CHs)COO
H) x was diluted with water in Examples 1.2, 3., respectively.
It was set as 4.

このようにして得られた紡糸原液を紡糸した後、メチル
アルコール凝固液中で乾湿紡糸した。得られた凝固糸条
をメタノールで洗浄し、DMSO等の溶媒を除去した後
、メタノール浴中で3倍に延伸した。その後、乾燥させ
た凝固糸条を230℃に加熱し、5倍に延伸すると同時
に架橋反応を行わしめた。
After spinning the spinning dope thus obtained, wet-dry spinning was performed in a methyl alcohol coagulation solution. The obtained coagulated thread was washed with methanol to remove solvents such as DMSO, and then stretched three times in a methanol bath. Thereafter, the dried coagulated yarn was heated to 230° C., stretched five times, and simultaneously subjected to a crosslinking reaction.

このようにして得られたPvAMII維原糸に油剤を付
与し、金糸及び撚糸することにより1500d/2、撚
り数31 X 31の生コードを得た。
An oil agent was applied to the PvAMII fibrillar yarn obtained in this manner, and the cord was twisted into gold thread to obtain a raw cord having a diameter of 1500 d/2 and a twist count of 31×31.

次に、これら生コードを下記の第5表に示すRFL接着
剤の処理に供した。
These raw cords were then subjected to RFL adhesive treatment as shown in Table 5 below.

二の処理は緊張下で乾燥熱処理するも0であり、その条
件はRFLデイツプ液に浸漬後、ドライゾーン150 
°CX120秒X0.1 g/d 、ホットゾーン20
0”CX40秒X 1 g/d及びノルマゾーン200
°C×40秒X 0.5g/dとした。
The second treatment is dry heat treatment under tension.
°C x 120 seconds x 0.1 g/d, hot zone 20
0” CX 40 seconds x 1 g/d and norm zone 200
°C x 40 seconds x 0.5 g/d.

上述のようにして処理した各RFLデイツプ処理コード
の強力と疲労試験後のコード強力を測定し、デイツプコ
ード対比の強力保持率を求めた。
The strength of each RFL dip-treated cord treated as described above and the cord strength after the fatigue test were measured, and the strength retention rate in comparison with the dip cord was determined.

また、かかるコードの繊維中のTi含量を定量した。Furthermore, the Ti content in the fibers of such cords was quantified.

コード強力測定法、疲労試験及びTi含量の定量は下記
のようにして行なった。
The cord strength measurement method, the fatigue test, and the determination of Ti content were carried out as follows.

旦:」ツシη叱【決 JIS  L  1017に従い常温で引張り、破断強
力を測定した。
The breaking strength was measured by pulling at room temperature in accordance with JIS L 1017.

ユニエ衰笈威腋 PVA繊維コードが上撚り、下撚りの界面で凝集、摩滅
することによりコードと直角方向に圧縮を受ける試験法
として、いわゆるベルト屈曲試験法があり、この試験法
をコード疲労試験として採用した。試験サンプルの形状
は幅50唾、厚さICl11、長さ50cmの板状とし
、この中に供試コードとスチールコードを入れ、100
 kg/cm”の圧力下、150°Cで30分間加硫し
た後、プーリー径50mn+φ、荷重100kg下で1
0万回屈曲疲労を与え、しかる後、供試コードの強力を
上述のコード強力測定法に従い測定した。
There is a so-called belt bending test method, which is a test method in which PVA fiber cords are compressed in the direction perpendicular to the cord by agglomeration and abrasion at the interface between the first and second twists, and this test method is called the cord fatigue test. It was adopted as The shape of the test sample was a plate with a width of 50 cm, a thickness of ICl11, and a length of 50 cm.
After vulcanizing at 150°C for 30 minutes under a pressure of 100 kg/cm'', the
Bending fatigue was applied 00,000 times, and then the strength of the test cord was measured according to the above-mentioned cord strength measurement method.

Uj」bす【量 試料1gを灰化後、灰分を熱濃硫酸で白煙処理し溶解し
た。次いで、この溶液を希釈し、ICP−Ag3法にて
Tfを定量した。尚、測定に用いた装置は日立■製スー
パースキャン306、標準溶液は市販の11000pp
溶液を希釈し、調製したものとした。
After incinerating 1 g of the sample, the ash was treated with hot concentrated sulfuric acid to dissolve white smoke. Next, this solution was diluted, and Tf was quantified by the ICP-Ag3 method. The equipment used for the measurement was Hitachi's Superscan 306, and the standard solution was a commercially available 11000pp.
The solution was diluted and prepared.

得られた試験結果を下表の第6表に示す。The test results obtained are shown in Table 6 below.

尚、比較のために比較例1においては従来のPVA繊維
を用いた試験結果を、また比較例2においては高強力P
VA繊維を用いてはいるが架橋処理の施されていない試
験結果を夫々第6表に併記する。
For comparison, Comparative Example 1 shows the test results using conventional PVA fiber, and Comparative Example 2 shows the test results using high-strength PVA fiber.
The test results using VA fibers but without crosslinking treatment are also listed in Table 6.

第6表より以下のことが確認された。From Table 6, the following was confirmed.

先ず、比較例1は従来のPVA繊維を用いた例であるが
、この場合コード強力が低く、また耐疲労性も悪(ベル
ト屈曲試験では破断した。
First, Comparative Example 1 is an example using conventional PVA fiber, but in this case, the cord strength was low and the fatigue resistance was also poor (it broke in the belt bending test).

比較例2は高強力PVA繊維を使用し紡糸溶媒としてD
MSOを用いていることから、比較例1に比し耐疲労性
はかなり改良された。
Comparative Example 2 uses high-strength PVA fibers and uses D as the spinning solvent.
Since MSO was used, the fatigue resistance was considerably improved compared to Comparative Example 1.

実施例1〜4はいずれも異なる架橋剤を紡糸原液に投入
し、紡糸後延伸、熱処理をして架橋反応を行わしめた例
であるが、これらの場合いずれの架橋剤においてもコー
ド強力が高く、耐疲労性はすべて比較例2よりも大幅に
改良された。
Examples 1 to 4 are all examples in which different crosslinking agents were added to the spinning stock solution, and the crosslinking reaction was carried out by stretching and heat treatment after spinning, but in these cases, the cord strength was high in all of the crosslinking agents. , fatigue resistance were all significantly improved compared to Comparative Example 2.

5〜12   へ 3 次に第4表に示す架橋剤■〜■のすべてを各種溶媒に希
釈して膨潤架橋を行なった例を示す。
5 to 12 to 3 Next, examples will be shown in which all of the crosslinking agents (1) to (4) shown in Table 4 were diluted in various solvents and swelling crosslinking was performed.

高強力PVA繊維コードは、特開昭61−108711
号、同61−108712号、同61−108713号
公報等記載の方法により得られた原糸強度17.5g/
dの高強力PVAフィラメントを合糸して1500デニ
ールとし、これに31回/10cmの撚をかけたちの2
本をさらに上撚り31回/10cIIで撚り合わせたも
のを用いた。
High strength PVA fiber cord is disclosed in Japanese Patent Application Laid-Open No. 61-108711.
Yarn strength 17.5 g/
The high-strength PVA filament of d is spliced to 1,500 denier, and this is twisted 31 times/10cm to create two
The book was further twisted with 31 twists/10 cII.

この高強力PVA繊維コードを、架橋剤■〜■を夫々の
溶剤に溶かし2%とした液中に浸漬した。
This high-strength PVA fiber cord was immersed in a solution in which crosslinking agents (1) to (4) were dissolved in respective solvents to give a concentration of 2%.

この温度は60°Cに保ち、30分間浸漬させた後、表
面に付着している余分な架橋剤を洗い流した。次いで、
緊張下で乾燥熱処理を行ない架橋反応を行なわした。乾
燥条件は、処理温度150℃×露出時間120秒×張力
0.1g/d + 200°CX120秒X0.5g/
dとした。
The temperature was maintained at 60°C, and after immersion for 30 minutes, excess crosslinking agent adhering to the surface was washed away. Then,
A crosslinking reaction was carried out by dry heat treatment under tension. The drying conditions are: processing temperature 150°C x exposure time 120 seconds x tension 0.1g/d + 200°C x 120 seconds x 0.5g/d
It was set as d.

その後、かかるコードを前述のRFL接着剤処理に供し
た。
The cord was then subjected to the RFL adhesive treatment described above.

このようにして得られた各RFLデイツプ処理コードを
上記と同様の試験に供した。得られた結果を下記の第7
表に示す。
Each RFL dip-treated cord thus obtained was subjected to the same test as above. The obtained results are summarized in Section 7 below.
Shown in the table.

第7表に示す実施例5〜12はいずれも生コードの繊維
を膨潤させ、特定の架橋剤で架橋反応を行なわしめた例
であるが、これらの場合いずれも優れた耐疲労性改良効
果が認められた。また、これら実施例から、極性溶媒を
用いた方が繊維の膨潤が大きく、耐疲労性改良効果も大
きいことが分かった。
Examples 5 to 12 shown in Table 7 are all examples in which raw cord fibers were swollen and a crosslinking reaction was performed with a specific crosslinking agent, but in all of these cases, excellent fatigue resistance improvement effects were achieved. Admitted. Furthermore, from these Examples, it was found that the use of polar solvents caused greater swelling of the fibers and had a greater effect on improving fatigue resistance.

これに対し比較例3はTi (SO4) zを架橋剤と
して用いた例であるが、この場合著しい強力低下が認め
られた。
On the other hand, Comparative Example 3 is an example in which Ti (SO4) z was used as a crosslinking agent, but in this case, a significant decrease in strength was observed.

13〜20.   ・ 4 ここでは、高強力PVA繊維表面のみに架橋剤を付着さ
せ、架橋を行なった例を示す。
13-20. - 4 Here, we will show an example in which crosslinking was carried out by attaching a crosslinking agent only to the surface of high-strength PVA fibers.

先ず、架橋剤■〜■を夫々の溶剤で希釈し、1゜5%に
なるようにした。次いで、上記高強力PVA繊維コード
を上記溶液でデイツプ処理し、緊張下で熱処理を施すこ
とにより架橋反応を行わしめた。尚、この緊張熱処理条
件は200℃×120秒×・0.5g/dとした。
First, crosslinking agents (1) to (2) were diluted with their respective solvents to a concentration of 1.5%. Next, the high-strength PVA fiber cord was dip-treated with the solution and heat-treated under tension to carry out a crosslinking reaction. The tension heat treatment conditions were 200° C. x 120 seconds x 0.5 g/d.

その後は前述のようにしてRFL接着剤処理を施し、次
いで上記と同様の試験を行った。
Thereafter, the RFL adhesive treatment was performed as described above, and then the same test as above was conducted.

た結果を下記の第8表に示す。The results are shown in Table 8 below.

得られ 第8表に示す実施例13〜20はいずれも特定の架橋剤
でフィラメントの表面のみ架橋反応を行わしめた例であ
るが、これらの場合いずれも耐疲労性の改良効果が認め
られた。
Examples 13 to 20 obtained and shown in Table 8 are all examples in which the crosslinking reaction was carried out only on the surface of the filament using a specific crosslinking agent, and in all of these cases, the effect of improving fatigue resistance was observed. .

これに対し比較例4はTi (S04) zを架橋剤と
して用いた例であるが、この場合はコード強力低下が見
られた。
On the other hand, Comparative Example 4 is an example in which Ti (S04) z was used as a crosslinking agent, but in this case, a decrease in cord strength was observed.

尚、このような疲労試験から、フィラメント表面のみの
架橋よりも前述の内部架橋の方が効果が大きいことも分
かった。
In addition, from such fatigue tests, it was also found that the above-mentioned internal crosslinking was more effective than crosslinking only on the filament surface.

(発明の効果) 以上説明してきた様に本発明のゴム補強用PVA繊維に
おいては、高強力PVA繊維に有機チタンで架橋処理を
施すことにより、例えばこれを空気入りタイヤに適用し
た場合には実地走行後も殆どコード強力の低下を来すこ
とがないという効果が得られる。この結果、タイヤを始
めとするゴム製品の耐久性を大幅に向上させることがで
きる。
(Effects of the Invention) As explained above, in the PVA fiber for rubber reinforcement of the present invention, by subjecting the high-strength PVA fiber to crosslinking treatment with organic titanium, for example, when this is applied to a pneumatic tire, it can be used in practical applications. The effect is that the strength of the cord hardly decreases even after running. As a result, the durability of rubber products including tires can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカーカスプライコードの強力保持率の測定個所
を示すタイヤの部分断面図、 第2図はベルトコードの強力保持率の測定個所を示すタ
イヤの部分断面図である。
FIG. 1 is a partial sectional view of the tire showing the locations where the strength retention rate of the carcass ply cord is measured, and FIG. 2 is a partial sectional view of the tire showing the locations where the strength retention rate of the belt cords is measured.

Claims (1)

【特許請求の範囲】 1、原糸強度として15g/d以上を有するポリビニル
アルコール系合成繊維において、有機チタンで架橋処理
された後接着剤処理されたことを特徴とするゴム補強用
ポリビニルアルコール系合成繊維。 2、架橋処理されたポリビニルアルコール系合成繊維に
おけるチタン含有量が0.01〜0.1重量%である請
求項1記載のゴム補強用ポリビニルアルコール系合成繊
維。
[Claims] 1. A polyvinyl alcohol synthetic fiber for rubber reinforcement, characterized in that the polyvinyl alcohol synthetic fiber has a fiber strength of 15 g/d or more and is crosslinked with organic titanium and then treated with an adhesive. fiber. 2. The polyvinyl alcohol synthetic fiber for rubber reinforcement according to claim 1, wherein the crosslinked polyvinyl alcohol synthetic fiber has a titanium content of 0.01 to 0.1% by weight.
JP1400589A 1989-01-25 1989-01-25 Polyvinyl alcohol synthetic fiber for rubber reinforcement Expired - Lifetime JP2672623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1400589A JP2672623B2 (en) 1989-01-25 1989-01-25 Polyvinyl alcohol synthetic fiber for rubber reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1400589A JP2672623B2 (en) 1989-01-25 1989-01-25 Polyvinyl alcohol synthetic fiber for rubber reinforcement

Publications (2)

Publication Number Publication Date
JPH02210068A true JPH02210068A (en) 1990-08-21
JP2672623B2 JP2672623B2 (en) 1997-11-05

Family

ID=11849100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1400589A Expired - Lifetime JP2672623B2 (en) 1989-01-25 1989-01-25 Polyvinyl alcohol synthetic fiber for rubber reinforcement

Country Status (1)

Country Link
JP (1) JP2672623B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340650A (en) * 1992-02-18 1994-08-23 Kuraray Company Limited Vinyl alcohol units-containing polymer composite fiber having resistance to hot water and wet heat and process for its production
JP2010155204A (en) * 2008-12-26 2010-07-15 Kuraray Co Ltd Method of producing composite hollow fiber membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340650A (en) * 1992-02-18 1994-08-23 Kuraray Company Limited Vinyl alcohol units-containing polymer composite fiber having resistance to hot water and wet heat and process for its production
JP2010155204A (en) * 2008-12-26 2010-07-15 Kuraray Co Ltd Method of producing composite hollow fiber membrane

Also Published As

Publication number Publication date
JP2672623B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
KR101403201B1 (en) Aramid Fiber Cord and Method for Manufacturing The Same
KR0182655B1 (en) Polyvinyl alcohol-based fiber and manufacturing thereof
JP6805164B2 (en) Cord with multifilament para-aramid yarn with multiple non-circular filaments
KR100588385B1 (en) Lyocell tire cord and method for manufacturing the same
JPH02210068A (en) Polyvinyl alcohol based synthetic fiber for rubber reinforcing
KR101273701B1 (en) Aramid Fiber Cord and Method for Manufacturing The Same
KR101273837B1 (en) Aramid Fiber Cord and Method for Manufacturing The Same
JPH02249705A (en) Pneumatic tire
US4934427A (en) Pneumatic tires
KR101312798B1 (en) Tire Cord Fabric and Method for Manufacturing The Same
JPH06207338A (en) Polyvinyl alcohol cord and its production
JP2718977B2 (en) Tire reinforcing cord made of polyvinyl alcohol-based synthetic fiber and pneumatic radial tire reinforced with this cord
JP3157590B2 (en) Polyamide fiber cord for rubber reinforcement
CN114514344B (en) Hybrid tire cord and method for manufacturing same
JP2858429B2 (en) Method for producing polyester filament system provided with pre-adhesive and tire cord produced from this polyester filament system
JP2545915B2 (en) Rubber reinforcing cord and manufacturing method thereof
JPH03157206A (en) Pneumatic radial tire
JP2895489B2 (en) Pneumatic tire
JPS6071240A (en) Manufacture of tire reinforcing cord
KR101267948B1 (en) Cellulose based tire cord
JPH0253928A (en) Treated high-tenacity polyvinyl alcohol fiber cord and pneumatic tire reinforced with the same cord
JPH02216288A (en) Cord for reinforcing power transmission belt and production thereof
JP2000290880A (en) Production of rubber hose reinforcing material
JPH0241431A (en) Pneumatic tire
JPS588120A (en) High-performance polyester fiber