JPH02209895A - Crystalline human granulocytic colony stimulation factor and production thereof - Google Patents

Crystalline human granulocytic colony stimulation factor and production thereof

Info

Publication number
JPH02209895A
JPH02209895A JP1126392A JP12639289A JPH02209895A JP H02209895 A JPH02209895 A JP H02209895A JP 1126392 A JP1126392 A JP 1126392A JP 12639289 A JP12639289 A JP 12639289A JP H02209895 A JPH02209895 A JP H02209895A
Authority
JP
Japan
Prior art keywords
stimulating factor
human
granulocyte colony
human granulocyte
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1126392A
Other languages
Japanese (ja)
Other versions
JP3004655B2 (en
Inventor
Sadao Tanaka
田中 貞夫
Toshio Akimoto
秋元 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Priority to AT89110022T priority Critical patent/ATE111921T1/en
Priority to ES89110022T priority patent/ES2063783T3/en
Priority to DE68918331T priority patent/DE68918331T2/en
Priority to EP89110022A priority patent/EP0344796B1/en
Publication of JPH02209895A publication Critical patent/JPH02209895A/en
Application granted granted Critical
Publication of JP3004655B2 publication Critical patent/JP3004655B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

NEW MATERIAL:A crystalline human granulocytic colony stimulation factor. USE:A remedy and preventive against leukemia and remedy against grave disease. PREPARATION:For example, a human granulocytic colony stimulation factor obtained by culturing a human cell having granulocytic colony stimulation factor-producing ability and isolating and purifying from the cultured cell or the human granulocytic colony stimulation factor prepared in genetic engineering manner from a main cell of procaryote is added to a buffer having 0-100mM buffer salt concentration and pH3.0-7.0 and as necessary precipitating agent such as ammonium sulfate is added thereto to dissolve the above-mentioned factor and the solution is subjected to treatment by vapor phase balance method, dialyzing membrane method, button method or batch method, etc., to produce a crystal, which is then separated by a centrifugal separation, etc., to provide the crystalline human granulocytic colony stimulation factor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は医薬として有用な結晶性ヒト顆粒球コロニー刺
激因子及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a crystalline human granulocyte colony stimulating factor useful as a pharmaceutical and a method for producing the same.

従来の技術 ヒト顆粒球コロニー刺激因子(以下、ヒトG−C8Fと
略称する)はヒト骨髄細胞に作用して顆粒球への分化増
殖を促進する物質であり、白血病の治療及び予防薬及び
抗生物質だけでは治療不可能なような重症な感染症の治
療薬としての用途が期待されている。
Background Art Human granulocyte colony-stimulating factor (hereinafter abbreviated as human G-C8F) is a substance that acts on human bone marrow cells to promote differentiation and proliferation into granulocytes, and is used as a therapeutic and preventive drug for leukemia and as an antibiotic. It is expected to be used as a treatment for serious infections that cannot be treated alone.

ヒトG−C3Fは、ヒドロ腔底癌細胞より樹立されたG
−C5F産生細胞を培養し、その培養上清から単離され
る、いわゆる天然G−C8F (特開昭61−2275
26号公報)、及び遺伝子組換え技術により大腸菌を宿
主として生産される糖鎖を持たないG−C5F (特開
昭82−129298号公報及び特開昭62−1328
99号公報)、動物細胞を宿主として生産される糖蛋白
であるG−C3F (特開昭62−238497号公報
)等が知られている。
Human G-C3F is a G
- So-called natural G-C8F isolated from the culture supernatant after culturing C5F-producing cells (Japanese Patent Application Laid-Open No. 61-2275
No. 26 Publication), and G-C5F without sugar chains produced using E. coli as a host by genetic recombination technology (Japanese Patent Application Laid-open Nos. 82-129298 and 62-1328).
99), G-C3F (Japanese Unexamined Patent Publication No. 62-238497), which is a glycoprotein produced using animal cells as a host.

従来から蛋白質及びポリペプチドの結晶化は数多く試み
られてきており、特に酵素類については実際に純度を上
げるための有効な手段の一つとして結晶化が行われてい
る。酵素について述べるならば、結晶化は個々の酵素に
ついてpH,イオン強度、温度、蛋白質濃度等の条件が
微妙に異っており、必ずしも全ての酵素蛋白が容易に結
晶化できるというものではない。
Many attempts have been made to crystallize proteins and polypeptides, and crystallization of enzymes in particular has been used as one of the effective means for increasing the purity. Regarding enzymes, crystallization requires slightly different conditions for each enzyme, such as pH, ionic strength, temperature, protein concentration, etc., and not all enzyme proteins can be easily crystallized.

また、生理活性を持つ蛋白質又はポリペプチドのうち、
ある種のものはpH、イオン強度、温度等に対して不安
定であり、構造の変化及びそれに伴う生理活性の低下を
生じる場合がある。従って、この種の蛋白質及びポリペ
プチドについては、それらの構造の変化を起すことの無
い条件で結晶化を行うことが要求される。
In addition, among physiologically active proteins or polypeptides,
Some types are unstable with respect to pH, ionic strength, temperature, etc., and may cause changes in structure and associated decrease in physiological activity. Therefore, it is required that these types of proteins and polypeptides be crystallized under conditions that do not cause changes in their structure.

蛋白質の結晶化の方法には現在の所試行錯誤的要素が多
いというのが妥当であり、従って結晶化実験は多くの試
行が必要な場合も少くない。
It is reasonable to say that protein crystallization methods currently involve many elements of trial and error, and therefore crystallization experiments often require many trials.

蛋白質の水溶液から蛋白質の結晶化を行うためには、蛋
白質と水との相互作用よりも適度に蛋白質同志の相互作
用をゆっくり強めて行くことが必要である。蛋白質の様
に大きく、複雑な表面物性をもつ分子では、蛋白質同志
の相互作用は、自由エネルギー最小化の法則は当然成り
立つが、通常の有機化合物に比べてはるかに複雑である
。蛋白質同志の相互作用に及ぼす力には、電荷、立体効
果、疎水性効果、親水性効果、Van−der−Waa
lS力が考えられるが、蛋白質の構造水を含めて、蛋白
質を含む系が最も安定になる様に蛋白質同志は相互作用
をもつ。従って蛋白質はその濃度、温度、pH、イオン
強度等によって蛋白質同志の相互作用は異なり、ある場
合は結晶化し、ある場合は単なる凝集物となる。また結
晶化する場合でも、蛋白質濃度、温度、pII、イオン
強度等の因子によって、多形となることが多いことが知
られている。
In order to crystallize a protein from an aqueous protein solution, it is necessary to strengthen the interaction between proteins more slowly than the interaction between proteins and water. For molecules that are large and have complex surface properties like proteins, the law of free energy minimization naturally holds true for interactions between proteins, but they are much more complex than for ordinary organic compounds. Forces that affect interactions between proteins include electric charge, steric effects, hydrophobic effects, hydrophilic effects, Van-der-Waa
The IS force may be considered, but proteins interact with each other in such a way that the system containing the protein, including the structural water of the protein, is the most stable. Therefore, the interactions between proteins vary depending on their concentration, temperature, pH, ionic strength, etc., and in some cases they crystallize, while in other cases they form mere aggregates. It is also known that even when crystallized, polymorphism often occurs depending on factors such as protein concentration, temperature, pII, and ionic strength.

蛋白質の純度が低い場合には結晶化が困難な事が多いの
も事実である。
It is also true that crystallization is often difficult when the purity of a protein is low.

発明が解決しようとする課題 蛋白質及びポリペプチドの結晶化は前述のように多く試
みられ、又実際に多(の蛋白質について結晶化に成功し
ている。
Problems to be Solved by the Invention As mentioned above, many attempts have been made to crystallize proteins and polypeptides, and many proteins have actually been successfully crystallized.

しかしながら、結晶化に成功している蛋白質は自然に存
在するすべての蛋白質からみればほんの作かであり、し
かも結晶化に成功しているものは比較的安定性に優れて
いる細胞外蛋白質、植物由来の蛋白質が大多数を占めて
いる。
However, only a small number of proteins have been successfully crystallized compared to all the proteins that exist in nature, and those that have been successfully crystallized are extracellular proteins with relatively excellent stability, plant proteins, etc. The majority of proteins are derived from

本発明は結晶化が困難であると考えられていたヒトG−
CSFを結晶化することにより、(1)  純度を高め
て抗原性を低下させ、(2)安定性を向上させて、保存
、製剤化での取扱いを容易にし、 (3)  ヒトG−C8F活性の向上を目的とする。
The present invention is based on human G-
By crystallizing CSF, we can (1) increase purity and reduce antigenicity, (2) improve stability and facilitate handling during storage and formulation, and (3) increase human G-C8F activity. The aim is to improve

課題を解決するための手段 本発明者等は従来の技術の項で言及した各特許出願公開
明細書に開示された発明により生産。
Means for Solving the Problems The present inventors produced the inventions disclosed in the patent application publications mentioned in the prior art section.

精製されたヒトG−C3Fを中性ないし弱酸性の緩衝液
に溶解し、沈澱剤の存在下で沈澱させ、遠心分離して沈
澱物を集めることにより精製を行う。
Purification is performed by dissolving purified human G-C3F in a neutral to weakly acidic buffer solution, precipitating it in the presence of a precipitant, and collecting the precipitate by centrifugation.

得られる結晶ヒトG−C8Fはほとんど不純物を含まな
いばかりでなく再び水解したとき二命体。
The resulting crystalline human G-C8F not only contains almost no impurities, but also has two forms when hydrolyzed again.

三量体等の多量体も含まない状態に精製されていること
が好ましい。
It is preferable that it is purified to a state that does not contain multimers such as trimers.

本発明によって結晶化できるヒトG−C5Fは糖蛋白で
ある天然ヒトG−C3Fまたは遺伝子組換え技術により
動物細胞を宿主として利用して得たヒトG−C5Fもし
くはその誘導体、及び糖鎖を含まない蛋白であるE、 
eollを宿主とし遺伝子組換え技術によって生産され
るヒトG−C8Fもしくはその誘導体を含む。一般に、
糖蛋白は糖鎖を含まない蛋白に比較して結晶化が困難で
あるが、本発明によれば糖蛋白であるヒトG−C3Fの
結晶化に成功した。
Human G-C5F that can be crystallized by the present invention does not contain natural human G-C3F, which is a glycoprotein, or human G-C5F obtained by genetic recombination technology using animal cells as a host, or derivatives thereof, and sugar chains. E, which is a protein;
It contains human G-C8F or its derivatives produced by genetic recombination technology using eoll as a host. in general,
Glycoproteins are more difficult to crystallize than proteins that do not contain sugar chains, but according to the present invention, the glycoprotein human G-C3F was successfully crystallized.

本発明におけるヒトG−C3Fの結晶化は気相平衡法で
あるハンギングドロップ(Hanging drop)
法又はデプレッションスライド(Depression
slide)法;ボタン法;透析膜法及びバッチ法等の
沈殿剤法またはボタン法;透析膜法等の透析法によって
行うことができる。
The crystallization of human G-C3F in the present invention is carried out by hanging drop, which is a gas phase equilibrium method.
Law or depression slide
It can be carried out by a precipitant method such as a slide method; a button method; a dialysis membrane method and a batch method; or a dialysis method such as a button method; a dialysis membrane method.

以下各方法について説明する。Each method will be explained below.

気相平衡法 ハンギングドロップ法及びデプレ・ノションスライド法
が代表的な方法であり、いずれも結晶化させるためのヒ
トG−C3Fを弱酸性ないし中性、好ましくはI)11
約3.0〜7.0の緩衝液、例えば酢酸緩衝液、リン酸
緩衝液、クエン酸緩衝液、クエン酸−リン酸緩衝液等(
緩衝液濃度5〜100mM)に溶解する。ヒトG−C3
Fの濃度は1〜100mg/ m1程度であることが好
ましい。
Typical methods include the vapor phase equilibrium method, the hanging drop method, and the Depres-Notion slide method, both of which require human G-C3F to be crystallized in a weakly acidic to neutral, preferably I)11
Buffers of about 3.0 to 7.0, such as acetate buffers, phosphate buffers, citrate buffers, citric acid-phosphate buffers, etc.
(buffer concentration 5-100mM). human G-C3
The concentration of F is preferably about 1 to 100 mg/ml.

更に沈澱剤、例えば(1’JH4)2 S O4,N 
a2s O4。
Furthermore, precipitants, such as (1'JH4)2SO4,N
a2s O4.

NaC,Q、KCD、NH4Cl1.NaH2PO4゜
KHP O、NHHP O,a 、  L t C1等
の中性又は弱酸性の塩、またはポリエチレングリコール
のような有機化合物沈澱剤を前述のヒトG−C8F緩衝
液に添加する。沈澱剤の使用濃度はその種類、使用緩衝
液によって異なるが、例えば(NH)  So  につ
いては約1〜20%、好ましくけ約2〜15%飽和濃度
である。その他の沈澱剤では約0.1〜1.5M、好ま
しくは約0゜2〜1.2Mである。
NaC, Q, KCD, NH4Cl1. A neutral or weakly acidic salt such as NaH2PO4°KHPO, NHHPO,a, LtC1, or an organic compound precipitant such as polyethylene glycol is added to the human G-C8F buffer described above. The concentration of the precipitant used varies depending on the type and the buffer used, but for example, for (NH) So it is about 1 to 20%, preferably about 2 to 15% saturation concentration. For other precipitants, the amount is about 0.1-1.5M, preferably about 0.2-1.2M.

更に必要に応じて、安定化剤(例えば、NaC1゜KC
,12,C5CII、MgCf1  、Ca(、Q2の
ような中性塩、及びグリセリン、ジオキサン、アセトン
のような有機化合物)、防腐剤(例えばN a N3)
 、重金属除去剤(例えばEDTA)、ジスルフィド化
防止または酸化防止剤(例えば、メルカプトエタノール
、システィン、グルタチオン、ジチオスライドール)、
重合防止剤、界面活性剤(例えば、オクチル−β−グル
コシド、ヘキサントリオール、ツウィーン、オクタエチ
レングリコール−n−ドデシルエーテル)等を加えるこ
とができる。
Furthermore, if necessary, a stabilizer (for example, NaCl 1°KC
, 12, C5CII, MgCf1, Ca (neutral salts such as Q2, and organic compounds such as glycerin, dioxane, acetone), preservatives (e.g. Na N3)
, heavy metal removal agents (e.g. EDTA), disulfidation inhibitors or antioxidants (e.g. mercaptoethanol, cysteine, glutathione, dithiothreidol),
Polymerization inhibitors, surfactants (eg, octyl-β-glucoside, hexanetriol, Tween, octaethylene glycol-n-dodecyl ether), etc. can be added.

このようにして調製したヒトG−C8Fの溶液をハンギ
ングドロップ法ではカバーグラスの下面に液滴として付
着させ、予じめ緩衝液(普通ヒトG−C8F溶液調製の
ために使用したものと同じ緩衝液)を一定量入れた液溜
め容器(リザーバー)の上部開口部分を液滴が付着した
カバーグラスで覆い、シリコングリース等を用いて容器
を密封状態にする。
In the hanging drop method, the solution of human G-C8F prepared in this way is deposited as a droplet on the bottom surface of a cover glass, and is prepared in advance with a buffer solution (usually the same buffer as that used for preparing the human G-C8F solution). The upper opening of a reservoir containing a certain amount of liquid is covered with a cover glass covered with droplets, and the container is sealed using silicone grease or the like.

デプレッションスライド法では液溜め容器中に予じめ一
定nの緩衝液を入れ、ヒトG−C8F溶液をデプレッシ
ョンスライドグラス上に買き容器をカバーグラスにシリ
コングリースを用いて密封する。密封された容器を5〜
30℃で静置し、好ましくは除震装置のついた恒温槽内
で約1〜210間静置することにより結晶を得ることが
できる。
In the depression slide method, a buffer solution of a constant n is placed in a reservoir container in advance, a human G-C8F solution is placed on a depression slide glass, and the container is sealed with a cover glass using silicone grease. 5 to 5 sealed containers
Crystals can be obtained by standing at 30° C., preferably in a constant temperature bath equipped with an anti-vibration device, for about 1 to 210 minutes.

透析膜を用いた塩析法(沈殿剤法) 飽和またはほぼ飽和状態のヒトG−C8F緩衝溶液を透
析チューブに封入し、これを同じ緩衝液にlO〜14%
飽和濃度の沈澱側溶液(例えば、10〜14%飽和(N
H)  80  、 0.2〜1.5MのN a Cf
) 、  0.2〜1.5 MのNaH2PO4等)を
添加した溶液又はポリエチレングリコール水溶液を外液
として用い結晶が成長する期間(普通約1週間)塩析を
行い、その後透析チューブの内容物を遠心分離して生じ
た結晶を単離することができる。
Salting out method using a dialysis membrane (precipitant method) A saturated or nearly saturated human G-C8F buffer solution is sealed in a dialysis tube, and this is added to the same buffer at a concentration of 10 to 14%
Precipitation side solution with saturated concentration (e.g. 10-14% saturation (N
H) 80, 0.2-1.5M NaCf
), 0.2 to 1.5 M NaH2PO4, etc.) or a polyethylene glycol aqueous solution as the external solution, salting out is carried out during the crystal growth period (usually about one week), and then the contents of the dialysis tube are drained. The resulting crystals can be isolated by centrifugation.

ボタン法及び透析膜を用いた透析性 飽和またはほぼ飽和状態のヒトG−C8F緩衝溶液を結
晶化用ボタンに入れ、あらかじめEDTA処理した透析
膜で封じ、低濃度の同じ緩衝液を外液として用いて1日
〜1週間透析し、その後ボタン内の内容物を遠心分離し
て生じた結晶を単離することができる。
Dialysis using the button method and dialysis membrane A saturated or nearly saturated human G-C8F buffer solution is placed in a crystallization button, sealed with a dialysis membrane treated with EDTA in advance, and the same buffer at a lower concentration is used as an external solution. After dialysis for one day to one week, the contents of the button can be centrifuged to isolate the resulting crystals.

バッチ法 飽和又は飽和に近い濃度のヒトG−C3F緩衝溶液を適
当な各種の容器に入れ、普通同一の緩衝液に沈澱剤を溶
解した沈澱側溶液を容器内に注ぎ必要に応じて撹拌を行
った後、放置する。約1〜2週間後に無色板状の結晶を
生じる。
Batch method A human G-C3F buffer solution with a concentration of saturation or near saturation is placed in various appropriate containers, and a precipitate solution, which is a precipitant dissolved in the same buffer solution, is poured into the container and stirred as necessary. After that, leave it alone. Colorless plate-like crystals are formed after about 1 to 2 weeks.

結晶を含む緩衝液を遠心分離することにより結晶を単離
することができる。
Crystals can be isolated by centrifuging the buffer containing the crystals.

結晶化の確認 本発明で得られたヒトG−C8Fの結晶はX線回折分析
により下記の特性を持つ3種類の結晶の存在が確認され
た。
Confirmation of crystallization The existence of three types of crystals having the following characteristics was confirmed by X-ray diffraction analysis of the human G-C8F crystals obtained in the present invention.

■、結 晶 系:斜方晶(orthorhomblc)
空間群: P2212、 軸長(人):a≠29    b弁94C弁111 溶媒が占める空間:vs弁弁子7%) ■、結 晶 系;斜方晶 空間群:P2.2□2、 軸長(人)  : a:28    b弁100C″:
110 溶媒が占める空間:vSと37(%) ■、結 晶 系:斜方晶 空間  群:P22.2□ 軸長(人)  : a”=29    b−=107C
弁114 溶媒が占める空間:vs井46(%) I、IIおよび■の中間温り結晶がでることがある。I
、 IIの(OKJ7)のプレセツション写真(μm1
0@)を第4図に示す。
■Crystal system: orthorhombic
Space group: P2212, Axis length (person): a≠29 B valve 94 C valve 111 Space occupied by solvent: vs valve valve 7%) ■, Crystal system; Orthorhombic space group: P2.2□2, Axis Length (person): A: 28 B valve 100C'':
110 Space occupied by solvent: vS and 37 (%) ■, Crystal system: Orthorhombic space Group: P22.2□ Axis length (person): a”=29 b-=107C
Valve 114 Space occupied by solvent: vs Well 46 (%) Intermediate temperature crystals of I, II and ■ may appear. I
, II (OKJ7) preset photo (μm1
0@) is shown in Figure 4.

結晶化ヒ)G−C3Fの活性の測定 結晶化されたヒトG−C8Fの活性を測定するためイン
ビトロによるコロニー形成促進活性(CS A)を次の
方法により測定した。
Measurement of activity of crystallized human G-C3F In order to measure the activity of crystallized human G-C8F, in vitro colony formation promoting activity (CSA) was measured by the following method.

(測定方法) Bradley T、 R,、Metoalf D、等
の方法(Aust。
(Measurement method) The method of Bradley T, R, Metoalf D, etc. (Aust.

J、 Exp、 Blol、 Mcd、 Sc1.44
巻287〜300頁。
J, Exp, Blol, Mcd, Sc1.44
Volume 287-300.

1966年)に準じて単層軟寒天培養法により行なった
。すなわちウマ血清(ilyclone社製)1ml、
被検検体0.25m1 *C57B Lマウスの骨髄細
胞浮遊液0.25m1 (1,5X 106細胞/ml
)、寒天を0.75%含む改変McCoy’s 5A培
養液1mlを混合し直径35mmの組織培養用プラステ
ィック拳デイツシュに入れて固まらせた後、37℃、5
℃、5%炭酸ガス/95%空気、100%湿度の条件下
にて5日間培養し、形成されたコロニー数(50個以上
の細胞からなる集落を1コロニーとする)を数え、1個
のコロニーを形成する活性を1単位(Unit)として
C8Aを求めた。
(1966) using the monolayer soft agar culture method. Namely, 1 ml of horse serum (manufactured by Ilyclone),
Test sample 0.25ml *C57B L mouse bone marrow cell suspension 0.25ml (1.5X 106 cells/ml
), 1 ml of modified McCoy's 5A culture solution containing 0.75% agar was mixed, placed in a 35 mm diameter plastic tissue culture dish, allowed to solidify, and then incubated at 37°C for 50 minutes.
℃, 5% carbon dioxide/95% air, and 100% humidity for 5 days, count the number of formed colonies (a colony consisting of 50 or more cells is considered as one colony), and C8A was determined by setting the colony forming activity as 1 unit.

*被検検体は、結晶化G−C8Fの14mg/ml(H
PLCで定量)水溶液(100mM acetateb
uffer pH=4.2)10μffを0.5%m5
A(7ウス血清アルブミン、 cappe1社製)含有
PBS(phosphate buffer 5ali
ne>にて10 Gtlg / ml(volua+e
 −1,4m1)に調製(これを原液とする)する。ミ
リポアフィルタ−で清適後、これを0.5%m5APB
sにて10.100 、500 、2,500 。
*The test specimen was 14 mg/ml of crystallized G-C8F (H
quantified by PLC) aqueous solution (100mM acetateb
buffer pH=4.2) 10μff 0.5% m5
PBS (phosphate buffer 5ali) containing A (7 mouse serum albumin, manufactured by Cappe1)
10 Gtlg / ml (volua+e
-1.4ml) (this will be used as the stock solution). After clearing with a Millipore filter, add 0.5% m5APB.
10.100, 500, 2,500 at s.

12.500.62,500倍にしたものを用いた。対
照(ブランク)としては0.5%m5APBS、比較対
照としては、製剤化rG−C8F (非結晶、精製・リ
コンビナント ヒトG−C8F)1μg/n+1を用い
た。
12.500.62,500 times was used. 0.5% m5APBS was used as a control (blank), and 1 μg/n+1 of formulated rG-C8F (non-crystalline, purified/recombinant human G-C8F) was used as a comparison control.

結果は次の通りであった(第2図参照)。The results were as follows (see Figure 2).

形成コロニー数 稀釈倍率 試験1 試験2 平均値 Xi    51   55   5410   4B
    47   4B、5100  44    X
    44500  30   59   44.5
2.500  18   27   22.512.5
00   8   7   13.582.500  
 5   8   4比較対照  29   44  
 38.5対照(ブランク)   5      7 
     6実験データから明らかなように、本発明の
結晶化ヒ)G−C8Fのコロニー形成促進活性は、非結
晶、精製リコンビナント・ヒトG−C8Fに比較しても
同等又はそれ以上の活性が確認された。
Number of colonies formed Dilution magnification Test 1 Test 2 Average value Xi 51 55 5410 4B
47 4B, 5100 44 X
44500 30 59 44.5
2.500 18 27 22.512.5
00 8 7 13.582.500
5 8 4 Comparison 29 44
38.5 Control (blank) 5 7
6. As is clear from the experimental data, the colony formation promoting activity of the crystallized human G-C8F of the present invention is equivalent to or higher than that of amorphous, purified recombinant human G-C8F. Ta.

以下、実施例により本発明を更に詳細に説明する。大部
分のアミノ酸配列が共通する他のヒトG−C8Fも同様
の方法で結晶化され得る。
Hereinafter, the present invention will be explained in more detail with reference to Examples. Other human G-C8Fs that share most of the amino acid sequences can be crystallized in a similar manner.

実施例1: デプレッションスライド法(気相平衡法)
組換え遺伝子技術により動物細胞を宿主として生産され
たヒトG−C8F (糖蛋白)を10mMクエン酸塩バ
ッファー(pH4,6)に溶解させた溶液(濃度: 1
5.5a+g/ cnl) 10μ12とIB%飽和硫
酸アンモニウム水溶液lOμgとをデプレッションスラ
イドグラス(depression 511de gl
ass)上で混合した。
Example 1: Depression slide method (vapor phase equilibrium method)
A solution (concentration: 1) in which human G-C8F (glycoprotein) produced by recombinant gene technology using animal cells as a host is dissolved in 10 mM citrate buffer (pH 4, 6).
5.5a+g/cnl) and 10μg of IB% saturated ammonium sulfate aqueous solution on a depression slide glass (depression 511de GL).
ass).

液溜め容器(reservoi r)中に1100Iク
エン酸ツク・7フアー(pH4,8)に溶解した12%
飽和硫酸アンモニウム溶液1mlを入れシリコングリー
スを用いカバーグラスで容器を密封し、室温(20〜2
4℃)で約3週間静置してヒトG−C3F単結晶(無色
透明板代品)を得た(第1図)。
12% dissolved in 1100I citric acid 7F (pH 4,8) in a reservoir.
Pour 1 ml of saturated ammonium sulfate solution into the container, seal it with a cover glass using silicone grease, and let it cool at room temperature (20~20°C).
4° C.) for about 3 weeks to obtain a human G-C3F single crystal (colorless transparent plate substitute) (Fig. 1).

結晶の特性を同定するため、得られた単結晶を石英キャ
ピラリーに母液とともに封入しX線回折分析を行った。
In order to identify the characteristics of the crystal, the obtained single crystal was sealed in a quartz capillary together with the mother liquor and subjected to X-ray diffraction analysis.

この分析の結果下記の特性を持つ3種類の結晶が確認さ
れた。
As a result of this analysis, three types of crystals with the following characteristics were confirmed.

■、結 晶 系:斜方晶 空間群:P22□21 単位結晶格子のディメンション(人)=a牛29 b井94 C斗10 単位胞当りの分子数=8 単位胞当りの容積: 303,900  (人3)溶媒
が占める空間:vS井37(%) ■、結 晶 系:斜方晶 空間群:P2,2□2、 単位結晶格子のディメンション: a弁28(人) b弁100 c:110 単位胞当りの分子数:8 単位胞当りの容積: 303,600  (人3)溶媒
が占める空間:VSS白子7%) ■、結 晶 系;斜方晶 空間群:P22□2、 単位結晶格子のディメンション: a弁29(人) b :107 c:114 単位胞当りの分子数=8 単位胞当りの容積: 353.742  (人3)溶媒
が占める空間:Vs’=46(%)又得られた結晶は2
5%飽和硫酸アンモニウムを含むバッフγ−で2回洗浄
した後GPCカラム(T S K  G3o00)を用
いたHPLC(溶媒:101リン酸バツフア −(pH
6,8)+100mM N a Cρ ;流速1 ml
 / 5in)で19.75分であった。結果を第3a
図(対照)及び第3b図に示すが、本結晶はG−C8F
であることが確認された。
■, Crystal system: Orthorhombic space group: P22□21 Dimensions of unit crystal lattice (people) = a cow 29 b well 94 c to 10 Number of molecules per unit cell = 8 Volume per unit cell: 303,900 (Person 3) Space occupied by solvent: vS well 37 (%) ■, Crystal system: Orthorhombic space group: P2, 2□2, Dimensions of unit crystal lattice: A valve 28 (person) B valve 100 c: 110 Number of molecules per unit cell: 8 Volume per unit cell: 303,600 (3 people) Space occupied by solvent: VSS Milt 7%) ■, Crystal system; Orthorhombic space group: P22□2, Unit crystal Dimensions of lattice: a valve 29 (person) b: 107 c: 114 Number of molecules per unit cell = 8 Volume per unit cell: 353.742 (person 3) Space occupied by solvent: Vs' = 46 (%) or The obtained crystals are 2
After washing twice with buff γ-containing 5% saturated ammonium sulfate, HPLC using a GPC column (TSK G3o00) (solvent: 101 phosphate buffer (pH
6,8) +100mM NaCρ; flow rate 1ml
/5in) in 19.75 minutes. Results in Part 3a
As shown in Figure (control) and Figure 3b, this crystal is G-C8F
It was confirmed that

実施例2:ハンギングドロップ法(気相平衡法)実施例
1で用いた糖蛋白であるヒトG−C8Fを沈澱剤及び/
または安定剤を予じめ加えた100mM酢酸バッファー
(pH4,2)に溶解させた溶液(18,3mg/ml
) 2ttQと濃度を0.1M毎に変えた0、8〜1.
3 MのNaH2PO4水溶液2μρとをシリル化処理
したカバーグラス上で混合し、液溜め容器中に0.7〜
1.2 Mの範囲で0.1M毎に濃度を変化させたNa
H2PO4水溶液8n+Iを入れカバーグラスで覆いシ
リコングリースを用いて密封し、静置した。各組合せの
試料のうち、早いものは約24時間後に無色板状晶とし
て結晶が析出した。
Example 2: Hanging drop method (vapor phase equilibrium method) Human G-C8F, the glycoprotein used in Example 1, was mixed with a precipitant and/or
Alternatively, a solution (18.3 mg/ml) dissolved in 100 mM acetate buffer (pH 4.2) to which a stabilizer was added in advance
) 2ttQ and 0, 8 to 1 with varying concentrations in 0.1M increments.
3 M NaH2PO4 aqueous solution 2μρ was mixed on a silylated cover glass, and 0.7~
Na concentration was changed in steps of 0.1M over a range of 1.2M.
8n+I of H2PO4 aqueous solution was added, covered with a cover glass, sealed with silicone grease, and left to stand. Among the samples of each combination, the early ones precipitated crystals as colorless plate-like crystals after about 24 hours.

約2週間後に析出した結晶をHPLCに付しG−C8F
であることを確認した。
After about 2 weeks, the precipitated crystals were subjected to HPLC and G-C8F
It was confirmed that

各試験サンプルの条件及び結晶化の状況を次の表に要約
する。
The conditions and crystallization status of each test sample are summarized in the following table.

実施例3:透析膜法 実施例1で使用したヒトG−C8Fを100a+M酢酸
バッファ −(pH4,2)に溶解させた液(16,3
a+g/ml) 1050μQを透析チューブ(ボアー
サイズ:MW7.000不透過のもの、EDTA処理済
)に封入した。このチューブをIM  KC,母液(1
0mM酢酸バッファ −(p114.2))200ml
中に浸漬し、液をゆっくり撹拌して塩析を約1週間行っ
た。その後内容物をVバイアルに移し遠心分離(5℃、
 15.00Orpm 、 10分)して結晶(無色板
状晶)を得た。
Example 3: Dialysis membrane method A solution (16,3
a+g/ml) 1050 μQ was sealed in a dialysis tube (bore size: MW 7.000, impermeable, EDTA treated). Transfer this tube to IM KC, mother liquor (1
0mM acetate buffer - (p114.2)) 200ml
The solution was slowly stirred and salted out for about one week. Afterwards, the contents were transferred to a V-vial and centrifuged (5°C,
15.00 rpm, 10 minutes) to obtain crystals (colorless plate-like crystals).

実施例4:バ ッ チ法 (1)実施例1で使用したヒトG−C3Fを100mM
酢酸バッファー(pH4,2)に溶解させた液(15,
58mg/ml)  200μ12を容器中に入れ、こ
れに1.2M  NaH2PO4を含有する100mM
酢酸バッファーを入れ、室温で2週間放置した。
Example 4: Batch method (1) Human G-C3F used in Example 1 was added to 100 mM
A solution (15,
58mg/ml) was placed in a container and added with 100mM containing 1.2M NaH2PO4.
Acetate buffer was added and left at room temperature for 2 weeks.

析出した結晶を遠心分離(5℃、 15.000rpm
 。
The precipitated crystals were centrifuged (5°C, 15,000 rpm)
.

10分)により単離した。結晶は無色板状晶であった。10 minutes). The crystals were colorless plate-like crystals.

(2)上記(1)と同様に、ヒトG −CS F /l
oOmM100mM酢酸バッファ4.2)溶液(13,
08mg/ ml ) 300μQと16%飽和濃度の
(NH)  SO2を含有する100mM酢酸バッファ
ー300μgとを用い、3週間の放置後、遠心分離によ
り無色板状晶を得た。
(2) Similarly to (1) above, human G-CSF/l
oOmM 100mM acetate buffer 4.2) solution (13,
After standing for 3 weeks, colorless plate crystals were obtained by centrifugation using 300 μQ (08 mg/ml) and 300 μg of 100 mM acetate buffer containing (NH) SO2 at a saturation concentration of 16%.

実施例5:透析膜法 実施例1で使用したヒトG−C3Fをあらかじめ15%
飽和硫酸アンモニウムで塩析し、これをpH4,6、5
mMクエン酸緩衝液に溶解し、その飽和溶液的200μ
gを透析チューブに入れ、水80m1で透析する。写真
(第4図)に示すような非常に長い針状晶を得た。
Example 5: Dialysis membrane method 15% of human G-C3F used in Example 1 was added in advance.
Salting out with saturated ammonium sulfate, pH 4, 6, 5
Dissolve in mM citrate buffer and make 200μ of its saturated solution.
g into a dialysis tube and dialyze against 80 ml of water. Very long needle-like crystals as shown in the photograph (Fig. 4) were obtained.

実施例′6:ハンギングドロツプ法(気相平衡法)実施
例1で使用したヒトG−C3Fをあらかじめ15%飽和
硫酸アンモニウムで塩析し、これをpH4,6、5mM
クエン酸緩衝液(含む3mM  オクチル−β−グルコ
シド)に溶解し、その5mlと同m(5ml)の15〜
22%飽和硫酸アンモニウムまたは5mMクエン酸ナト
リウムを混和し、11〜13%飽和硫酸アンモニウムま
たは5+nMクエン酸ナトリウム8mlを外液として結
晶化した。数日〜2週間で板状の結晶を得た。
Example '6: Hanging drop method (vapor phase equilibrium method) The human G-C3F used in Example 1 was salted out in advance with 15% saturated ammonium sulfate, and this was salted out at pH 4, 6, and 5mM.
Dissolve in citrate buffer (containing 3mM octyl-β-glucoside) and add 5ml of 15~
22% saturated ammonium sulfate or 5mM sodium citrate was mixed, and 8 ml of 11-13% saturated ammonium sulfate or 5+nM sodium citrate was used as an external solution to crystallize. Plate-shaped crystals were obtained in several days to two weeks.

実施例7:透析膜法 実施例1で使用したヒトG−C8Fを10a+M酢酸バ
ッファ −(pH4,2)に溶解させた液(11,45
mg/ml)610μgを透析チューブに封入した。こ
のチューブをIM  KCΩ液(10mM酢酸バッファ
 −(1)H4,2))200 ml中に浸漬し、翌日
から1日につき0.1Mの割合でKCΩ濃度を上昇させ
、最終的に1.4MKCΩ濃度とした。その後、内容物
をVバイアルに移し遠心分離(10℃、 15.000
rpI5. 5分)して母液を除き、結晶(無色板状晶
)を得た。得られた結晶を10mM酢酸バッファー(p
114.2) 400μgに溶解し、遠心分離(10°
C,12,000rpm 、  5分)した上澄液42
0uQのG−C8F濃度は15.05mg/mlであっ
た。濃度は、HPLC法で測定した(収率90.7%)
Example 7: Dialysis membrane method A solution (11,45
mg/ml) was sealed in a dialysis tube. This tube was immersed in 200 ml of IM KCΩ solution (10mM acetate buffer - (1)H4,2)), and the KCΩ concentration was increased at a rate of 0.1M per day from the next day until the final concentration was 1.4MKCΩ. And so. Thereafter, the contents were transferred to a V-vial and centrifuged (10°C, 15,000
rpI5. 5 minutes) and then the mother liquor was removed to obtain crystals (colorless plate-like crystals). The obtained crystals were added to 10mM acetate buffer (p
114.2) Dissolve in 400μg and centrifuge (10°
C, 12,000 rpm, 5 minutes) supernatant liquid 42
The G-C8F concentration of 0uQ was 15.05 mg/ml. Concentration was measured by HPLC method (yield 90.7%)
.

実施例8:透析膜法 実施例1で使用したヒトG−C8Fを10mM酢酸バッ
ファ −(pH4,2)に溶解させた液(32,09m
g/ mf )680μQを透析チューブに封入した。
Example 8: Dialysis membrane method A solution of human G-C8F used in Example 1 dissolved in 10mM acetate buffer (pH 4,2)
g/mf) 680 μQ was sealed in a dialysis tube.

このチューブを5%飽和硫安液(10mM酢酸バッファ
 −pH4,2)200μgに浸漬し、翌日から1日に
つき1%飽和度の割合で硫安濃度を上昇させ、最終的に
13%飽和硫安濃度にした。その後内容物をVバイアル
に移し遠心分離(10℃、 15.000rpm 、 
 5分)して母液を除き、結晶(無色板状晶)を得た。
This tube was immersed in 200 μg of 5% saturated ammonium sulfate solution (10mM acetate buffer - pH 4,2), and from the next day, the ammonium sulfate concentration was increased at a rate of 1% saturation per day, until the final concentration was 13% saturated ammonium sulfate. . After that, the contents were transferred to a V vial and centrifuged (10°C, 15,000 rpm,
5 minutes) and then the mother liquor was removed to obtain crystals (colorless plate-like crystals).

得られた結晶を10mM酢酸バッファ −(pH4,2
)1200μ12に溶解し、遠心分離(10’c、 1
2.00Orpm 、  5分)した上澄液1290μ
ΩのG−C3F濃度は18.32mg/m!であった。
The obtained crystals were added to 10mM acetate buffer (pH 4,2
) Dissolved in 1200 μl and centrifuged (10'c, 1
2.00Orpm, 5 minutes) supernatant liquid 1290μ
The G-C3F concentration in Ω is 18.32mg/m! Met.

濃度はHPLC法で測定した(収率96.4%)。The concentration was determined by HPLC method (yield 96.4%).

実施例9:バッチ法 実施例1で使用したヒトG−C8Fを10mM酢酸バッ
ファ −(pH4,2)に溶解させた液(19,84m
g/ ml )200 μgに1 、5M  N a 
H2P O4液250μoを加え、1週間放置、内容物
をVバイアルに移し、遠心分離(10℃、 15.oo
Orpm 、  5分)して母液を除き、結晶(無色板
状晶)を得た。得られた結晶を10mM酢酸バッファー
(p旧、2) 400μgに溶解し、遠心分離(10°
C,12,00Orpm 、  5分)した上澄液45
0.czRのG−C8F濃度は12.51mg/mlで
あった。濃度はHPLC法で測定した(収率78.8%
)。
Example 9: Batch method Human G-C8F used in Example 1 was dissolved in 10mM acetate buffer (pH 4,2) (19.84m
g/ml) 1 in 200 μg, 5M Na
Add 250 μo of H2P O4 solution, leave for 1 week, transfer the contents to a V vial, and centrifuge (10℃, 15.0 μo
Orpm for 5 minutes) and the mother liquor was removed to obtain crystals (colorless plate crystals). The obtained crystals were dissolved in 400 μg of 10 mM acetate buffer (pold, 2) and centrifuged (10°
C, 12,00 Orpm, 5 minutes) supernatant liquid 45
0. The G-C8F concentration of czR was 12.51 mg/ml. The concentration was determined by HPLC method (yield 78.8%).
).

実施例1O:バッチ法 実施例1で使用したヒトG−C5Fを10mM酢酸バッ
ファ −(pH4,2)に溶解させた液(28,91g
g/ml)1200μgに水冷下34%飽和硫安液80
0μgを加え、14℃に放置、その後1日につき1℃の
割合で温度を上昇させ24℃まで上げた。内容物をVバ
イアルに移し、遠心分離(10℃、 15.000rp
m 、  5分)して母液を除き、結晶(無色板状晶)
を得た。得られた結晶を10mM酢酸バッファー(pl
!4.2)に溶解し、遠心分離(10℃、 12.00
Orpm 、  5分)した上澄液1380u6のG−
C8F濃度は24.05mg/mlであった。
Example 1O: Batch method A solution (28.91 g) of human G-C5F used in Example 1 dissolved in 10 mM acetate buffer (pH 4.2)
g/ml) 34% saturated ammonium sulfate solution 80% under water cooling to 1200μg
0 μg was added and left at 14°C, and then the temperature was raised at a rate of 1°C per day to 24°C. Transfer the contents to a V-vial and centrifuge (10°C, 15,000 rpm).
m, 5 minutes), remove the mother liquor, and collect the crystals (colorless plate-like crystals).
I got it. The obtained crystals were added to 10mM acetate buffer (pl
! 4.2) and centrifugation (10°C, 12.00
Orpm, 5 min) supernatant liquid 1380u6
C8F concentration was 24.05 mg/ml.

濃度はHPLC法で測定した(収率95,7%)。The concentration was determined by HPLC method (yield 95.7%).

以上より本発明の結晶性ヒトG−C3Fは実施例7〜1
0において78.8%〜96.4%の高収率で効率良く
生成された。又、第2図に示すとおり、本発明の結晶性
ヒトG−C3Fは比較対照の非結晶し)G−C3Fと同
程度又はそれ以上のコロニー形成能を有し、活性の点か
らみて医薬として大変有用である。更に結晶であるため
安定性もよく製剤化も容易であるという利点もある。
From the above, the crystalline human G-C3F of the present invention was obtained in Examples 7 to 1.
0, it was efficiently produced with a high yield of 78.8% to 96.4%. In addition, as shown in Figure 2, the crystalline human G-C3F of the present invention has a colony forming ability comparable to or higher than that of the non-crystalline G-C3F of the comparison control, and from the viewpoint of activity, it is not suitable as a drug. Very useful. Furthermore, since it is a crystal, it has the advantage of good stability and easy formulation.

実施例11:ボタン法 5nMクエン酸バッフy −(pH4,6)に約10m
g/n+IG−C5Fとなる様に塩析法で得たG−C3
Fを溶解し、容量30μgの結晶化用ボタンに溶液を入
れ、あらかじめEDTAで処理した透析膜で気泡の入ら
ぬ様に封じ、ゴムリングでしっかりとめた。このボタン
を2mMクエン酸バッファーに透析することにより、1
日〜3日で針状晶を得た。
Example 11: Button method Approximately 10 m
G-C3 obtained by salting out method so that g/n+IG-C5F
F was dissolved, and the solution was poured into a 30 μg crystallization button, which was sealed with a dialysis membrane previously treated with EDTA to prevent air bubbles, and firmly secured with a rubber ring. By dialyzing this button into 2mM citrate buffer, 1
Needle crystals were obtained in 1 to 3 days.

同様に次の条件により結晶を得た。Similarly, crystals were obtained under the following conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1によって結晶化されたヒトG−CSF
の顕微鏡写真(X 100)である。 第2図は実施例1によって結晶化されたヒトG−C8F
のコロニー形成促進活性を示すグラフである。 第3a及び3b図はそれぞれヒトG−C3F原液と実施
例1によって結晶化されたヒトG−C3FとをHPLC
によって分析したチャートである(測定波長220nm
 ;溶出溶媒バッファー110ff1リン酸バツフア 
−(pJ(6,8)+10h+M N a Cρ;カラ
ムGPC(TSK  G3000)  ;流速、1ml
/win)。 第4図は実施例1によって結晶化されたヒトG−C3F
のI、 IIの(OK、Q)のプレセツション写真であ
る。 第5図は実施例5によって結晶化されたヒトG−C8F
の顕微鏡写真(x 84)である。 第7 図 地3α凹 尾3b 図 1τ−フ 図 尾4 閏 手 続 補 正 書 1、事件の表示 平成1年特許願第1 392号 2、発明の名称 結晶性ヒト顆粒球コロニー刺激因子及びその製造方法 3、補正をする者 6゜補正の内容 (1)明細書第10頁第11行及びf511頁第2行に
記載の「飽和またはほぼ飽和状態」を「1〜110Ox
/屑l」に訂正する。 (2)明細書第10頁第11の記載「飽和又は飽和に近
い濃度」を「1〜100 pg/ zlJに訂正する。
Figure 1 shows human G-CSF crystallized according to Example 1.
This is a micrograph (X 100). Figure 2 shows human G-C8F crystallized according to Example 1.
1 is a graph showing the colony formation promoting activity of . Figures 3a and 3b show HPLC analysis of human G-C3F stock solution and human G-C3F crystallized according to Example 1, respectively.
This is a chart analyzed by (measurement wavelength 220 nm
; Elution solvent buffer 110ff1 phosphate buffer
-(pJ(6,8)+10h+MNaCρ; Column GPC (TSK G3000); Flow rate, 1ml
/win). Figure 4 shows human G-C3F crystallized according to Example 1.
These are preset photos of I and II (OK, Q). Figure 5 shows human G-C8F crystallized according to Example 5.
This is a micrograph (x84). Figure 7 Ground 3α Concave tail 3b Figure 1τ-F Figure tail 4 Leap procedure amendment 1, Description of the case 1999 Patent Application No. 1 392 2, Title of the invention Crystalline human granulocyte colony stimulating factor and method for producing the same 3. Person making the amendment 6゜ Contents of the amendment (1) The “saturated or nearly saturated state” described in page 10, line 11 of the specification and page f511, line 2 is changed to “1 to 110Ox
Corrected to "/waste". (2) The statement “Saturation or near-saturation concentration” on page 10, item 11 of the specification is corrected to “1 to 100 pg/zlJ.”

Claims (1)

【特許請求の範囲】 1)結晶性ヒト顆粒球コロニー刺激因子。 2)ヒト顆粒球コロニー刺激因子が、動物細胞及びその
他の真核細胞により遺伝子工学的に得られたものである
請求項1記載の結晶性ヒト顆粒球コロニー刺激因子。 3)ヒト顆粒球コロニー刺激因子が顆粒球コロニー刺激
因子生産能を持つヒト細胞を培養し、その細胞から単離
精製されたものである請求項1記載の結晶性ヒト顆粒球
コロニー刺激因子。 4)ヒト顆粒球コロニー刺激因子が原核微生物宿主細胞
により遺伝子工学的に得られたものである請求項1記載
の結晶性ヒト顆粒球コロニー刺激因子。 5)緩衝塩濃度0〜100mM、pH3.0〜7.0の
緩衝液にヒト顆粒球コロニー刺激因子さらに必要に応じ
て沈澱剤を溶解した溶液から、気相平衡法、透析膜法、
ボタン法又はバッチ法によりヒト顆粒球コロニー刺激因
子を結晶化させることを特徴とする結晶性ヒト顆粒球コ
ロニー刺激因子の製造方法。 6)ヒト顆粒球コロニー刺激因子を1〜100mg/m
lの濃度で緩衝液に溶解することを特徴とする請求項5
記載の方法。 7)沈澱剤を用いた場合にはそれが(NH_4)_2S
O_4、Na_2SO_4、NaCl、KCl、NH_
4Cl、NaH_2PO_4、KH_2PO_4、NH
_4H_2PO_4、LiCl、CsCl、CaCl_
2、MgCl_2、MgSO_4、ポリエチレングリコ
ール、クエン酸ナトリウム、シュウ酸ナトリウムのうち
の一種類またはそれらの混合物から選択されることを特
徴とする請求項5記載の方法。 8)沈澱剤を用いた場合にはその濃度がヒト顆粒球コロ
ニー刺激因子含有溶液の0.1〜1.5Mであることを
特徴とする請求項5記載の方法。
[Claims] 1) Crystalline human granulocyte colony stimulating factor. 2) The crystalline human granulocyte colony-stimulating factor according to claim 1, wherein the human granulocyte colony-stimulating factor is obtained by genetic engineering from animal cells and other eukaryotic cells. 3) The crystalline human granulocyte colony-stimulating factor according to claim 1, wherein the human granulocyte colony-stimulating factor is obtained by culturing human cells capable of producing granulocyte colony-stimulating factor and is isolated and purified from the cells. 4) The crystalline human granulocyte colony-stimulating factor according to claim 1, wherein the human granulocyte colony-stimulating factor is obtained by genetic engineering from a prokaryotic microbial host cell. 5) From a solution prepared by dissolving human granulocyte colony stimulating factor in a buffer solution with a buffer salt concentration of 0 to 100 mM and a pH of 3.0 to 7.0, and a precipitant if necessary, a gas phase equilibrium method, a dialysis membrane method,
A method for producing crystalline human granulocyte colony-stimulating factor, which comprises crystallizing human granulocyte colony-stimulating factor by a button method or a batch method. 6) Human granulocyte colony stimulating factor 1-100mg/m
Claim 5 characterized in that it is dissolved in a buffer solution at a concentration of 1.
Method described. 7) If a precipitant is used, it is (NH_4)_2S
O_4, Na_2SO_4, NaCl, KCl, NH_
4Cl, NaH_2PO_4, KH_2PO_4, NH
_4H_2PO_4, LiCl, CsCl, CaCl_
6. The method according to claim 5, characterized in that it is selected from one of the following: 2, MgCl_2, MgSO_4, polyethylene glycol, sodium citrate, sodium oxalate, or a mixture thereof. 8) The method according to claim 5, wherein when a precipitant is used, its concentration is 0.1 to 1.5 M of the human granulocyte colony stimulating factor-containing solution.
JP1-126392A 1988-06-03 1989-05-19 Crystalline human granulocyte colony stimulating factor and method for producing the same Expired - Lifetime JP3004655B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT89110022T ATE111921T1 (en) 1988-06-03 1989-06-02 HUMAN CRYSTALLINE GRANULOCYTE COLONY STIMULATION FACTOR AND ITS PRODUCTION.
ES89110022T ES2063783T3 (en) 1988-06-03 1989-06-02 HUMAN CRYSTALLINE FACTOR OF STIMULATION OF GRANULOCYTE COLONIES AND PROCEDURE FOR ITS PREPARATION.
DE68918331T DE68918331T2 (en) 1988-06-03 1989-06-02 Human granulocyte crystalline colony stimulation factor and its production.
EP89110022A EP0344796B1 (en) 1988-06-03 1989-06-02 Crystalline human granulocyte colony stimulating factor and process for preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP13711188 1988-06-03
JP63-137111 1988-06-03
JP23138888 1988-09-14
JP63-231388 1988-09-14

Publications (2)

Publication Number Publication Date
JPH02209895A true JPH02209895A (en) 1990-08-21
JP3004655B2 JP3004655B2 (en) 2000-01-31

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104597A (en) * 1988-10-14 1990-04-17 Kyowa Hakko Kogyo Co Ltd Crystal of peptide having human granulocyte colony stimulating factor activity and production thereof
JP2010059170A (en) * 1993-01-28 2010-03-18 Amgen G-csf analog composition and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227526A (en) * 1984-07-25 1986-10-09 Chugai Pharmaceut Co Ltd Novel csf and method of collecting same
JPS62129298A (en) * 1985-12-02 1987-06-11 Chugai Pharmaceut Co Ltd Novel polypeptide
JPS62132899A (en) * 1985-12-03 1987-06-16 Chugai Pharmaceut Co Ltd Novel polypeptide
JPS62236497A (en) * 1985-09-17 1987-10-16 Chugai Pharmaceut Co Ltd Novel glycoprotein and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227526A (en) * 1984-07-25 1986-10-09 Chugai Pharmaceut Co Ltd Novel csf and method of collecting same
JPS62236497A (en) * 1985-09-17 1987-10-16 Chugai Pharmaceut Co Ltd Novel glycoprotein and production thereof
JPS62129298A (en) * 1985-12-02 1987-06-11 Chugai Pharmaceut Co Ltd Novel polypeptide
JPS62132899A (en) * 1985-12-03 1987-06-16 Chugai Pharmaceut Co Ltd Novel polypeptide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104597A (en) * 1988-10-14 1990-04-17 Kyowa Hakko Kogyo Co Ltd Crystal of peptide having human granulocyte colony stimulating factor activity and production thereof
JP2010059170A (en) * 1993-01-28 2010-03-18 Amgen G-csf analog composition and method

Similar Documents

Publication Publication Date Title
EP0344796A2 (en) Crystalline human granulocyte colony stimulating factor and process for preparing the same
AU666465B2 (en) Growth hormone crystals and a process for production of these GH-crystals
JP2966592B2 (en) Stabilized human monoclonal antibody preparation
JPH064677B2 (en) Serum albumin crystal and method for producing the same
JPS61186328A (en) Improved composite bodies, manufacture and drug containing them
JPH08510721A (en) Isolation of the compound of interest from milk
CN1525977A (en) Purification of human serum albumin
US7087719B2 (en) Method for the crystallization of human serum albumin
JP5908496B2 (en) Method for extracting human serum albumin from the grain of transgenic rice
US7713351B2 (en) Method for crystallization of proteins using polysaccharides
US5780599A (en) Growth hormone crystals and a process for production of growth hormone crystals
KR20150016503A (en) Crystallization methods for purification of monoclonal antibodies
JPH02209895A (en) Crystalline human granulocytic colony stimulation factor and production thereof
CN100381560C (en) Process for synthesizing recombined human intestine trilobate factor using GS115 microzyme
JP4965022B2 (en) Stabilized protein crystals, formulations containing the same, and methods of making the same
JP3004655B2 (en) Crystalline human granulocyte colony stimulating factor and method for producing the same
JPH0662432B2 (en) Single-strain vaccine for infections with multiple strains of amycobacterium
JPH08319241A (en) Gamma globulin composition for intravenous injection
JPS5852227A (en) Immunogenic composite body from gonococcus
DE10230210A1 (en) Composition and method for stabilizing biomolecules
SU1250573A1 (en) Method of producing growth protein
US6894023B1 (en) Growth hormone crystals and a process for production of these GH-crystals
JPS60222424A (en) Interleukin 2 composition
JPS60155137A (en) Preparation of aqueous solution of human gamma type interferon having high concentration
WO2004024753A1 (en) Process for manufacturing crystals of growth hormone

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees