JPH02209841A - Production of 2,3,5-trimethybenzoquinone - Google Patents

Production of 2,3,5-trimethybenzoquinone

Info

Publication number
JPH02209841A
JPH02209841A JP2972089A JP2972089A JPH02209841A JP H02209841 A JPH02209841 A JP H02209841A JP 2972089 A JP2972089 A JP 2972089A JP 2972089 A JP2972089 A JP 2972089A JP H02209841 A JPH02209841 A JP H02209841A
Authority
JP
Japan
Prior art keywords
oxygen
catalyst
reaction
compound
copper chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2972089A
Other languages
Japanese (ja)
Other versions
JP2592324B2 (en
Inventor
Ichiro Kimura
一郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C K FINE KEMIKARUZU KK
Original Assignee
C K FINE KEMIKARUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C K FINE KEMIKARUZU KK filed Critical C K FINE KEMIKARUZU KK
Priority to JP1029720A priority Critical patent/JP2592324B2/en
Publication of JPH02209841A publication Critical patent/JPH02209841A/en
Application granted granted Critical
Publication of JP2592324B2 publication Critical patent/JP2592324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures
    • C07C46/06Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring
    • C07C46/08Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring with molecular oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the subject compound useful as an intermediate for synthesis of medicines such as vitamin E at an improved reaction rate in a high yield by oxidizing 2,3,6-trimethylphenol with, oxygen in the presence of a catalyst composed of copper chloride and a vanadium compound in a solvent. CONSTITUTION:2,3,6-Trimethylphenol is oxidized by oxygen or an oxygen- containing gas in the presence of copper chloride and a vanadium compound as a catalyst in a solvent such as ethylene glycol dimethyl ether, DMF or acetone at 20-100 deg.C, preferably 50-80 deg.C to obtain the objective compound. As the amount of the catalyst used, copper chloride is preferably used within a range of 0.01-10 times, especially 0.1-0.5 time based on the number of moles of the raw compound and the vanadium compound 0.001-5 times, especially 0.01-1.0 time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビタミンEなど医薬品の合成中間体として有
用である2、 5.5− )リメチルペンゾキノンの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing 2,5,5-)limethylpenzoquinone, which is useful as a synthetic intermediate for pharmaceuticals such as vitamin E.

〔従来の技術〕[Conventional technology]

2、3.5−)リメチルベンゾキノンの製造方法として
は、2.3.6− )リメチルフェノール(2゜3.6
−TMP)を無機酸化剤で酸化する方法、又は触媒の存
在下酸素で酸化する方法等がある。
As a method for producing 2,3.5-)limethylbenzoquinone, 2.3.6-)limethylphenol (2゜3.6
-TMP) with an inorganic oxidizing agent, or with oxygen in the presence of a catalyst.

Ic制 前者の無機へを用いる方法では、例えば酸化剤として過
マンガン酸カリウム、二酸化マンガン、酸化鉛などが用
いられておりその量は化学量論以上必要であり、且つ低
原子価状態の金属塩の処理が必要となる。又後者の触媒
存在下で酸化する方法、例えば触媒としてコバルト錯体
な用いる方法では、反応初期の触媒活性は高いが、触媒
としての寿命は極めて短く、工業的に使用するには難点
がある。また触媒としてハロゲン化銅を用いる。方法、
又ノ・ロゲン化鋼及びノ・ロゲン化リチウムを用いる方
法では反応率、選択率共に高く維持できるが種々の解決
を要する欠点を有する。例えば特公昭55−17585
号、特開昭59−2251!1号、特開昭63−280
040号で代表される方法では、触媒を2,3゜6−T
MPと同重量又はそれ以上使用しなければ収率も低く又
反応速度も小さくなる欠点を有する。
In the former method using inorganic substances, for example, potassium permanganate, manganese dioxide, lead oxide, etc. are used as oxidizing agents, and the amount thereof is required to be more than the stoichiometric amount, and metal salts in a low valence state are used. processing is required. In addition, in the latter method of oxidation in the presence of a catalyst, for example, a method in which a cobalt complex is used as a catalyst, the catalytic activity is high at the initial stage of the reaction, but the life of the catalyst is extremely short, making it difficult to use industrially. Further, copper halide is used as a catalyst. Method,
In addition, although the method using non-logogenated steel and non-logogenated lithium can maintain high reaction rate and selectivity, it has various drawbacks that need to be solved. For example, Tokuko Sho 55-17585
No., JP-A-59-2251!1, JP-A-63-280
In the method typified by No. 040, the catalyst is 2,3°6-T.
If the same weight or more than MP is used, the yield will be low and the reaction rate will be low.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明者は上記に述べた公知技術の欠点を解決した、よ
り工業的実施に適した方法を確立すべく、■高価な特殊
触媒を用いず市販の一般試薬で用いること、■使用量が
少ないこと、■生方法によりその目的を達することを見
い出し本発明を完成した。
In order to establish a method that is more suitable for industrial implementation and solves the drawbacks of the known techniques mentioned above, the present inventor aims to: (1) use a commercially available general reagent without using an expensive special catalyst, and (2) use a small amount. The present invention was completed by discovering that the object could be achieved by using a production method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要旨とするところは、2.3.6−TMPを、
触媒として、塩化鋼及びバナジウム化合物の存在下にお
いて、溶媒中で酸素又は酸素含有ガスにより酸化し、2
.3.5− トリメチルベンゾキノンを製造するところ
にある。
The gist of the present invention is that 2.3.6-TMP is
Oxidized with oxygen or oxygen-containing gas in a solvent in the presence of chlorinated steel and a vanadium compound as a catalyst,
.. 3.5-Trimethylbenzoquinone is produced.

本発明方法での2.3.6− T M Pの濃度は、反
応液に対して5〜50重量%重景で、過度に高濃度に設
定すると反応中のキノン類の析出が多くなり、操作性が
悪くなる。酸化反応に使用するガスは、酸素又はこれを
不活性ガスで稀釈したガスで、空気の使用が最も経済的
である。
The concentration of 2.3.6-TMP in the method of the present invention is 5 to 50% by weight relative to the reaction solution, and if the concentration is set too high, precipitation of quinones during the reaction will increase; Operability deteriorates. The gas used for the oxidation reaction is oxygen or a gas obtained by diluting oxygen with an inert gas, and air is most economically used.

反応に使用する溶媒としては、下記の一般式で示される
ポリエチレングリコールアルキルエーテル類 R+OCR,CH,+OR’ n:1〜4 R: CHs 、C2Hs 、C3H7、C4H0R’
 : H,CHs 、C2H5、C3H? 、C4HQ
ジメチルフォルムアミド(DMF)、ジメチルアセトア
ミド(DMA)等の酸アミド類;アセトン、メチルイソ
ブチルケトン等のケトン類;ジオキサンテトラヒドロフ
ラン等の環状エーテル類、ブチルエーテル、インプロピ
ルエーテル等の鎖状エーテル、アセトニトル他のニトリ
ル類;その他がある。又ノ・ロゲン化炭化水素、芳香族
炭化水素1.アルキルアルコール等が所望により、溶媒
の全体として又は構成成分として使用できる。
As the solvent used for the reaction, polyethylene glycol alkyl ethers represented by the following general formula R+OCR, CH, +OR' n: 1-4 R: CHs, C2Hs, C3H7, C4H0R'
: H, CHs, C2H5, C3H? , C4HQ
Acid amides such as dimethylformamide (DMF) and dimethylacetamide (DMA); Ketones such as acetone and methyl isobutyl ketone; cyclic ethers such as dioxane and tetrahydrofuran; chain ethers such as butyl ether and inpropyl ether; acetonitrile, etc. Nitriles; There are others. Also, logogenated hydrocarbons, aromatic hydrocarbons 1. Alkyl alcohols and the like can be used as a whole or as a component of the solvent, if desired.

本発明の溶媒として特に推奨される溶媒としては、エチ
レングリコールジメチルエーテル、エチレングリコール
モノメチルエーテル、DMF。
Particularly recommended solvents for the present invention include ethylene glycol dimethyl ether, ethylene glycol monomethyl ether, and DMF.

DMA、アセトン等があり、これらは収率の向上に効果
的に寄与する。
There are DMA, acetone, etc., and these effectively contribute to improving the yield.

尚、溶媒中の水分は、反応に好ましい結果をもたらすと
は限らず反応で生成する水も反応の進行と共に溜去する
ことが望まれる。
Note that water in the solvent does not necessarily bring about favorable results in the reaction, and it is desirable that the water produced in the reaction be distilled off as the reaction progresses.

触媒として使用する塩化銅としては塩化第一銅と塩化第
二銅があり、特に塩化第二銅の使用が好ましい。又バナ
ジウム化合物としては、バナジウムの酸化物、ノ・ロゲ
ン化物、酸素酸塩、錯化合物から適当に選択されるが、
具体的には、V2O,、VCCl、、VOCt、、MV
O3(M:NH4,Na、K、 Li 入に4 (:V
(CN)613H20、K、 I:V(CN)6 )が
あり、特にメタバナジン酸のアルカリ金属塩、アンモニ
ウム塩が望ましい。
Copper chloride used as a catalyst includes cuprous chloride and cupric chloride, with cupric chloride being particularly preferred. In addition, the vanadium compound is appropriately selected from vanadium oxides, chloride compounds, oxyacid salts, and complex compounds.
Specifically, V2O,,VCCl,,VOCt,,MV
O3 (M: NH4, Na, K, Li 4 (:V
(CN)613H20, K, I:V(CN)6), and alkali metal salts and ammonium salts of metavanadate are particularly desirable.

本発明において塩化銅の使用量は特に制限はないが好ま
しくは使用2.3.6− T M Pに対して0.01
〜10倍モル、好ましくは0.05〜5倍モル更に好ま
しくは0.1〜0.5倍モルが使用される。一方、バナ
ジウム化合物は、0.001〜5倍モル好ましくは、0
.01〜1.0倍モルが使用される。
In the present invention, the amount of copper chloride used is not particularly limited, but is preferably 0.01 per 2.3.6-TMP used.
~10 times the mole, preferably 0.05 to 5 times the mole, more preferably 0.1 to 0.5 times the mole. On the other hand, the vanadium compound is preferably 0.001 to 5 times the mole
.. 01 to 1.0 times the molar amount is used.

本発明方法では、反応圧力は、常圧でも良く、空気使用
の場合は、若干の加圧が反応速度を高める点で好ましい
In the method of the present invention, the reaction pressure may be normal pressure, and when air is used, it is preferable to slightly increase the pressure in order to increase the reaction rate.

反応温度は、20℃乃至100℃、好ましくは、50乃
至80℃。反応時間は1乃至10時間。
The reaction temperature is 20°C to 100°C, preferably 50 to 80°C. Reaction time is 1 to 10 hours.

尚、これら圧力、温度、時間に関しては、従来の技術水
準の範囲内で容易に選択できる。
Note that these pressure, temperature, and time can be easily selected within the range of conventional technology.

本発明方法による酸化反応生成液からの2,6゜6−ト
リメチルベンゾキノンの分離は、例tば、反応液を水層
と分液し、有機層を水洗後蒸上により分離子ることがで
きる。
The separation of 2,6゜6-trimethylbenzoquinone from the oxidation reaction product liquid by the method of the present invention can be carried out, for example, by separating the reaction liquid into an aqueous layer, washing the organic layer with water, and then separating it by vaporization. .

次に、本発明の実施例を、本発明の効果を示すため比較
例とともに示す。
Next, examples of the present invention will be shown together with comparative examples in order to demonstrate the effects of the present invention.

実施例1〜4 300m1四つロフラスコ中に塩化銅2水和物175’
(0,1モル)、メタバナジン酸アンモン1.2 P、
(0,01モル)、蒸留水10rlLl、表−1の有機
溶媒5Qmlを入れ加温し60℃に保ち、約70Orp
mで攪拌を行ないながら酸素ガスを流速200m1/1
risで液面下に通気し同有機溶媒50m1に2.5.
6−TMP34tC0,25モA/)を溶解した溶液を
2時間を要して滴下し、滴下終了後更に2,5.6−T
MPが消失する迄反応を行ない、終了後適当量の水を加
えトルエンで抽出を行ないガスクロマトグラフによる分
析を行なった。
Examples 1-4 Copper chloride dihydrate 175' in a 300 m 1 four-loaf flask
(0.1 mol), ammonium metavanadate 1.2 P,
(0.01 mol), 10 rlLl of distilled water, and 5 Qml of the organic solvent shown in Table 1 were heated and kept at 60°C.
Flow rate of oxygen gas is 200m1/1 while stirring at m
2.5.
A solution of 6-TMP34tC0,25 moA/) was added dropwise over a period of 2 hours, and after the dropwise addition, 2,5.6-T
The reaction was carried out until MP disappeared, and after completion of the reaction, an appropriate amount of water was added, extraction was performed with toluene, and analysis was performed by gas chromatography.

表−1 実施例5〜8 300d四ツロフラスコ中に塩化銅2水和物17fP(
0,1モル)、メタバナジン酸アンモ1.2P(0,0
1モル)、表−2の有機溶媒50m/を入れ加温し60
℃に保ち、約70Orpmで攪拌を行ないながら酸素ガ
スを流速200m//―で液面下に通気し同有機溶媒5
0m1に2.6゜6−TMP 3454(0,25モル
)を溶解した溶液を2時間を要して滴下し滴下終了後更
に2.3.6−TMPが消失する迄反応を行ない実施例
1〜4と同様な処理゛の後分析を行なった。
Table-1 Examples 5 to 8 Copper chloride dihydrate 17fP (
0.1 mol), ammo metavanadate 1.2P (0.0
1 mol) and 50 m/ml of the organic solvent shown in Table 2 were added and heated to 60 m
℃, and while stirring at about 70 rpm, oxygen gas was bubbled under the liquid surface at a flow rate of 200 m//- to dissolve the organic solvent 5.
Example 1 A solution of 2.6゜6-TMP 3454 (0.25 mol) dissolved in 0ml was added dropwise over a period of 2 hours, and after the dropwise addition was completed, the reaction was continued until the 2.3.6-TMP disappeared. Analysis was performed after the same treatment as in ~4.

表−2 注;TMBQ : 2,5.− トリメチルベンゾキノ
ン比較例1〜4 実施例1〜4においてメタバナジン酸アンモを加えない
で反応を行なったところ次の結果を得た。
Table-2 Note: TMBQ: 2,5. - Trimethylbenzoquinone Comparative Examples 1 to 4 When the reactions in Examples 1 to 4 were carried out without adding ammo metavanadate, the following results were obtained.

表−6 手続補正書(自発) 平成1年4月ノθ日 特許庁長官 吉 1)文 毅 殿 1、事件の表示 平成1年特願第29720号 2、発明の名称 2、3.5−トリメチルベンゾキノンの製造方法実施例
5〜8についても行なった結果を下記に示す。
Table-6 Procedural amendment (voluntary) April 1st, 1999 Director General of the Japan Patent Office Yoshi 1) Moon Takeshi 1, Indication of the case 1999 Patent Application No. 29720 2, Name of the invention 2, 3.5- The results of Examples 5 to 8 of the method for producing trimethylbenzoquinone are shown below.

表−4Table-4

Claims (1)

【特許請求の範囲】[Claims] 1、2,3,6−トリメチルフェノールを、触媒として
塩化鋼及びバナジウム化合物の存在下において、溶媒中
で酸素又は酸素含有ガスにより酸化することを特徴とす
る2,3,5−トリメチルベンゾキノンの製造方法。
Production of 2,3,5-trimethylbenzoquinone, characterized in that 1,2,3,6-trimethylphenol is oxidized with oxygen or an oxygen-containing gas in a solvent in the presence of chlorinated steel and a vanadium compound as a catalyst. Method.
JP1029720A 1989-02-10 1989-02-10 Method for producing 2,3,5-trimethylbenzoquinone Expired - Lifetime JP2592324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1029720A JP2592324B2 (en) 1989-02-10 1989-02-10 Method for producing 2,3,5-trimethylbenzoquinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1029720A JP2592324B2 (en) 1989-02-10 1989-02-10 Method for producing 2,3,5-trimethylbenzoquinone

Publications (2)

Publication Number Publication Date
JPH02209841A true JPH02209841A (en) 1990-08-21
JP2592324B2 JP2592324B2 (en) 1997-03-19

Family

ID=12283944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1029720A Expired - Lifetime JP2592324B2 (en) 1989-02-10 1989-02-10 Method for producing 2,3,5-trimethylbenzoquinone

Country Status (1)

Country Link
JP (1) JP2592324B2 (en)

Also Published As

Publication number Publication date
JP2592324B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
JP2934222B2 (en) Method for producing acrolein from propylene by redox reaction and use of solid mixed oxide composition as redox system in the reaction
JPS5914405B2 (en) Method for producing nitrous oxide
JPH01308245A (en) Production of benoic acid and salt thereof
JPH02209841A (en) Production of 2,3,5-trimethybenzoquinone
CN113683530B (en) Method for preparing heptafluoroisobutyronitrile by gas phase hydrocyanation
US4055629A (en) Process for the removal of selenium compounds from urethane solutions
JP2592328B2 (en) Method for producing 2,3,5-trimethylbenzoquinone
JP3918640B2 (en) Process for producing aliphatic dicarboxylic acids
JPS584012B2 (en) Anisaldehyde
JP2575058B2 (en) Process for producing 2,3,5-trimethylbenzoquinone
JPS6112647A (en) Manufacture of carbonyl compound
JP2592329B2 (en) Process for producing 2,3,5-trimethylbenzoquinone
JP4450138B2 (en) Method for producing fluoroalkylcarboxylic acid
US4146735A (en) Preparation of α,β-unsaturated carboxylic acids via Mannich intermediates
JP4965744B2 (en) Method for preparing ethanedinitrile
JPS6352618B2 (en)
JPS61103868A (en) Manufacture of substituted thiuram polysulfide
KR20020025026A (en) Method for reactivating catalyst for methacrylic acid preparation
SU1054347A1 (en) Process for preparing dimethylsulfoxide
JPS6159614B2 (en)
SU441702A1 (en) Method for producing ethylene glycol esters
JPS62161739A (en) Production of methacrylic acid
JPH05125012A (en) Production of benzophenonedicarboxylic acid
CS218081B1 (en) Method of making the terephtale acid
JPH01100141A (en) Production of p-hydroxybenzaldehyde