JPH02209784A - External resonator type semiconductor laser and wavelength multiple optical transmitter - Google Patents

External resonator type semiconductor laser and wavelength multiple optical transmitter

Info

Publication number
JPH02209784A
JPH02209784A JP3054789A JP3054789A JPH02209784A JP H02209784 A JPH02209784 A JP H02209784A JP 3054789 A JP3054789 A JP 3054789A JP 3054789 A JP3054789 A JP 3054789A JP H02209784 A JPH02209784 A JP H02209784A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
active layer
grating
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3054789A
Other languages
Japanese (ja)
Other versions
JP2676875B2 (en
Inventor
Yoshikazu Hori
義和 堀
Fumihiro Sogawa
十川 文博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1030547A priority Critical patent/JP2676875B2/en
Publication of JPH02209784A publication Critical patent/JPH02209784A/en
Application granted granted Critical
Publication of JP2676875B2 publication Critical patent/JP2676875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To modulate at a high speed and to reduce an aberration die to an astigmatism of a laser by so forming a reflection type optical diffraction grating for composing an external resonator mirror as to have a structure in which a bent and a period are continuously varied, and representing the shapes of the gratings by part of circular or elliptical quadratic curve group. CONSTITUTION:A divergent light radiated from one end face 4 of a semiconductor laser arrives at a diffraction grating 3, only a light having specific wavelength selected according to a light dispersing effect upon optical diffraction of the grating is reflected in a direction of a semiconductor laser, condensed to one end face 4 of the laser, and optically fed back to an active layer 5 of the laser. When the shape of the grating is so set as to be radiated from the end face P of the active layer, arrived at one point G of the grating and reflected to align the phases of the light returned again P, the grating operates as an external resonator mirror. That is, when a G (X, Y) is considered as an equi-phase point of the grating, the shape of the grating is given by a formula 2PG=mlambda+(constant). When the constant at an origin is zero, the shape of the grating is represented by x<2>+(y-fsintheta)<2>=(mlambda/2+f)<2>-(fcostheta)<2>.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体レーザ光と光ファイバを用いて情報、信
号を伝送するいわゆる光通信分野に係わるものであり、
特により多くの信号を同時に伝送する一方式である波長
多重光伝送を実現するための、波長安定化半導体レーザ
と、それを用いた波長多重伝送装置に関するものである
[Detailed Description of the Invention] Industrial Application Field The present invention relates to the so-called optical communication field in which information and signals are transmitted using semiconductor laser light and optical fibers.
In particular, the present invention relates to a wavelength-stabilized semiconductor laser and a wavelength-multiplexing transmission device using the same, for realizing wavelength-multiplexed optical transmission, which is a type of optical transmission that transmits more signals simultaneously.

従来の技術 大容毒の波長多重光伝送装置を実現するために、電流変
調時においてもまた周辺温度が変化しても、安定に単一
波長で単一縦モード発振し、しかもそのスペクトル幅が
狭く、かつ発振波長が制御可能な半導体レーザが要求さ
れている。以上の様な性能を有する半導体レーザ光源と
して、外部共振器型の半導体レーザが有力視されている
。 (朝倉他、昭和62年度電子情報通信学会全国大会
 899)第5図に従来の外部共振器型半導体レーザの
概略を示す。51は1.3μm帯のファプリーペロー型
半導体レーザ、52はコリメーシロンレンズ、53は半
導体レーザの放射光の光軸に対して傾斜して配置された
外部共振器鏡基板であり、その基板の表面には反射型の
回折格子54が形成されている。半導体レーザの片端面
54から放射された光は、コリメーションレンズ52に
より平行ビームに変換され、回折格子53に達する。こ
の回折格子の光回折現象に伴う光分散効果により波長選
択された特定の波長の光のみが半導体レーザの方向に反
射され、再度コリメーションレンズ52を逆方向に通過
し半導体レーザの片端面54に集光され半導体レーザの
活性層55に光帰還される。
Conventional technology In order to realize a wavelength division multiplexing optical transmission device with a large capacity, it is necessary to stably oscillate in a single longitudinal mode at a single wavelength even during current modulation and even when the ambient temperature changes, and to maintain the spectral width of the wavelength multiplexing optical transmission device. There is a demand for semiconductor lasers that are narrow and whose oscillation wavelength can be controlled. External cavity type semiconductor lasers are considered to be a promising semiconductor laser light source having the above-mentioned performance. (Asakura et al., 1985 National Conference of the Institute of Electronics, Information and Communication Engineers, 899) Figure 5 shows an outline of a conventional external cavity type semiconductor laser. 51 is a 1.3 μm band Fapley-Perot semiconductor laser, 52 is a collimating lens, and 53 is an external cavity mirror substrate arranged at an angle with respect to the optical axis of the light emitted from the semiconductor laser. A reflective diffraction grating 54 is formed on the surface. Light emitted from one end surface 54 of the semiconductor laser is converted into a parallel beam by the collimation lens 52 and reaches the diffraction grating 53. Due to the light dispersion effect accompanying the light diffraction phenomenon of this diffraction grating, only light of a selected specific wavelength is reflected in the direction of the semiconductor laser, passes through the collimation lens 52 in the opposite direction again, and is focused on one end surface 54 of the semiconductor laser. The light is emitted and optically returned to the active layer 55 of the semiconductor laser.

ここで波長選択される特定の波長は基板の傾斜角で決定
され、特定の波長以外の波長の光は異なる方向に分散し
て回折され活性層に光帰還されることはない。また活性
層の片端面には反射防止膜56が形成されており、片端
面54ともう一方の端面57で形成される半導体レーザ
自体のファプリーペロー共振器による発振は抑圧されて
いる。
The specific wavelength selected here is determined by the tilt angle of the substrate, and light with wavelengths other than the specific wavelength is dispersed and diffracted in different directions and is not optically returned to the active layer. Further, an anti-reflection film 56 is formed on one end surface of the active layer, suppressing oscillation due to the Fapley-Perot resonator of the semiconductor laser itself formed between one end surface 54 and the other end surface 57.

この外部共振器型半導体レーザの外部共振器鏡に用いら
れる回折格子は、基板上に塗布されたフォトレジストを
二光束干渉法で露光する事により形成される。そしてこ
の回折格子の形状は平行状である。
The diffraction grating used in the external cavity mirror of this external cavity type semiconductor laser is formed by exposing a photoresist coated on a substrate using a two-beam interference method. The shape of this diffraction grating is parallel.

この外部共振器型半導体レーザは安定な単一縦モード発
振を示し、また前記の外部共振器鏡基板の光軸に対する
傾斜角を変化させることにより発振波長を連続的に変化
させることが可能である。
This external cavity type semiconductor laser exhibits stable single longitudinal mode oscillation, and the oscillation wavelength can be continuously changed by changing the tilt angle of the external cavity mirror substrate with respect to the optical axis. .

発明が解決しようとする課題 ところが、従来の外部共振器型半導体レーザにおいては
半導体レーザと回折格子の形成された外部共振器鏡の間
にコリメーションレンズを配置する必要があるために、
次のような課題が残されていた。
Problems to be Solved by the Invention However, in the conventional external cavity type semiconductor laser, it is necessary to arrange a collimation lens between the semiconductor laser and the external cavity mirror on which the diffraction grating is formed.
The following issues remained:

(1)半導体レーザと外部共振器間の距離として約1c
m要するので、素子サイズの小型化に限界。
(1) Approximately 1c as the distance between the semiconductor laser and the external cavity
Since it requires m, there is a limit to miniaturization of the element size.

(2)半導体レーザ、コリメーションレンズ、及び外部
共振器の光軸の調整が困難 (3)半導体レーザと外部共振器間の光の走行時間が(
1)に記した理由で長く、その結果高速変調限界がIG
Hz程度であり、それ以上の高速変調が困難。
(2) Difficult to adjust the optical axes of the semiconductor laser, collimation lens, and external resonator (3) The travel time of light between the semiconductor laser and the external resonator (
For the reason mentioned in 1), it is long, and as a result, the high-speed modulation limit is IG.
It is about Hz, and higher speed modulation is difficult.

(4)レンズの収差や半導体レーザの非点隔差に伴う収
差により、発振モードの安定化に限界。
(4) There is a limit to stabilizing the oscillation mode due to lens aberrations and aberrations due to astigmatism of the semiconductor laser.

本発明は以上に示したような従来の外部共振器型の半導
体レーザの課題を克服し、小型で高速変調を可能とし、
かつ半導体レーザの非点隔差による収差を低減させ、極
めて高性能な外部共振器型半導体レーザを提供するもの
である。
The present invention overcomes the problems of the conventional external cavity type semiconductor laser as shown above, and enables high-speed modulation with a small size.
Moreover, the aberration caused by astigmatism of the semiconductor laser is reduced, and an extremely high-performance external cavity type semiconductor laser is provided.

課題を解決するための手段 本発明は、 (1)半導体レーザと半導体レーザ活性層の片方の端面
から放射する発散性の放射光のうちの特定の波長の光だ
けを前記活性層の片端面に直接集光して光帰還を行なう
機能を有し、かつ平面基板上に形成された反射型の光回
折素子で構成された外部共振器鏡を含んで形成された外
部共振器型半導体レーザであって、外部共振器鏡を構成
している反射型の光回折素子が、曲がりと周期の連続的
に変化する構造を有する回折格子でなり、かつ各格子の
形状が円もしくは楕円の2次曲線群の一部で表わされる
ものである。
Means for Solving the Problems The present invention provides the following features: (1) Only light of a specific wavelength of the diverging radiation emitted from one end face of a semiconductor laser and a semiconductor laser active layer is directed to one end face of the active layer. It is an external cavity type semiconductor laser that has the function of directly concentrating light and performing optical feedback, and is formed by including an external cavity mirror composed of a reflective optical diffraction element formed on a flat substrate. The reflective optical diffraction element constituting the external resonator mirror is a diffraction grating having a structure in which the curve and period change continuously, and the shape of each grating is a group of quadratic curves of a circle or an ellipse. It is expressed by a part of .

さらに本発明は、 (2)回折格子の各格子の形状が次式で表わされる円群
の一部である外部共振器型半導体レーザを提供する。
Further, the present invention provides: (2) an external cavity semiconductor laser in which the shape of each grating of the diffraction grating is a part of a group of circles expressed by the following formula.

x2+(y−fsinθ}2 =(mλ/2+ f) 2− (fcosθ}2ここで
 XI  Yは光回折素子の形成される平面基板上の直
交座標であり、fは活性層端面と前記座標系の原点との
設定圧HE1  θは前記活性層端面と前記原点を結ぶ
軸と回折格子の形成された平面基板のy軸とのなす角、
λは半導体レーザの設定発振波長、mは整数である。
x2+(y-fsinθ}2 = (mλ/2+f) 2- (fcosθ}2 where The set pressure HE1 θ is the angle between the axis connecting the end face of the active layer and the origin and the y-axis of the flat substrate on which the diffraction grating is formed,
λ is the set oscillation wavelength of the semiconductor laser, and m is an integer.

また、本発明は、 (3)(1)において、回折格子の各格子の形状が次式
で表わされる楕円群の一部であることを特徴とする。
Further, the present invention is characterized in that (3) in (1), the shape of each grating of the diffraction grating is a part of an ellipse group expressed by the following formula.

x2/((mλ/2+ f ) 2− (f @co゛
sθ}2)+ (y−(Δf + f)sinθ}2/
[(mλ/2+(Δ f +r))  2−  {(Δ
f+f)cosθ} 2コ = 1ここでXとyは光回
折素子の形成される平面基板上の直交座標であり、fは
活性層端面と前記座標系の原点との設定距離、θは前記
活性層端面と前記原点を結ぶ軸と回折格子の形成された
平面基板のy軸とのなす角、λは半導体レーザの設定発
振波長、mは整数である。またΔfは非点隔差であり、
前記活性層端面から前記座標系のX方向に広がるレーザ
光の発散中心点と前記活性層端面から前記座標系のX方
向に広がるレーザ光の発散中心点との距離を示す。
x2/((mλ/2+ f ) 2- (f @co゛sθ}2)+ (y-(Δf + f) sinθ}2/
[(mλ/2+(Δ f +r)) 2− {(Δ
f + f) cos θ} 2 co = 1 where X and y are orthogonal coordinates on the flat substrate on which the optical diffraction element is formed, f is the set distance between the active layer end face and the origin of the coordinate system, and θ is the active layer The angle formed by the axis connecting the layer end face and the origin and the y-axis of the flat substrate on which the diffraction grating is formed, λ is the set oscillation wavelength of the semiconductor laser, and m is an integer. Also, Δf is the astigmatism difference,
It shows the distance between the divergence center point of laser light spreading from the active layer end face in the X direction of the coordinate system and the divergence center point of the laser light spread from the active layer end face in the X direction of the coordinate system.

1°た、本発明は (4)(1)において、半導体レーザ活性層の片端面か
ら放射する発散性の放射光のうちの特定の波長の光が、
前記外部共振器により活性層片端面に集光して光帰還さ
れる際、前記特定の波長に対して、半導体レーザ自体の
共振器により発振し得る隣接した発振波長の光が前記活
性層の外部に集光される。
In addition, in (4) (1), the present invention provides that the light of a specific wavelength of the diverging radiation emitted from one end surface of the semiconductor laser active layer is
When the external resonator focuses the light on one end surface of the active layer and returns the light, light of an adjacent oscillation wavelength that can be oscillated by the resonator of the semiconductor laser itself with respect to the specific wavelength is transmitted to the outside of the active layer. The light is focused on.

また、 (5)(1)において、外部共振器鏡を構成する回折格
子が、電子計算機制御の電子ビーム露光法により形成さ
れている。
(5) In (1), the diffraction grating constituting the external resonator mirror is formed by a computer-controlled electron beam exposure method.

また、 (6)(1)において、半導体レーザにおいて、光が放
射されかつ外部共振器鏡により光が集光される片端面に
無反射膜が形成されている。
(6) In (1), in the semiconductor laser, a non-reflective film is formed on one end surface from which light is emitted and where the light is focused by the external resonator mirror.

さらに、本発明は、 (7)複数の半導体レーザ、及びそれぞれの半導体レー
ザの片端面に、異なる特定の波長の光を直接帰還する集
光性及び波長分散性の外部共振器の設置された複数の外
部共振器型レーザを用いた波長多重光伝送装置を提供す
るので、 また、 (8)(7)において、複数の半導体レーザが同一の半
導体基板にアレイ状に形成されており、かつそれぞれの
半導体レーザに異なる波長の光を直接光帰還するための
外部共振器を形成する回折格子が同一基板上に形成され
ている。
Furthermore, the present invention provides: (7) a plurality of semiconductor lasers, and a plurality of external resonators with convergence and wavelength dispersion properties installed on one end surface of each semiconductor laser to directly return light of different specific wavelengths. In addition, in (8) and (7), a plurality of semiconductor lasers are formed in an array on the same semiconductor substrate, and each A diffraction grating forming an external resonator for directly optically feeding back light of different wavelengths to the semiconductor laser is formed on the same substrate.

また、 (9)(8)において、複数の半導体レーザの活性層端
面と、複数の外部共振器鏡との設定距離、及び半導体レ
ーザ基板と外部共振器鏡きのなす角が一定であり、かつ
光帰還される特定の波長が、それぞれ異なる波長多重光
伝送装置を提供するものである。
(9) In (8), the set distances between the active layer end faces of the plurality of semiconductor lasers and the plurality of external cavity mirrors and the angle formed by the semiconductor laser substrate and the external cavity mirrors are constant, and This provides a wavelength multiplexing optical transmission device in which the specific wavelengths to be optically returned are different.

作用 本発明は、半導体レーザ活性層の端面から放射する発散
性の放射光のうちの特定の波長の光だけを、曲がりと周
期の連続的に変化する構造を有する反射型の回折格子を
用いて、回折光の反射角を連続的に変化させることによ
り集光性の光ビームに変換し、前記活性層の端面に反射
光を直接集光して半導体レーザに光帰還を行なうことが
可能となることを応用するものである。また半導体レー
ザと外部共振器鏡の間にレンズが介在しないので素子の
小型化と光帰還の光路中に収差が発生することが防げら
れ、その結果高性能な外部共振器型半導体レーザが実現
されるもである。
Function The present invention uses a reflection type diffraction grating having a structure in which the bending and period change continuously to redirect only light of a specific wavelength out of the diverging radiation emitted from the end face of a semiconductor laser active layer. By continuously changing the reflection angle of the diffracted light, it is possible to convert the diffracted light into a condensing light beam, to directly focus the reflected light on the end face of the active layer, and to perform optical feedback to the semiconductor laser. It is an application of this. In addition, since no lens is interposed between the semiconductor laser and the external cavity mirror, the device can be made smaller and aberrations can be prevented from occurring in the optical path of optical feedback, resulting in the realization of a high-performance external cavity type semiconductor laser. It is also possible.

実施例 本発明の外部共振器型の半導体レーザの概略図を第1図
に示す。第1図に本発明の外部共振器型半導体レーザの
概略を示す。1は1,3μm帯のファプリーペロー型半
導体レーザ、2は半導体レーザの光軸に対して傾斜して
配置された外部共振器鏡基板であり、その基板の表面の
一部には反射型の回折格子3が形成されている。半導体
レーザの片端面4から放射された発散性の光は、回折格
子3に達し、この回折格子の光回折現象に伴う光分散効
果により波長選択された特定の波長の光のみが半導体レ
ーザの方向に反射され、半導体レーザの片端面4に集光
され半導体レーザの活性層5に光帰還される。ここで波
長選択される特定の波長は回折格子の形状及び基板の傾
斜角で決定され、特定の波長以外の波長の光は異なる方
向に分散して集光され活性層に光帰還されることはない
。また活性層の片端面には反射防止膜6が形成されてお
り、片端面4ともう一方の端面7で形成される半導体レ
ーザ自体のファプリーペロー共振器による発振は抑圧さ
れている。
Embodiment A schematic diagram of an external cavity type semiconductor laser according to the present invention is shown in FIG. FIG. 1 schematically shows an external cavity type semiconductor laser according to the present invention. 1 is a Fapley-Perot semiconductor laser in the 1.3 μm band; 2 is an external cavity mirror substrate arranged obliquely with respect to the optical axis of the semiconductor laser; a reflective type is provided on a part of the surface of the substrate; A diffraction grating 3 is formed. The diverging light emitted from one end surface 4 of the semiconductor laser reaches the diffraction grating 3, and due to the light dispersion effect accompanying the optical diffraction phenomenon of this diffraction grating, only the light of a specific wavelength selected is directed toward the semiconductor laser. The light is reflected by the semiconductor laser, is focused on one end surface 4 of the semiconductor laser, and is optically returned to the active layer 5 of the semiconductor laser. The specific wavelength selected here is determined by the shape of the diffraction grating and the tilt angle of the substrate, and light with wavelengths other than the specific wavelength is dispersed and focused in different directions and is not returned to the active layer. do not have. Further, an anti-reflection film 6 is formed on one end surface of the active layer, suppressing oscillation due to the Fapley-Perot resonator of the semiconductor laser itself formed between one end surface 4 and the other end surface 7.

また、半導体レーザ1自体のファプリーペローモードに
より発振し得る隣接した副線モードの波長の光は活性層
5の上部もしくは下部的2μmの位置に集光されるよう
に設計されている。
Further, it is designed so that light having a wavelength of an adjacent sub-line mode that can be oscillated by the Fabry-Perot mode of the semiconductor laser 1 itself is focused at a position 2 μm above or below the active layer 5.

第2図を用いて、本発明に用いた外部共振器鏡の設計原
理を示す。回折素子の形成される平面基板上にx、  
yの直交座標系を仮定し、光の発散点及び集光点となる
活性層端面Pが前記座標の原点から垂直方向に対し y
軸方向に0の角をなす線上に存在し、しかも原点からf
の距ガFに設定されていると仮定する。Pから放射され
回折格子の一点Gに到達し、反射されて再度Pに戻る光
の位相が揃うように回折格子の形状が設定されていると
き、この回折格子は外部共振器鏡としてはたらくことに
なる。即ち点G(x、Y)を回折格子の等位相点と考え
ると、回折格子の形状は次式で与えられる。
The design principle of the external resonator mirror used in the present invention is illustrated using FIG. x on the flat substrate on which the diffraction element is formed;
Assuming an orthogonal coordinate system of y, the end face P of the active layer, which is the divergence point and convergence point of light, is y in the perpendicular direction from the origin of the coordinates.
Exists on a line that makes an angle of 0 in the axial direction, and is located at a distance f from the origin.
Assume that the distance is set to F. When the shape of the diffraction grating is set so that the phases of the light emitted from P, reaching one point G of the diffraction grating, being reflected and returning to P again are aligned, this diffraction grating will work as an external cavity mirror. Become. That is, if point G(x, Y) is considered as an equiphase point of the diffraction grating, the shape of the diffraction grating is given by the following equation.

2PG=mλ+(定数)   (第−式)ここで、PG
は点Pと点Gの距離、λは半導体レーザの設定発振波長
、mは整数である。
2PG=mλ+(constant) (Equation -) Here, PG
is the distance between points P and G, λ is the set oscillation wavelength of the semiconductor laser, and m is an integer.

原点における前記定数を 零 ときめると、回折格子の
形状をx、  y座標で示すと 次式で表される。
When the constant at the origin is set to zero, the shape of the diffraction grating is expressed by the following equation in terms of x and y coordinates.

x2+  (y −fslrl) 2=(mλ/2+f
) ” −(fcosθ}2 (第2式)従って回折格
子の形状は 点(0、f 5lnO)を中心とする半径
が v’((mλ/2+ f) 2− (fcosθ}2)
のmの関数となる日計である。
x2+ (y −fslrl) 2=(mλ/2+f
) ” -(fcosθ}2 (2nd equation) Therefore, the shape of the diffraction grating is: The radius centered at the point (0, f 5lnO) is v'((mλ/2+f) 2- (fcosθ}2)
It is a daily total that is a function of m.

また半導体レーザの放射ビームに非点隔差Δfが存在す
るときには、同様に前記座標の原点から垂直方向に対し
y軸方向にθの角をなす線上にX方向に対する発散点P
1とy方向に対する発散点P2を仮定し、原点からそれ
ぞれf及びf+Δfの距離に設定されていると仮定すと
、同様に回折格子の形状は次式で与えられる。
Furthermore, when an astigmatism difference Δf exists in the radiation beam of the semiconductor laser, a divergence point P in the X direction is similarly located on a line forming an angle θ in the y-axis direction from the origin of the coordinates.
1 and the divergence point P2 in the y direction, and assuming that they are set at distances f and f+Δf from the origin, respectively, the shape of the diffraction grating is similarly given by the following equation.

x21 ((mλ/2+f)2− (f 5cosθ}
2)十y−(Δf +f)sinθ}2/[(mλ/2
+(Δ f +f))  2−  ((Δ f+f)c
osθ} 2コ = 1(第3式) 第3図に、本発明の実施例に用いた外部共振器鏡の概略
を示す。第3図(A)は外部共振器鏡の断面の概略を示
す。基板2として用いた51基板31の上に形成された
約0.6μmの電子線レジスト32に、前記の第2式で
表される曲線状に電子ビームを照射し、その後現像液に
浸すことにより前記電子ビームの14射された部分を除
去し凹凸構造が形成されている。その凹凸構造の電子線
レジストの表面にAuの薄膜33を形成し、高い反射率
の回折格子が形成されている。第3図(B)は電子ビー
ムで形成された回折格子34の形状の概略を示す。回折
格子34の形成されている領域の大きさは0.1x O
,Ic m2である。回折格子の凹部の形状は第2式で
表され、設定パラメータとしてf=2mm1  θ= 
48.2’   λ=1.3μmとした。
x21 ((mλ/2+f)2- (f 5cosθ}
2) 10y−(Δf +f)sinθ}2/[(mλ/2
+(Δ f +f)) 2- ((Δ f+f)c
osθ} 2co = 1 (3rd equation) FIG. 3 schematically shows the external resonator mirror used in the embodiment of the present invention. FIG. 3(A) shows a schematic cross-section of the external resonator mirror. By irradiating the electron beam resist 32 of about 0.6 μm formed on the 51 substrate 31 used as the substrate 2 with an electron beam in a curved shape expressed by the above-mentioned second equation, and then immersing it in a developer. A concavo-convex structure is formed by removing the portions irradiated by the electron beam. A thin Au film 33 is formed on the surface of the electron beam resist having the uneven structure, thereby forming a diffraction grating with a high reflectance. FIG. 3(B) schematically shows the shape of the diffraction grating 34 formed by the electron beam. The size of the area where the diffraction grating 34 is formed is 0.1x O
, Ic m2. The shape of the concave portion of the diffraction grating is expressed by the second equation, and the setting parameters are f = 2 mm1 θ =
48.2' λ=1.3 μm.

回折格子34において、各グレーティングを構成してい
る曲線は第2式で示される日計の一部であり、第3図に
示すようにその半径の間隔が、徐々に変化している事か
ら、既に述べた様に曲がりとチャーピングの構成を有す
るグレーティングである。
In the diffraction grating 34, the curves composing each grating are part of the daily scale expressed by the second equation, and the radial intervals of the curves gradually change as shown in FIG. As already mentioned, this grating has a bending and chirping structure.

上記の様に形成した回折格子を外部共振器鏡として第1
図に示した外部共振器型半導体レーザを11i成した結
果、約1.3μmの波長で単一縦モード発振が実現でき
た。また発振波長は半導体レーザ基板と外部共振器鏡と
のなす角を変化させることにより1.3μmを中心に約
0.02μmの波長範囲において連続的に制御すること
が可能であった。
The diffraction grating formed as described above is used as an external cavity mirror in the first
As a result of fabricating the external cavity type semiconductor laser shown in the figure in 11i, single longitudinal mode oscillation was realized at a wavelength of about 1.3 μm. Furthermore, the oscillation wavelength could be continuously controlled within a wavelength range of approximately 0.02 μm centered around 1.3 μm by changing the angle formed between the semiconductor laser substrate and the external cavity mirror.

また副モード抑圧比は30dB以上であった。さらに正
弦波の交流電流で変調をおこなったところ、半導体レー
ザ光出力はIQGHz以上の変調周波数にも十分追従す
ることが確認できた。
Further, the sub-mode suppression ratio was 30 dB or more. Furthermore, when modulation was performed using a sinusoidal alternating current, it was confirmed that the semiconductor laser light output could sufficiently follow modulation frequencies of IQGHz or higher.

以上の実施例に於いては、外部共振器鏡を形成する回折
格子の形状が日計の一部である場合をしめしたが、使用
する半導体レーザが例えばゲインガイド型の半導体レー
ザであり非点隔差が存在する場合には外部共振器鏡を形
成する回折格子の形状を楕円第3式で表される日計の一
部で構成することにより、同様に安定な単一縦モード発
振する外部共振器型半導体レーザを構成することが可能
である。これはじゅうらいのはんどうたいれ−ざではコ
リメーションレンズ以外に更にンリンドリカルレンズを
挿入するか、もしくは両方の機能を汀する高f、17度
な非球面レンズを用いなければ解決できなかったた課題
であり、それが本発明では容易に実現できるものである
In the above embodiments, the shape of the diffraction grating forming the external cavity mirror is a part of the diode, but the semiconductor laser used is, for example, a gain guide type semiconductor laser, If there is a gap difference, by configuring the shape of the diffraction grating that forms the external resonator mirror to be a part of the diary scale expressed by the third elliptic equation, external resonance that similarly oscillates in a stable single longitudinal mode can be achieved. It is possible to construct a container-shaped semiconductor laser. This problem can only be solved by inserting an lindrical lens in addition to the collimation lens, or by using a high-f, 17-degree aspherical lens that performs both functions. This is a serious problem, and it can be easily achieved with the present invention.

以上は発散光を収束光に変換する機能を存する反射型の
回折格子を外部共振器鏡として用いた外部共振器型の半
導体レーザを示したが、第4図にこの外部共振器型半導
体レーザを用いた波長多重光伝送装置の光源の概略構成
図を示す。
Above, we have shown an external cavity type semiconductor laser that uses a reflective diffraction grating, which has the function of converting divergent light into convergent light, as an external cavity mirror. Figure 4 shows this external cavity type semiconductor laser. A schematic configuration diagram of a light source of the wavelength division multiplexing optical transmission device used is shown.

41a−hは、同一のInP半導体基板にアレー状に形
成された1、3μm帯の複数の半導体レーザであり、4
2は外部共振器鏡基板であり、それぞれの半導体レーザ
に異なる波長の光を直接光帰還するための複数の回折格
子43a−hが形成されている。
41a-h are a plurality of semiconductor lasers in the 1 and 3 μm band formed in an array on the same InP semiconductor substrate;
Reference numeral 2 denotes an external resonator mirror substrate, on which a plurality of diffraction gratings 43a-h are formed for directly optically feeding back light of different wavelengths to each semiconductor laser.

それぞれの回折格子の形状は、前記複数の半導体レーザ
41a−hの活性層端面44a−hと、複数の外部共振
器鏡43a−hとの設定距離、及び半導体レーザ基板と
外部共振器鏡とのなす角θが一定であり、かつ光帰還さ
れる特定の波長がそれぞれ10Aずつ異なる様に設計さ
れ前記の実施例と同様に電子ビーム露光装置を用いて作
製した。その他の設定パラメータは同様にf = 2 
mm1  θ=48.2’である。半導体レーザのそれ
ぞれの活性層端面44a−hを結ぶ直線と、それに対応
させるそれぞれの外部共振器鏡43a−hの座標原点を
結ぶ直線が平行でかつ2mm隔てて配置し、また外部共
振器鏡基板を半導体レーザの光軸に対して角度的θ傾斜
させることにより 安定な10波長の波長多重光伝送装
置の光源を実現することが可能であった。
The shape of each diffraction grating is determined by the set distance between the active layer end faces 44a-h of the plurality of semiconductor lasers 41a-h and the plurality of external cavity mirrors 43a-h, and the distance between the semiconductor laser substrate and the external cavity mirror. They were designed so that the angle θ formed was constant, and the specific wavelengths to be optically fed back differed by 10 A, and were manufactured using an electron beam exposure apparatus in the same manner as in the previous example. Other setting parameters are similarly f = 2
mm1 θ=48.2'. A straight line connecting each of the active layer end faces 44a-h of the semiconductor laser and a straight line connecting the coordinate origin of each of the corresponding external resonator mirrors 43a-h are arranged parallel to each other and separated by 2 mm, and the external resonator mirror substrate By tilting the wavelength at an angle θ with respect to the optical axis of the semiconductor laser, it was possible to realize a stable light source for a 10-wavelength wavelength multiplexing optical transmission device.

各隣接した半導体レーザ間の発振波長間隔は約1OAで
あり、また発振波長は外部共振器鏡基板の半導体レーザ
の光軸に対する傾斜角を変化させることにより全体的に
シフトさせ制御することが可能であった。
The oscillation wavelength interval between adjacent semiconductor lasers is approximately 1 OA, and the oscillation wavelength can be shifted and controlled as a whole by changing the tilt angle of the external cavity mirror substrate with respect to the optical axis of the semiconductor laser. there were.

以上の実施例に於いては、半導体レーザとして1.3μ
m帯のものを使用したが、必ずしもこれに限らずガリウ
ム砒素基板を用いた0、8μm帯、もしくは0. 6μ
mμmキガ半導−ザを用いても全く同様の効果が得られ
ることは自明である。
In the above embodiment, the semiconductor laser is 1.3 μm.
Although the m-band was used, it is not necessarily limited to this, but the 0, 8 μm band using a gallium arsenide substrate, or the 0. 6μ
It is obvious that exactly the same effect can be obtained by using a mμm semiconductor.

発明の効果 以上のように本発明は従来の外部共振器型の半導体レー
ザの欠点、即ち (1)半導体レーザと外部共振器間の距離が長く、素子
サイズの小型化に限界。
Advantages of the Invention As described above, the present invention addresses the drawbacks of conventional external cavity type semiconductor lasers, namely (1) the distance between the semiconductor laser and the external cavity is long, which limits miniaturization of the device size.

(2)半導体レーザ、コリメーションレンズ、及び外部
共振器の光軸の調整が困難 (3)半導体レーザと外部共振器間の光の走行時間が長
く高速変調限界が困難。
(2) It is difficult to adjust the optical axes of the semiconductor laser, collimation lens, and external resonator. (3) The travel time of light between the semiconductor laser and the external resonator is long, making it difficult to reach the high-speed modulation limit.

(4)レンズや半導体レーザの非点ドr差に伴う収差に
より、発振モードが不安定。
(4) The oscillation mode is unstable due to aberrations caused by astigmatism of the lens and semiconductor laser.

といった問題点を克服し、小型で超速変調の可能な波長
安定化半導体レーザ、及び波長多重光伝送システムを実
現するものであり、大きな価値を有するものである。
The present invention overcomes these problems and realizes a compact wavelength-stabilized semiconductor laser capable of ultra-fast modulation and a wavelength-multiplexed optical transmission system, which is of great value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の外部共振器型半導体レーザの+a略図
、第2図は本発明に用いた外部共振器鏡を構成する回折
素子の原理及び形状を説明する図、第3図(A)、  
(B)は本発明の実施例に用いた外部共振器鏡の概略断
面図、平面図、第4図は外部共振器型半導体レーザを用
いた波長多重光伝送装置の光源の概略構成図、第5図は
従来の外部共振器型半導体レーザの概略を示す図である
。 1番1番半導体レーザ、2(31)  ・O・基板、3
(34)・・舎回折格子。 代理人の氏名 弁理士 粟野重孝 はか1名第1図 6尺封肪止繰 / 第2図 第 図 cA) 第 図 第 5 図 56反IFJrよr蔓
Figure 1 is a +a schematic diagram of the external cavity type semiconductor laser of the present invention, Figure 2 is a diagram explaining the principle and shape of the diffraction element constituting the external cavity mirror used in the present invention, and Figure 3 (A). ,
(B) is a schematic cross-sectional view and a plan view of an external resonator mirror used in an embodiment of the present invention, and FIG. FIG. 5 is a diagram schematically showing a conventional external cavity type semiconductor laser. No. 1 No. 1 semiconductor laser, 2 (31) ・O・Substrate, 3
(34)...sha diffraction grating. Name of agent: Patent attorney Shigetaka Awano, 1 person (Figure 1, Figure 6, Figure cA), Figure 5, Figure 5, Figure 56, Anti-IF Jr.

Claims (9)

【特許請求の範囲】[Claims] (1)半導体レーザと半導体レーザ活性層の片方の端面
から放射する発散性の放射光のうちの特定の波長の光だ
けを前記活性層の片端面に直接集光して光帰還を行なう
波長分散性及び光集光性の機能を有し、かつ平面基板上
に形成された反射型の光回折素子で構成された外部共振
器鏡を含んで形成され、前記外部共振器鏡を構成してい
る反射型の光回折素子が、曲がりと周期の連続的に変化
する構造を有する回折格子により形成され、かつ各格子
の形状が円もしくは楕円の2次曲線群の一部で表わされ
ることを特徴とする外部共振器型半導体レーザ。
(1) Wavelength dispersion in which only light of a specific wavelength of the diverging radiation emitted from one end face of a semiconductor laser and a semiconductor laser active layer is focused directly onto one end face of the active layer for optical feedback. The external resonator mirror is formed of an external resonator mirror that has the functions of light-gathering and light-converging functions and is formed of a reflective optical diffraction element formed on a flat substrate. The reflection type optical diffraction element is formed by a diffraction grating having a structure in which the curve and period change continuously, and the shape of each grating is represented by a part of a group of quadratic curves of a circle or an ellipse. External cavity type semiconductor laser.
(2)回折格子の各格子の形状が次式で表わされる円群
の一部であることを特徴とする特許請求の範囲第1項記
載の外部共振器型半導体レーザ。 x^2+(y−fsinθ)^2= (mλ/2+f)^2−(fcosθ)^2ここでx、
yは光回折素子の形成される平面基板上の直交座標であ
り、fは活性層端面と前記座標系の原点との設定距離、
θは前記活性層端面と前記原点を結ぶ軸と回折格子の形
成された平面基板のy軸とのなす角、λは半導体レーザ
の設定発振波長、mは整数である。
(2) The external cavity type semiconductor laser according to claim 1, wherein the shape of each grating of the diffraction grating is a part of a circle group expressed by the following formula. x^2+(y-fsinθ)^2= (mλ/2+f)^2-(fcosθ)^2where x,
y is the orthogonal coordinate on the plane substrate on which the optical diffraction element is formed, f is the set distance between the end surface of the active layer and the origin of the coordinate system,
θ is the angle formed between the axis connecting the end face of the active layer and the origin and the y-axis of the flat substrate on which the diffraction grating is formed, λ is the set oscillation wavelength of the semiconductor laser, and m is an integer.
(3)回折格子の各格子の形状が次式で表わされる楕円
群の一部であることを特徴とする特許請求の範囲第1項
記載の外部共振器型半導体レーザ。 x^2/{(mλ/2+f)^2−(f・cosθ)^
2}+{y−(Δf+f)sinθ}^2/[{mλ/
2+(Δf+f)}^2−{(Δf+f)cosθ}^
2]=1ここでx、yは光回折素子の形成される平面基
板上の直交座標であり、fは活性層端面と前記座標系の
原点との設定距離、θは前記活性層端面と前記原点を結
ぶ軸と回折格子の形成された平面基板のy軸とのなす角
、λは半導体レーザの設定発振波長、mは整数である。 またΔfは非点隔差であり、前記活性層端面から前記座
標系のX方向に広がるレーザ光の発散中心点と前記活性
層端面から前記座標系のy方向に広がるレーザ光の発散
中心点との距離を示す。
(3) The external cavity type semiconductor laser according to claim 1, wherein the shape of each grating of the diffraction grating is a part of an ellipse group expressed by the following formula. x^2/{(mλ/2+f)^2-(f・cosθ)^
2}+{y-(Δf+f)sinθ}^2/[{mλ/
2+(Δf+f)}^2−{(Δf+f)cosθ}^
2] = 1 where x and y are orthogonal coordinates on the plane substrate on which the optical diffraction element is formed, f is the set distance between the end face of the active layer and the origin of the coordinate system, and θ is the distance between the end face of the active layer and the origin of the coordinate system. The angle formed by the axis connecting the origin and the y-axis of the flat substrate on which the diffraction grating is formed, λ is the set oscillation wavelength of the semiconductor laser, and m is an integer. Further, Δf is an astigmatism difference between the divergence center point of the laser beam spreading from the active layer end face in the X direction of the coordinate system and the divergence center point of the laser light spreading from the active layer end face in the Y direction of the coordinate system. Show distance.
(4)半導体レーザ活性層の片端面から放射する発散性
の放射光のうちの特定の波長の光が、前記外部共振器に
より活性層片端面に集光して光帰還される際、前記特定
の波長に対して、半導体レーザ自体の共振器により発振
し得る隣接した縦モードの発振波長の光が前記活性層の
外部に集光されることを特徴とする特許請求の範囲第1
項記載の外部共振器型半導体レーザ。
(4) When light of a specific wavelength of the diverging radiation emitted from one end surface of the semiconductor laser active layer is focused on one end surface of the active layer by the external resonator and optically returned, Claim 1, wherein light having an oscillation wavelength in an adjacent longitudinal mode that can be oscillated by a resonator of the semiconductor laser itself is focused outside the active layer.
External cavity type semiconductor laser described in .
(5)外部共振器鏡を構成する回折格子が、電子計算機
制御の電子ビーム露光法により形成されていることを特
徴とする特許請求の範囲第1項記載の外部共振器型半導
体レーザ。
(5) The external cavity type semiconductor laser according to claim 1, wherein the diffraction grating constituting the external cavity mirror is formed by a computer-controlled electron beam exposure method.
(6)半導体レーザにおいて、光が放射されかつ外部共
振器鏡により光が集光される片端面に反射防止膜が形成
されていることを特徴とする特許請求の範囲第1項記載
の外部共振器型半導体レーザ。
(6) External resonance according to claim 1, wherein an antireflection film is formed on one end surface of the semiconductor laser from which light is emitted and where the light is focused by an external resonator mirror. Vessel-shaped semiconductor laser.
(7)複数の半導体レーザ、及びそれぞれの半導体レー
ザの片端面から放射された光のうち、異なる特定の波長
の光を前記それぞれ半導体レーザの片端面に直接帰還す
る集光性及び波長分散性の外部共振器の設置された複数
の外部共振器型レーザを用いた波長多重光伝送装置。
(7) A plurality of semiconductor lasers and wavelength dispersion properties that directly return light of different specific wavelengths from among the light emitted from one end surface of each semiconductor laser to one end surface of each of the semiconductor lasers. A wavelength multiplexing optical transmission device using multiple external cavity lasers equipped with external cavities.
(8)複数の半導体レーザが同一の半導体基板にアレー
状に形成されており、かつそれぞれの半導体レーザに異
なる波長の光を直接光帰還するための外部共振器鏡を形
成する回折格子が同一基板上に形成されていることを特
徴とする特許請求の範囲第7項記載の波長多重光伝送装
置。
(8) A plurality of semiconductor lasers are formed in an array on the same semiconductor substrate, and a diffraction grating forming an external resonator mirror for direct optical feedback of light of different wavelengths to each semiconductor laser is on the same substrate. 8. The wavelength division multiplexing optical transmission device according to claim 7, wherein the wavelength division multiplexing optical transmission device is formed on the top.
(9)複数の半導体レーザの活性層端面と、複数の外部
共振器鏡との設定距離、及び半導体レーザの光軸と外部
共振器鏡とのなす角が一定であり、かつ光帰還される特
定の波長が、それぞれ異なることを特徴とする特許請求
の範囲第8項記載の波長多重光伝送装置。
(9) Specify that the set distances between the active layer end faces of multiple semiconductor lasers and multiple external cavity mirrors, and the angles formed between the optical axes of the semiconductor lasers and the external cavity mirrors are constant and optical feedback is provided. 9. The wavelength division multiplexing optical transmission apparatus according to claim 8, wherein the wavelengths of the wavelength division multiplexing optical transmission apparatus are different from each other.
JP1030547A 1989-02-09 1989-02-09 External cavity type semiconductor laser and wavelength division multiplexing optical transmission device Expired - Fee Related JP2676875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1030547A JP2676875B2 (en) 1989-02-09 1989-02-09 External cavity type semiconductor laser and wavelength division multiplexing optical transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1030547A JP2676875B2 (en) 1989-02-09 1989-02-09 External cavity type semiconductor laser and wavelength division multiplexing optical transmission device

Publications (2)

Publication Number Publication Date
JPH02209784A true JPH02209784A (en) 1990-08-21
JP2676875B2 JP2676875B2 (en) 1997-11-17

Family

ID=12306822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1030547A Expired - Fee Related JP2676875B2 (en) 1989-02-09 1989-02-09 External cavity type semiconductor laser and wavelength division multiplexing optical transmission device

Country Status (1)

Country Link
JP (1) JP2676875B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361584A (en) * 1991-06-10 1992-12-15 Matsushita Electric Ind Co Ltd Phase-locked semiconductor laser
US5301059A (en) * 1992-03-03 1994-04-05 Matsushita Electric Industrial Co., Ltd. Short-wavelength light generating apparatus
US5387998A (en) * 1992-06-17 1995-02-07 Matsushita Electric Industrial Co., Ltd. Shorter wavelength light generating apparatus in which coherent light is converted into shorter wavelength light
JPH09307190A (en) * 1996-05-15 1997-11-28 Fuji Photo Film Co Ltd Aluminum-indium-gallium-nitrogen based semiconductor luminous element and semiconductor luminous device
JP2007189118A (en) * 2006-01-16 2007-07-26 Yokogawa Electric Corp External-cavity wavelength tunable light source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142426A (en) * 1985-12-17 1987-06-25 Matsushita Electric Ind Co Ltd Light-source for wavelength multiplex light communication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142426A (en) * 1985-12-17 1987-06-25 Matsushita Electric Ind Co Ltd Light-source for wavelength multiplex light communication

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361584A (en) * 1991-06-10 1992-12-15 Matsushita Electric Ind Co Ltd Phase-locked semiconductor laser
US5301059A (en) * 1992-03-03 1994-04-05 Matsushita Electric Industrial Co., Ltd. Short-wavelength light generating apparatus
US5387998A (en) * 1992-06-17 1995-02-07 Matsushita Electric Industrial Co., Ltd. Shorter wavelength light generating apparatus in which coherent light is converted into shorter wavelength light
JPH09307190A (en) * 1996-05-15 1997-11-28 Fuji Photo Film Co Ltd Aluminum-indium-gallium-nitrogen based semiconductor luminous element and semiconductor luminous device
JP2007189118A (en) * 2006-01-16 2007-07-26 Yokogawa Electric Corp External-cavity wavelength tunable light source

Also Published As

Publication number Publication date
JP2676875B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
JP2716211B2 (en) Grating tuned laser
KR100444176B1 (en) Optical deflector operated by electric signal and external cavity type of wave length tunable using the same
US7116852B2 (en) Optical signal processing circuit and method of producing same
US6914916B2 (en) Tunable controlled laser array
US4913525A (en) Frequency stabilized light source
US20190339450A1 (en) Optical circuit and optical device
JPH04361584A (en) Phase-locked semiconductor laser
JPS625677A (en) Frequency-stabilized semiconductor laser element
JPH02209784A (en) External resonator type semiconductor laser and wavelength multiple optical transmitter
US5173915A (en) Semiconductor laser device
JPH0637402A (en) Semiconductor-laser optical reflector element
JP4021443B2 (en) Optical device with demultiplexing function
WO2022127138A1 (en) Resonant cavity, laser, and laser radar
WO2003010568A1 (en) Tunable controlled laser array
JP2841570B2 (en) External cavity semiconductor laser and optical transmission device using the same
JPH0720359A (en) Optical device
WO2002091531A1 (en) Optical interference apparatus and method
US20230108080A1 (en) Semiconductor laser device
JP2004165592A (en) Tunable optical source module
JPH0564772B2 (en)
JPS62154685A (en) Light source for wavelength multiplex optical communication
JPH0423382A (en) External resonator type laser element
JPH10111409A (en) Two luminous fluxes interfering exposure method, manufacture of array type semiconductor light source, and array type semiconductor light source
JPS58150929A (en) Wavelength selecting element
JPH04106990A (en) Optical integrated circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees