JPH0220939B2 - - Google Patents

Info

Publication number
JPH0220939B2
JPH0220939B2 JP56151780A JP15178081A JPH0220939B2 JP H0220939 B2 JPH0220939 B2 JP H0220939B2 JP 56151780 A JP56151780 A JP 56151780A JP 15178081 A JP15178081 A JP 15178081A JP H0220939 B2 JPH0220939 B2 JP H0220939B2
Authority
JP
Japan
Prior art keywords
reference cell
laser
laser beam
stokes raman
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56151780A
Other languages
Japanese (ja)
Other versions
JPS5852549A (en
Inventor
Shoichi Fujii
Mitsuo Gomi
Yasuharu Jin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
NIPPON KAGAKU KOGYO KK
Original Assignee
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
NIPPON KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO, NIPPON KAGAKU KOGYO KK filed Critical KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority to JP15178081A priority Critical patent/JPS5852549A/en
Publication of JPS5852549A publication Critical patent/JPS5852549A/en
Publication of JPH0220939B2 publication Critical patent/JPH0220939B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/278Constitution of standards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/651Cuvettes therefore
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコヒーレント反ストークスラマン散乱
分光法により例えば気体の温度や数密度等を測定
する分光測定装置に用いられ、光源として用いる
レーザ光のスペクトル分布を得るための参照セル
に改良に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is used in a spectrometer that measures, for example, the temperature and number density of a gas by coherent anti-Stokes Raman scattering spectroscopy, and is used to measure the spectrum of a laser beam used as a light source. It concerns improvements to reference cells for obtaining distributions.

〔従来技術〕 一般にコヒーレント反ストークスラマン散乱分
光法によつて測定を行うには、光源として選定さ
れた波長のレーザと、該レーザの波長に対し相対
的に決定される波長に同調させることが可能な広
帯域のチユーナブルレーザとを使用することがあ
る。そして測定すべき対象が気体である場合、充
分な強度を持つた測定結果(以下これを情報光と
称す)を得ようとすれば、その光源として高いレ
ーザ出力が得られるパルス発振型レーザが用いら
れる。
[Prior art] Generally, to perform measurements by coherent anti-Stokes Raman scattering spectroscopy, it is possible to tune a laser with a wavelength selected as a light source and a wavelength determined relative to the wavelength of the laser. Broadband tunable lasers may be used. When the object to be measured is a gas, a pulsed laser that can obtain high laser output is used as the light source in order to obtain measurement results with sufficient intensity (hereinafter referred to as information light). It will be done.

しかしながらこのようなレーザの出力は、スペ
クトルの分布が一様ではなく通常はパルス発振毎
に±10%程度の出力変動を伴うため、光源の出力
レベルの変動によつて当然の結果として得られる
情報光にはレーザの変動並びに広帯域レーザのス
ペクトル強度分布による誤差が含まれることとな
る。
However, the output of such a laser does not have a uniform spectral distribution and usually has an output fluctuation of about ±10% for each pulse oscillation, so the information obtained as a natural result of fluctuations in the output level of the light source is The light will include errors due to laser fluctuations and the spectral intensity distribution of the broadband laser.

そこで広帯域レーザのスペクトル強度分布の歪
を補正するために、例えばApplied Physics
Letters Vol.29,No.3(1976年8月1日発行)に
示されているように、単色光レーザを広帯域レー
ザのレーザビームの一部を取出して参照セルに照
射し、参照セルから得られる参照光のスペクトル
分布に基づいて測定結果を補償するようにする技
術が知られている。
Therefore, in order to correct the distortion of the spectral intensity distribution of broadband lasers, for example, Applied Physics
As shown in Letters Vol. 29, No. 3 (published August 1, 1976), a part of the laser beam of a broadband laser is irradiated onto a reference cell using a monochromatic laser, and the information obtained from the reference cell is Techniques are known in which measurement results are compensated based on the spectral distribution of reference light that is used.

このような参照光は測定対象となる気体とは異
なるアルゴン等の不活性ガスを媒体とした参照セ
ルに入射させ、参照セルから発生する非共鳴のコ
ヒーレント反ストークスラマン散乱光をデイテク
タによつて検出し、それによつて得られる変動成
分の出力を取出し、これを参照信号として用いて
いた。
Such reference light is incident on a reference cell whose medium is an inert gas such as argon, which is different from the gas to be measured, and a detector detects the non-resonant coherent anti-Stokes Raman scattered light generated from the reference cell. Then, the resulting output of the fluctuation component was extracted and used as a reference signal.

こうして得られる参照信号の強度は、参照セル
内に媒体として封入されるガスの分子数密度の2
乗に比例するから、参照セル内の不活性ガスの圧
力を高くする必要があり、一般には該圧力を数気
圧乃至数十気圧程度、例えば前述した従来例では
30気圧としている。
The intensity of the reference signal obtained in this way is 2 times the molecular number density of the gas sealed as a medium in the reference cell.
Since it is proportional to the power of
The pressure is set at 30 atmospheres.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように参照セルは相当高圧の不活性ガスを
封入しなければならないので、その製造時におい
て相当な技術的困難が伴う。例えばセル自体の形
状・構造・大きさ等に高圧に耐えるための制約が
加わり、又使用時においてはその取扱に充分な注
意が必要となる。そしてもし破損させるような事
があれば取扱者は勿論、その周辺の機材にも大き
な損傷を与える危険性があるという問題点があつ
た。
Since the reference cell must be filled with an inert gas at a considerably high pressure, considerable technical difficulties arise during its manufacture. For example, restrictions are imposed on the shape, structure, size, etc. of the cell itself in order to withstand high pressure, and sufficient care must be taken in handling it during use. If something were to break, there was a risk of serious damage not only to the operator but also to surrounding equipment.

〔発明の目的〕[Purpose of the invention]

このような従来の参照セルの問題点に鑑みてな
されたものであつて、充分な信号強度を得ると共
に容易に製造することができ、安全性が高く安価
な参照セルを提供することを技術的課題とする。
This was done in view of the problems of conventional reference cells, and it is a technical endeavor to provide a reference cell that has sufficient signal strength, is easy to manufacture, and is highly safe and inexpensive. Take it as a challenge.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はパルス発振型レーザより得られる単色
レーザビームと、該パルス発振型レーザより得ら
れる広帯域レーザビームとを光源として用いて試
料に照射し、コヒーレント反ストークスラマン散
乱光を得る分光測定装置に使用され、レーザビー
ムのスペクトル分布を検出する参照セルであつ
て、第1図に示すように、二つのレーザビームの
一部を分岐して形成した参照光経路に設けられ、
媒体として液体を使用し非共鳴反ストークスラマ
ン散乱を生ぜしめるようにしたことを特徴とする
ものである。
The present invention is used in a spectrometer that uses a monochromatic laser beam obtained from a pulsed laser and a broadband laser beam obtained from the pulsed laser as a light source to irradiate a sample and obtain coherent anti-Stokes Raman scattered light. A reference cell for detecting the spectral distribution of a laser beam, which is provided in a reference light path formed by branching a part of two laser beams, as shown in FIG.
This method is characterized by using a liquid as a medium to produce non-resonant anti-Stokes Raman scattering.

〔作用〕[Effect]

このような特徴を有する本発明によれば、参照
光経路に媒体を液体とした参照セルが形成されて
おりレーザビームが照射されると非共鳴反ストー
クスラマン散乱光が生じる。多くの液体は常温常
圧のもとで気体の103倍程度の分子数密度を持つ
ている。従つて参照信号の強度は、例えば数十気
圧の高圧気体を使用する従来のものより103倍程
度上回る強度のものを得る事ができ、充分な強度
の参照信号が得られる。
According to the present invention having such features, a reference cell with a liquid medium is formed in the reference light path, and when a laser beam is irradiated, non-resonant anti-Stokes Raman scattered light is generated. Many liquids have molecular density about 10 3 times that of gas at normal temperature and pressure. Therefore, the strength of the reference signal can be obtained, for example, about 10 3 times higher than that of the conventional method using high-pressure gas of several tens of atmospheres, and a reference signal of sufficient strength can be obtained.

〔実施例の説明〕[Explanation of Examples]

以下本発明を第1図に示した実施例に従つて説
明する。光源(図示省略)から適宜手段によつて
別の光径路に分岐されレーザビーム1は、集光レ
ンズ3によつて参照セル4内の媒体5に焦点を結
び、更にレンズ3を介して平行ビーム2となつて
デイテクタ(図示省略)側aへ出て行く。
The present invention will be explained below with reference to the embodiment shown in FIG. A laser beam 1 that is branched from a light source (not shown) into another optical path by appropriate means is focused on a medium 5 in a reference cell 4 by a condensing lens 3, and further passes through the lens 3 into a parallel beam. 2 and exits to the detector (not shown) side a.

ここで参照セル4内の媒体5には本発明では液
体、例えば純水を使用するものとする。そして参
照セル4の液体にレーザ1が入射されると、その
焦点近傍で非共鳴のコヒーレント反ストークスラ
マン散乱が発生する。従つて媒体5を通過したレ
ーザビーム2は散乱光、即ち参照信号を含んだも
のとなる。
Here, in the present invention, it is assumed that a liquid, for example, pure water, is used as the medium 5 in the reference cell 4. When the laser 1 is incident on the liquid in the reference cell 4, non-resonant coherent anti-Stokes Raman scattering occurs near its focal point. Therefore, the laser beam 2 that has passed through the medium 5 contains scattered light, that is, a reference signal.

次に具体例を述べると、第1図において焦点距
離100mmで直径60mmの凸レンズ3及び3′を、それ
らの光軸を一致させて約200mmの間隔を設け、更
にそのほぼ中央に媒体として純水5を封入した参
照セル4を配設し、QスイツチYAGパルスレー
ザの第2高調波である単色光レーザビームと、そ
のレーザビームに基づいて生成される広帯域特性
を有するDyeパルスレーザとからなるレーザビー
ムの一部を分岐し、該分岐ビーム1をレンズ3を
介して純水5に入射させ、且つその中で焦点を結
ばせる。
Next, to give a concrete example, in Fig. 1, convex lenses 3 and 3' with a focal length of 100 mm and a diameter of 60 mm are placed with their optical axes aligned and spaced apart by approximately 200 mm, and pure water is placed approximately in the center as a medium. A laser is provided with a reference cell 4 in which 5 is enclosed, and consists of a monochromatic laser beam that is the second harmonic of a Q-switched YAG pulsed laser, and a Dye pulsed laser that is generated based on the laser beam and has broadband characteristics. A part of the beam is branched, and the branched beam 1 is made incident on pure water 5 through a lens 3 and focused therein.

このレーザビーム1は二種のレーザを一本のビ
ームに重ね合わせたもので、発振のパルス巾約
15nSec、パルスエネルギー約2mJ、ビーム径
約8mmに設定したYAG第2高調波レーザと、発
振パルス巾約10nSec、パルスエネルギー約0.1m
J、ビーム径約3mmに設定したDyeレーザとを使
用した。
This laser beam 1 is made by superimposing two types of lasers into one beam, and the oscillation pulse width is
YAG second harmonic laser set to 15nSec, pulse energy approximately 2mJ, beam diameter approximately 8mm, oscillation pulse width approximately 10nSec, pulse energy approximately 0.1m
A Dye laser with a beam diameter of approximately 3 mm was used.

かかる条件によつて参照セル4を介して得られ
る参照信号の強度は、ビジコンデテクターによつ
て検出するのに充分なる強度が得られた。
Under these conditions, the strength of the reference signal obtained via the reference cell 4 was sufficient to be detected by the vidicon detector.

尚本発明の実施に際して、参照セル内の媒体5
としては純水に限定されるものではなく、他の液
体例えばアルコールあるいは四塩化炭素等であつ
ても同等の効果が得られるものである。
Note that when carrying out the present invention, the medium 5 in the reference cell
The liquid is not limited to pure water, and the same effect can be obtained with other liquids such as alcohol or carbon tetrachloride.

〔発明の効果〕〔Effect of the invention〕

本発明は以上に詳述したように測定時において
充分な参照信号が得られる。又極めて入手容易な
媒体を用いて参照セルを構成しており、且つ媒体
の物理的・化学的性質が極めて安定である。それ
故参照セル自体の製造に際してはその構造や形状
等を自由に設定することができる。更に高圧の不
活性ガスを封入した従来の参照セルに比べて取扱
いが容易となり、参照セルの安全性を高めること
ができるという効果が得られる。
As described in detail above, the present invention allows a sufficient reference signal to be obtained during measurement. Furthermore, the reference cell is constructed using a medium that is extremely easy to obtain, and the physical and chemical properties of the medium are extremely stable. Therefore, when manufacturing the reference cell itself, its structure, shape, etc. can be freely set. Furthermore, compared to conventional reference cells filled with high-pressure inert gas, handling is easier, and the safety of the reference cells can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を模式的に表したもの
である。 1,2……レーザビーム、3,3′……凸レン
ズ、4……参照セル、5……媒体。
FIG. 1 schematically represents an embodiment of the present invention. 1, 2... Laser beam, 3, 3'... Convex lens, 4... Reference cell, 5... Medium.

Claims (1)

【特許請求の範囲】 1 パルス発振型レーザより得られる単色レーザ
ビームと、該パルス発振型レーザより得られる広
帯域レーザビームとを光源として用いて試料に照
射し、コヒーレント反ストークスラマン散乱光を
得る分光測定装置に使用され、レーザビームのス
ペクトル分布を検出する参照セルであつて、 前記二つのレーザビームの一部を分岐して形成
した参照光経路に設けられ、媒体として液体を使
用し非共鳴反ストークスラマン散乱を生ぜしめる
ようにしたことを特徴とするコヒーレント反スト
ークスラマン散乱分光測定に使用する参照セル。 2 前記参照セルの媒体である液体は純水である
ことを特徴とする特許請求の範囲第1項記載のコ
ヒーレント反ストークスラマン散乱分光測定に使
用する参照セル。
[Claims] 1. Spectroscopy to obtain coherent anti-Stokes Raman scattered light by irradiating a sample with a monochromatic laser beam obtained from a pulsed oscillation laser and a broadband laser beam obtained from the pulsed oscillation laser as a light source. This is a reference cell used in a measurement device to detect the spectral distribution of a laser beam, and is installed in a reference light path formed by branching a part of the two laser beams, and uses a liquid as a medium to generate a non-resonant reaction. A reference cell used for coherent anti-Stokes Raman scattering spectroscopic measurements, characterized in that it causes Stokes Raman scattering. 2. The reference cell used for coherent anti-Stokes Raman scattering spectroscopy according to claim 1, wherein the liquid that is the medium of the reference cell is pure water.
JP15178081A 1981-09-24 1981-09-24 Reference cell used for measuring coherent anti-stokes raman scattering spectrum Granted JPS5852549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15178081A JPS5852549A (en) 1981-09-24 1981-09-24 Reference cell used for measuring coherent anti-stokes raman scattering spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15178081A JPS5852549A (en) 1981-09-24 1981-09-24 Reference cell used for measuring coherent anti-stokes raman scattering spectrum

Publications (2)

Publication Number Publication Date
JPS5852549A JPS5852549A (en) 1983-03-28
JPH0220939B2 true JPH0220939B2 (en) 1990-05-11

Family

ID=15526132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15178081A Granted JPS5852549A (en) 1981-09-24 1981-09-24 Reference cell used for measuring coherent anti-stokes raman scattering spectrum

Country Status (1)

Country Link
JP (1) JPS5852549A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777144A (en) * 2015-05-21 2015-07-15 天津大学 Industrial gas multi-component analysis optical path system based on Raman spectrum detection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130294A (en) * 1975-04-21 1976-11-12 Allied Chem Method and device for analyzing spectrum

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130294A (en) * 1975-04-21 1976-11-12 Allied Chem Method and device for analyzing spectrum

Also Published As

Publication number Publication date
JPS5852549A (en) 1983-03-28

Similar Documents

Publication Publication Date Title
Campillo et al. Relationship of self‐focusing to spatial instability modes
Wang et al. Measurement of hydroxyl concentrations in air using a tunable UV laser beam
Das et al. Very long optical path-length from a compact multi-pass cell
Engeln et al. Cavity ring down spectroscopy on solid C 60
Stoeckel et al. Quantitative measurements of very weak H2O absorption lines by time resolved intracavity laser spectroscopy
US4284354A (en) Sensitive nonlinear optical spectroscopy
Kozich et al. Dual-beam time-resolved Z-scan in liquids to study heating due to linear and nonlinear light absorption
JPH0220939B2 (en)
US4310762A (en) Calorimetric trace analysis by laser induced thermal lens method
Phillips et al. Matrix effects in thermal lensing spectrometry: determination of phosphate in saline solutions
Shen et al. Shock‐induced fluorescence shift of rhodamine‐6G dye in ethanol solution
Reinhold et al. Gain measurements of stimulated Raman scattering using a tunable dye laser
Bermejo et al. Simultaneous analysis of the ν2 Raman and ν2+ ν6 infrared spectra of the SF6 molecule
Omenetto et al. Thermal lensing spectrophotometry of uranium (VI) with pulsed laser excitation
Zilker et al. Line broadening mechanisms in spectra of organic amorphous solids: photon echo study of terrylene in polyisobutylene at subkelvin temperatures
US4068956A (en) Pulsed laser densitometer system
Dzierżęga et al. Stark width and shift measurements for the 696.543 nm ArI line using degenerate four-wave mixing (DFWM) spectroscopy
Voelkel et al. Infrared degenerate four-wave mixing and resonance-enhanced stimulated Raman scattering in molecular gases and free jets
Venkin et al. Investigation of stimulated Raman scattering in gases excited by fourth harmonic of neodymium laser radiation
Bubeck et al. Nonlinear optical properties of poly (p-phenylene vinylene) thin films
Vlasov et al. Ultrashort Pulse Measurement at 1.9 µm Using GRENOUILLE Technique
Hirakawa et al. Thermal loss mechanism in the generation of multifrequency laser emission via stimulated Raman scattering and four-wave Raman mixing studied by photothermal refraction spectroscopy
Singhal et al. Sensitive dual beam thermal lens detection of convection in methanol
Boudebs et al. Thermal lens Z-scan measurements for the determination of fluorescence quantum yields: theoretical and experimental uncertainties for low and high quantum yields
Cruz et al. High-sensitivity absorption measurements in liquids and solids