JPH02208563A - Steel evaluating apparatus - Google Patents

Steel evaluating apparatus

Info

Publication number
JPH02208563A
JPH02208563A JP1029308A JP2930889A JPH02208563A JP H02208563 A JPH02208563 A JP H02208563A JP 1029308 A JP1029308 A JP 1029308A JP 2930889 A JP2930889 A JP 2930889A JP H02208563 A JPH02208563 A JP H02208563A
Authority
JP
Japan
Prior art keywords
enclosure
virtual
sequence
image
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1029308A
Other languages
Japanese (ja)
Inventor
Kiyotaka Inada
稲田 清崇
Shuji Matsumoto
修二 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1029308A priority Critical patent/JPH02208563A/en
Publication of JPH02208563A publication Critical patent/JPH02208563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To evaluate the configuration of a deposited material and to make it possible to provide a practical apparatus for delivery inspection by providing a means for inputting the image of an enclosure from a microscope, a point-sequence taking-out means, a virtual-grain-boundary computing means, and a dispersion judging means. CONSTITUTION:An image inputting means performs the binary coding of the image signal of an enclosure from a scanning type electron microscope 1 or an optical microscope and inputs the signal into an image memory 4 of a computer. A point-sequence taking-out means 5 obtains the center of gravity of the enclosure from the image signal which is inputted into the memory 4 after the binary colding of the enclosure. Only the signal indicating the enclosure whose center of gravity approaches by a specified distance is selected, and the linear point sequence is taken out. The linear point-sequence signal which is taken out with the means 5 is sent into a virtual-grain- boundary computing means 7. The virtual grain boundary is computed from the enclosure for every point sequence. Then, a judging means 8 computes the distance to the center of the enclosure from the virtual grain boundary for every linear point sequence. It is judged that the materials having the small dispersion have weak stress resistance and corrosion cracking and that the materials having the large dispersion have the strong stress resistance and corrosion cracking.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は介在物粒子(以下単に粒子と称す)を粒界に
非連続的に析出させ、耐応力腐食割れ性を向上させる鋼
材の介在物の析出状況を評価する装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a steel material that improves stress corrosion cracking resistance by discontinuously precipitating inclusion particles (hereinafter simply referred to as particles) at grain boundaries. This invention relates to an apparatus for evaluating the precipitation status of.

〔従来の技術〕[Conventional technology]

近年、原子力発電、蒸気発生器伝熱管等に用いられる鋼
管では、例えばALLOY 690 (30%Cr−6
0%N1−9%Fe)の粒界強化熱処理等のように、熱
処理により粒界に介在物を制御して析出させて、粒界に
沿った割れ性を向上させる技術が開発されている。この
熱処理による析出コントロールは成分、炉温等と微妙に
関係しており、出荷時には析出結果を検査する必要があ
る。
In recent years, for example, ALLOY 690 (30% Cr-6
Techniques have been developed to control and precipitate inclusions at grain boundaries through heat treatment, such as grain boundary strengthening heat treatment (0%N1-9%Fe), to improve crackability along grain boundaries. Precipitation control through this heat treatment is delicately related to ingredients, furnace temperature, etc., and it is necessary to inspect the precipitation results at the time of shipment.

この検査はサンプル材を研磨した後、透過顕微鏡で粒子
−つづつに焦点を合わせ、電子線を照射し、結晶格子で
電子線が回折し、しま模様の結晶像が得られ、それによ
り粒子毎の結晶の方向を測定し、析出方向のばらつきに
より粒界析出吠態を検査していた。
In this test, after polishing the sample material, a transmission microscope is used to focus on each particle and irradiate it with an electron beam.The electron beam is diffracted by the crystal lattice and a striped crystal image is obtained. The direction of the crystals was measured, and the grain boundary precipitation state was examined based on the variation in the direction of precipitation.

(発明が解決しようとする課題〕 しかしながら、上記の検査では一回の測定によって一析
出粒子の方向しか得られず、品質評価の為には5’OO
〜2000回の方向測定が必要であり、工数がかかりす
ぎて出荷検査として実用的で無いという問題があった。
(Problem to be solved by the invention) However, in the above inspection, only the direction of one precipitated particle can be obtained by one measurement, and for quality evaluation, 5'OO
There was a problem in that it required ~2000 direction measurements, which required too many man-hours and was not practical for shipping inspection.

本発明はかかる事情に鑑みて成されたものであって、そ
の目的とするところは小ない工数で容易に検査できる鋼
材の評rIH値を提供しようとするものである。
The present invention has been made in view of the above circumstances, and its purpose is to provide an evaluation rIH value of steel materials that can be easily inspected with a small number of man-hours.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は介在物を粒界に非連続的に析出させ、耐応力腐
食割れ性を向上させる鋼材の評価方法において、(′顕
微鏡より介在物像を入力する画像入力手段と、介在物画
像より直Ia吠点列を抽出する点列抽出手段と、点列よ
り仮想粒界を算出する仮想粒界算出手段と、仮想粒界か
らの点伏介在物の析出位置のばらつきを計算判定するば
らつき判定手段とを具備することを特徴とする鋼材の評
価装置である。
The present invention provides a method for evaluating steel materials that improves stress corrosion cracking resistance by precipitating inclusions discontinuously at grain boundaries. A point sequence extracting means for extracting a Ia dot sequence, a virtual grain boundary calculating means for calculating a virtual grain boundary from the point sequence, and a dispersion determining means for calculating and determining the dispersion of the precipitation position of point inclusions from the virtual grain boundary. This is a steel evaluation device characterized by comprising:

〔作   用〕[For production]

以上のように本発明の鋼材の評価装置においては、画像
入力手段、点列抽出手段、仮想粒界算出手段、ばらつき
判定手段を備えている。画像入力手段は走査電子顕微鏡
、又は、光学顕微鏡からの介在物像信号を二値化してコ
ンピュータの画像メモリに入力するようになっている。
As described above, the steel evaluation apparatus of the present invention includes an image input means, a point sequence extraction means, a virtual grain boundary calculation means, and a variation determination means. The image input means is configured to binarize an inclusion image signal from a scanning electron microscope or an optical microscope and input it into the image memory of the computer.

点列抽出手段は介在物を二値化して画像メモリに入力さ
れた画像信号から介在物の重心を求め、該重心が所定距
離接近したものだけを選出し、直線状点列を抽出する。
The point sequence extracting means binarizes the inclusion, determines the center of gravity of the inclusion from the image signal input to the image memory, selects only those whose center of gravity is close to each other by a predetermined distance, and extracts a linear point sequence.

次に、点列抽出手段で抽出した直線状点列信号は仮想粒
界算出手段に送られ、各点列ごとに介在物から仮想粒界
を算出するようになっている。
Next, the linear point sequence signal extracted by the point sequence extraction means is sent to the virtual grain boundary calculation means, and a virtual grain boundary is calculated from inclusions for each point sequence.

次にばらつき判定手段において各直線状点列ごとに仮想
粒界から介在物の中心までの距離を算出し、ばらつきを
算出し判定する。これからばらつきの小さいものは耐応
力腐食削れ性が弱く、ばらつきの大きいものは強いと判
定する。
Next, the dispersion determining means calculates the distance from the virtual grain boundary to the center of the inclusion for each linear point sequence, and calculates and determines the dispersion. From this, it is determined that those with small variations have weak stress corrosion abrasion resistance, and those with large variations are strong.

〔実 施 例〕〔Example〕

以下本発明を図面に基づいて説明する。第1図は本発明
の鋼材の評価装置を示す概略図である。
The present invention will be explained below based on the drawings. FIG. 1 is a schematic diagram showing a steel evaluation apparatus of the present invention.

図中(1)は走査電子顕微鏡である。その詳細を第2図
に示す。第2図は5000倍以上の倍率を備えた走査電
子顕微ifi (1)の概略図であって、研出したサン
プル材である試料(2)が下方に截置されている。
In the figure (1) is a scanning electron microscope. The details are shown in Figure 2. FIG. 2 is a schematic diagram of a scanning electron microscope ifi (1) with a magnification of 5000 times or more, in which a specimen (2), which is a polished sample material, is cut out below.

該試料(2)には電子線が照射されて、結晶格子で電子
線が回折し、それを電子線受像管(3)で検出する構造
となっている。検出した信号は二値化処理され、画像メ
モリ(4)に入力される。画像メモリ(4)に入力され
たデータから粒子のみ抽出する。結晶粒子と粒子とは格
子定数が違っているので粒子はベースと区分されて像と
して写る。
The sample (2) is irradiated with an electron beam, the electron beam is diffracted by a crystal lattice, and the electron beam is detected by an electron beam tube (3). The detected signal is binarized and input to the image memory (4). Only particles are extracted from the data input to the image memory (4). Since the lattice constants of crystal particles and particles are different, the particles are separated from the base and appear as an image.

次に点列抽出手段について説明する。前記画像メモリ(
4)からの信号は第1図の■に示す点列抽出機構へ送ら
れ、粒子の中心座標(中心座標とは重心で、最大径と最
小径の交点として求められる)及び隣接粒子間距離(重
心量比l1l)を求める。この状態を第3図について説
明する。まず、最も近い粒子を選ぶと、1・・・2・・
・3・・・・・・となる。但し、ある距離以上にならな
ければ、そこで点列が終わりと判断する。3個以上の粒
子群となったら最初から最後(例えば1と11)の粒子
より直a1を算出する。次に各粒子から1への垂線の足
d2〜d8を算出する。この中から最も長いd+を求め
、これがある値以上であれば対応する粒子で粒子群を切
る。例では1と11で直線1を得た時d6が最も長い。
Next, the point sequence extraction means will be explained. The image memory (
The signal from 4) is sent to the point sequence extraction mechanism shown by Find the center of gravity ratio l1l). This state will be explained with reference to FIG. First, if you choose the closest particle, 1...2...
・3...... However, if the distance does not exceed a certain distance, it is determined that the point sequence ends there. When a group of three or more particles is formed, a1 is directly calculated from the first to last particles (for example, 1 and 11). Next, the legs d2 to d8 of the perpendicular line from each particle to 1 are calculated. The longest d+ is found from among these, and if it is greater than a certain value, the particle group is cut at the corresponding particle. In the example, when straight line 1 is obtained from 1 and 11, d6 is the longest.

これがda>dl1m目であれば1〜6までを直線点列
として抽出する。抽出した粒子を除外し、残りについて
も同様に抽出を行う。例では1〜6.7−10.11〜
14の3列が抽出される。
If this is da>dl1mth, then 1 to 6 are extracted as a straight line point sequence. The extracted particles are excluded, and the remaining particles are extracted in the same manner. In the example, 1~6.7-10.11~
14 three columns are extracted.

次に、仮想粒界算出手段について説明する。点列抽出v
R構(5)からの信号は第1図の仮想粒界算出機構(2
)へ送られる。さらに詳しく仮想粒界の算出法を第4図
に基づいて説明する。
Next, the virtual grain boundary calculation means will be explained. point sequence extraction v
The signal from the R structure (5) is sent to the virtual grain boundary calculation mechanism (2) shown in Figure 1.
). A method for calculating virtual grain boundaries will be explained in more detail based on FIG. 4.

実際の粒界が析出物のどこを通っているかは不明である
ので、各粒子(6)の外接長方形を求め、これに接する
4点の座標を求める。ここでいう外接長方形とはX、Y
直角座標系において、それぞれX、Y軸に平行な直線に
よって接する長方形である。4つのサイドに対応するそ
れぞれの点列(Xil、Yil)、(Xi2. Yi2
)、(Xi3. Yi3)、(Xi4゜Yi4)から直
線または二次曲線の近似曲線を求める。この4つの腺が
仮想粒界である。
Since it is unknown where the actual grain boundary passes through the precipitate, the circumscribed rectangle of each particle (6) is determined, and the coordinates of four points in contact with this rectangle are determined. The circumscribed rectangle here is X, Y
In the rectangular coordinate system, it is a rectangle that is bordered by straight lines parallel to the X and Y axes, respectively. Each point sequence (Xil, Yil) corresponding to the four sides, (Xi2. Yi2
), (Xi3. Yi3), and (Xi4°Yi4) to find a straight line or quadratic approximate curve. These four glands are virtual grain boundaries.

次にばらつき判定手段について説明する。前記仮想粒界
算出機構■からの信号は第1図の(8)に示すばらつき
判定機構へ送られ、各粒子の重心より4つの仮想粒界へ
の垂直距離を求め、標準偏差を求める。4つの仮想粒界
に対して最も小さな標準偏差を持つ仮想粒界を選び出し
てそれを粒界とし、その(σmin )を求め a min > ao  :  B typecrmi
n≦aO:Atype と判定する。ここでいうA typeとは第5図(a>
に示すように粒子(6)が片側に整合析出したものであ
って耐応力腐食割れ性が弱<、Btypeとは第5図(
b)に示すように粒子(6)が両側に整合析出したもの
で耐応力腐食割れ性が強いものである。参考に第5図(
C)に粒子が非整合に析出した場合を示すがこの場合に
は耐応力腐食割れ性は極めて弱い。wE4図においては
IiLがσmin となって、この場合はA type
である。このような方法で仮想粒界を求める理由は析出
粒子が粒界に発生していると考えるので、各析出粒子に
最も近い腺を粒界と仮定している。
Next, the variation determining means will be explained. The signal from the virtual grain boundary calculation mechanism (2) is sent to the variation determination mechanism shown in (8) in FIG. 1, and the vertical distances from the center of gravity of each particle to the four virtual grain boundaries are determined, and the standard deviation is determined. Select the virtual grain boundary with the smallest standard deviation among the four virtual grain boundaries, use it as the grain boundary, and find its (σmin): a min > ao : B typecrmi
It is determined that n≦aO: A type. The A type mentioned here is shown in Figure 5 (a>
As shown in Figure 5, the particles (6) are coherently precipitated on one side and have weak stress corrosion cracking resistance.
As shown in b), the particles (6) are coherently precipitated on both sides and have strong stress corrosion cracking resistance. For reference, see Figure 5 (
C) shows a case where particles are precipitated in a non-coherent manner; in this case, stress corrosion cracking resistance is extremely weak. In the wE4 diagram, IiL becomes σmin, and in this case A type
It is. The reason why virtual grain boundaries are determined using this method is that precipitated particles are thought to occur at grain boundaries, so the gland closest to each precipitated particle is assumed to be a grain boundary.

これを各点列について行い、ロフト全体での判定は各t
ypeに判定された点列の長さの比率により下記式にて
評価を行う。
This is done for each point sequence, and the judgment for the entire loft is made for each t
Evaluation is performed using the following formula based on the ratio of the length of the point sequence determined to ype.

ΣJ2ai 逼 そしてRの値が基準値ROより大きいか小さいかによっ
て、 R≧RO:  A type R<RO:  ntype と判定する。
ΣJ2ai Then, depending on whether the value of R is larger or smaller than the reference value RO, it is determined that R≧RO: A type R<RO: n type.

以上のようにして、全体をA type % B ty
Peに判定し、A tyPeのものは耐応力腐食割れ性
が弱いと判定し、B typeのものは強いと判定する
As above, the whole is A type % B ty
Pe, A type Pe is determined to have weak stress corrosion cracking resistance, and B type is determined to be strong.

ちなみに本発明の実施例においては、試料の結晶像を得
るのに走査電子顕微鏡を用いた場合について説明したが
、光学顕微鏡、撮像素子を用いて画像入力信号を受信す
るようにしても同様な効果が得られることは勿論である
Incidentally, in the embodiments of the present invention, the case where a scanning electron microscope was used to obtain a crystal image of a sample was explained, but the same effect can be obtained even if an optical microscope or an image sensor is used to receive an image input signal. Of course, this can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の鋼材の評価装置であれば、析出物形態を画像に
より定量評価でき、作業工数を大幅に削減できるので出
荷検査として実用でき、品質の保障を確実にできるとい
う優れた効果を奏する。
The steel evaluation apparatus of the present invention can quantitatively evaluate the form of precipitates using images, and the number of man-hours can be significantly reduced, so it can be put to practical use as a shipping inspection, and has the excellent effect of ensuring quality assurance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の鋼材の評価装置を示す概略図、第2図
は走査電子顕微鏡の概略図、第3図は点列抽出方法を説
明する為の図、tJ4図は仮想粒界算出法を説明する為
の図、第5図は粒子の析出伏況を模式的に示す図であっ
て、(a)は片側に整合析出した例、(b)は両側に整
合析出した例、(C)は非整合析出した例である。 1・・・走査電子顕微鏡  2・・・試料3・・・電子
線受像管   4・・・画像メモリ5・・・点列抽出機
構   6・・・粒子7・・・仮想粒界算出機構 8・
・・ばらつき判定機構第 図 第 図 第 図 第 図 第 図 (aン Cb) CC)
Fig. 1 is a schematic diagram showing the steel evaluation device of the present invention, Fig. 2 is a schematic diagram of a scanning electron microscope, Fig. 3 is a diagram for explaining the point sequence extraction method, and tJ4 diagram is a virtual grain boundary calculation method. FIG. 5 is a diagram schematically showing the precipitation situation of particles, in which (a) shows an example of coherent precipitation on one side, (b) shows an example of coherent precipitation on both sides, and (C) shows an example of coherent precipitation on both sides. ) is an example of non-coherent precipitation. 1... Scanning electron microscope 2... Sample 3... Electron beam picture tube 4... Image memory 5... Point sequence extraction mechanism 6... Particle 7... Virtual grain boundary calculation mechanism 8.
・・Variation determination mechanism (a and Cb) CC)

Claims (1)

【特許請求の範囲】[Claims] 介在物を粒界に非連続的に析出させ、耐応力腐食割れ性
を向上させる鋼材の評価方法において、顕微鏡より介在
物像を入力する画像入力手段と、介在物画像より直線状
点列を抽出する点列抽出手段と、点列より仮想粒界を算
出する仮想粒界算出手段と、仮想粒界からの点状介在物
の析出位置のばらつきを計算判定するばらつき判定手段
とを具備することを特徴とする鋼材の評価装置。
In an evaluation method for steel materials that improves stress corrosion cracking resistance by precipitating inclusions discontinuously at grain boundaries, an image input means for inputting images of inclusions from a microscope and a linear dot sequence are extracted from the inclusion images. A virtual grain boundary calculating means calculates virtual grain boundaries from the point sequence, and a variation determining means calculates and determines variations in precipitation positions of point-like inclusions from the virtual grain boundaries. Characteristic steel evaluation equipment.
JP1029308A 1989-02-08 1989-02-08 Steel evaluating apparatus Pending JPH02208563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1029308A JPH02208563A (en) 1989-02-08 1989-02-08 Steel evaluating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1029308A JPH02208563A (en) 1989-02-08 1989-02-08 Steel evaluating apparatus

Publications (1)

Publication Number Publication Date
JPH02208563A true JPH02208563A (en) 1990-08-20

Family

ID=12272590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1029308A Pending JPH02208563A (en) 1989-02-08 1989-02-08 Steel evaluating apparatus

Country Status (1)

Country Link
JP (1) JPH02208563A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191125A (en) * 2007-02-08 2008-08-21 Nippon Steel Corp Crystal grain analyzer, crystal grain analytical method, and computer program
JP2008224434A (en) * 2007-03-13 2008-09-25 Nippon Steel Corp Crystal particle analyzer, crystal particle analysis method and computer program
JP2008224433A (en) * 2007-03-13 2008-09-25 Nippon Steel Corp Crystal grain analyzer, crystal grain analyzing method, and computer program
JP2009250639A (en) * 2008-04-01 2009-10-29 Nippon Steel Corp Crystal grain analyzer, crystal grain analyzing method and computer program
JP2020153710A (en) * 2019-03-18 2020-09-24 日本製鉄株式会社 Crystal grain analyzer, method for analyzing crystal grain, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191125A (en) * 2007-02-08 2008-08-21 Nippon Steel Corp Crystal grain analyzer, crystal grain analytical method, and computer program
JP2008224434A (en) * 2007-03-13 2008-09-25 Nippon Steel Corp Crystal particle analyzer, crystal particle analysis method and computer program
JP2008224433A (en) * 2007-03-13 2008-09-25 Nippon Steel Corp Crystal grain analyzer, crystal grain analyzing method, and computer program
JP2009250639A (en) * 2008-04-01 2009-10-29 Nippon Steel Corp Crystal grain analyzer, crystal grain analyzing method and computer program
JP2020153710A (en) * 2019-03-18 2020-09-24 日本製鉄株式会社 Crystal grain analyzer, method for analyzing crystal grain, and program

Similar Documents

Publication Publication Date Title
Kunze et al. Advances in automatic EBSP single orientation measurements
JPH01311551A (en) Pattern shape measuring device
CN110231394A (en) The irregular crackle imaging method of nonferromugnetic material based on ac magnetic field
Dingley et al. Use of electron back scatter diffraction patterns for determination of crystal symmetry elements
Jiang et al. Weld defect classification based on texture features and principal component analysis
JPH02208563A (en) Steel evaluating apparatus
Kiddee et al. A practical and intuitive calibration technique for cross-line structured light
JP2000149011A (en) Removal of noise from signal obtained by imaging system
Paluszyński et al. Measurements of the surface microroughness with the scanning electron microscope
CN116697883A (en) Fixed-year analysis method for apatite fission track
CN113865487B (en) Fatigue crack propagation real-time monitoring method based on structure surface displacement field
CN111798476B (en) Extraction method for conductive arm axis of high-voltage isolating switch
CN113129259A (en) Casting blank density detection method and system and electronic equipment
Semenski et al. Experimental caustics analysis in fracture mechanics of anisotropic materials
Stutte et al. A method to evaluate mirrors for Cherenkov counters
RU2519005C1 (en) Method of prestart check of printboards
CN113326256A (en) Processing method for grading early warning
JP3750762B2 (en) Evaluation method of fatigue damage of metal
JPS61100941A (en) Analysis of inspection data of semiconductor element and inspection data analyzer
Saghi et al. Three-dimensional metrology and fractal analysis of dendritic nanostructures
CN111104641A (en) Method for identifying crystal grains by computer in three-dimensional space
Tarafder et al. Stretch-zone analysis by image processing for the evaluation of initiation fracture toughness of a HSLA steel
US8374455B2 (en) Method of analyzing an image of hydrides in a metal alloy, notably in a nuclear fuel cladding alloy
JP3608245B2 (en) Estimation method of plastic deformation
EP0418949B1 (en) Method of detecting an amplitude transient in a field of elements having a multivalent amplitude distribution, device suitable for performing the method, and video system including the device