JPH02208365A - Preparation of composite conductive polymer material molding - Google Patents

Preparation of composite conductive polymer material molding

Info

Publication number
JPH02208365A
JPH02208365A JP2767489A JP2767489A JPH02208365A JP H02208365 A JPH02208365 A JP H02208365A JP 2767489 A JP2767489 A JP 2767489A JP 2767489 A JP2767489 A JP 2767489A JP H02208365 A JPH02208365 A JP H02208365A
Authority
JP
Japan
Prior art keywords
polymer material
tin
organic acid
lead salt
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2767489A
Other languages
Japanese (ja)
Inventor
Tei Ishii
禎 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2767489A priority Critical patent/JPH02208365A/en
Publication of JPH02208365A publication Critical patent/JPH02208365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To prepare a conductive polymer material molding having improved properties to electromagnetic wave after a heat cycle test by compounding an insulating polymer material with a core material, tin or zinc, and a tin or lead salt of an org. acid, and extrusion molding the resulting compd. under deformation by a shearing stress. CONSTITUTION:A composite conductive polymer material molding comprising a compsn. wherein a conductive filler is dispersed in a matrix, i.e., an insulating polymer material, is prepd. by compounding the polymer material with a metal, inorg. or org. material of a spherical, particulate, flaky, whisker-like or fibrous shape, a core material, metallic tin or zinc, and a tin-lead salt, tin salt or lead salt of an org. acid and extrusion molding the resulting compd. at 150 deg.C or higher under deformation by a shearing stress into a desired product.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、複合導電性高分子材料成形体の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a composite conductive polymer material molded article.

[従来の技術] 現在、導電性高分子材料は電気伝導度によって様々な用
途に使用されており、特に体積抵抗率が10−2〜10
9〔Ωcm)の材料が使われている。これを大別すると
、導電作用と遮蔽作用の2つの機能に分類される。前者
は、主として体積抵抗率のみ重要で、具体的用途として
はケーブル導電層、発熱抵抗体、塗料、静電防止材、電
気メツキ材、印刷回路、電極材等があげられる。後者て
は、体積抵抗率のみならず、導電材料内の分散状況等の
導電付与物質の配置か透過電磁波の波長と極めて密接な
関係かあり、具体的用途としては、電磁波遮蔽材、電波
吸収体等かある。また、この他に電荷移動錯体、ドープ
トポリマー等は、センサー機能、触媒作用、光電作用、
メモリー作用等を有したものもある。
[Prior Art] Currently, conductive polymer materials are used for various purposes depending on their electrical conductivity, and in particular those with a volume resistivity of 10-2 to 10
9 [Ωcm) material is used. Broadly speaking, it can be classified into two functions: conductive function and shielding function. For the former, only volume resistivity is important, and specific applications include cable conductive layers, heating resistors, paints, antistatic materials, electroplating materials, printed circuits, and electrode materials. The latter has a very close relationship with not only the volume resistivity but also the arrangement of the conductivity imparting substance such as the dispersion state within the conductive material and the wavelength of the transmitted electromagnetic waves.Specific applications include electromagnetic wave shielding materials and radio wave absorbers. There is something like that. In addition, charge transfer complexes, doped polymers, etc. have sensor functions, catalytic effects, photoelectric effects,
Some also have memory effects.

これら導電性高分子材料のうち、複合導電性高分子材料
を用いた電磁波遮蔽材料についてみると、IC,LSI
を大量に搭載する電子機器ハウジングは以前は金属製品
であったか、小型・軽量・低価格を旨としてほとんどが
プラスヂハウジングに変化している。しかしながら、電
子機器ハウジング内から発生した電磁波は、不要な電磁
波として機器の外部にそのまま透過、放射されてしまい
、結果的には他の機器に雑音や誤動作等の影響を与える
ことになる。又、逆に外部からの電磁気的影響を受ける
この電磁波の遮蔽対策として、プラスチックに導電性を
付与することによって不要な電磁波を遮蔽する方法がと
られている。
Among these conductive polymer materials, electromagnetic shielding materials using composite conductive polymer materials are used for IC, LSI, etc.
Housings for electronic devices that house a large amount of electronic devices used to be made of metal, but most of them have changed to plastic housings due to their compact size, light weight, and low cost. However, electromagnetic waves generated from inside the electronic device housing are transmitted and radiated to the outside of the device as unnecessary electromagnetic waves, and as a result, they affect other devices, such as noise and malfunction. On the other hand, as a countermeasure for shielding electromagnetic waves that are subject to electromagnetic influences from the outside, a method has been adopted in which unnecessary electromagnetic waves are shielded by imparting conductivity to plastic.

その1つとして、複合導電性高分子材料で成形する方法
がある。このものは、絶縁性高分子材料中に導電材料を
分散複合させる方法で得られ、絶縁性高分子材料中では
、導電材料か相互電気的に接触し、電気的な導通路を形
成している。従って電磁波は、この複合導電性高分子材
料表面及び導通層で反射吸収を繰り返し減衰して消滅す
る。
One of them is a method of molding with a composite conductive polymer material. This material is obtained by dispersing and compounding a conductive material in an insulating polymer material, and in the insulating polymer material, the conductive materials are in electrical contact with each other to form an electrical conduction path. . Therefore, the electromagnetic waves are repeatedly reflected and absorbed on the surface of the composite conductive polymer material and the conductive layer, and are attenuated and disappear.

この導電材料としては、カーボンの粉及び繊維、金属繊
維、金属フレーク、金属コートガラス繊維等の導電性を
イ」与した材料等が用いられる。
As this electrically conductive material, materials that have electrical conductivity such as carbon powder and fibers, metal fibers, metal flakes, and metal-coated glass fibers are used.

また、絶縁性高分子材料として熱可塑性樹脂、例えはポ
リエチレン樹脂、ポリプロピレン樹脂、ABS樹脂、ポ
リスチレン樹脂などが用いられ、その他に熱可塑性エラ
ストマー、ゴム、熱硬化性樹脂等も用いられる。
In addition, thermoplastic resins such as polyethylene resins, polypropylene resins, ABS resins, and polystyrene resins are used as the insulating polymer material, and thermoplastic elastomers, rubber, thermosetting resins, etc. are also used.

この複合導電性高分子材料は、導電性付与の為の二次加
工が不要で、生産性が良いというメリットはあるか、導
電材料を高充填させる必要がある為、絶縁性高分子材料
本来の物性が低下したり、比重も増大する傾向にある。
This composite conductive polymer material does not require secondary processing to impart conductivity and has the advantage of good productivity.Also, since it requires high filling of conductive material, Physical properties tend to decrease and specific gravity tends to increase.

そこで、これら導電材料の充填率を低くおさえるという
要求がなされてきた。
Therefore, there has been a demand to keep the filling rate of these conductive materials low.

ところか、導電制料の充填率を低下させると、絶縁性高
分子材料中に形成される導通路の基となる導電材料相互
の電気的接点が減少し、導電性が低下してしまうこと、
あるいは、成形時に一時的に相互に接触して導通路を形
成していた導電材料同士が、ヒートサイクル試験後には
離れてしまい、電磁波遮蔽性はかなり低下してしまうこ
と等の問題があった。
However, if the filling rate of the conductive material is lowered, the number of electrical contacts between the conductive materials that form the basis of the conductive paths formed in the insulating polymer material decreases, resulting in a decrease in conductivity.
Alternatively, conductive materials that temporarily come into contact with each other to form a conductive path during molding separate from each other after a heat cycle test, resulting in a considerable reduction in electromagnetic wave shielding properties.

こうした問題の解決策の1つとして例えば特公昭63−
20270号や特開昭63−218310号に開示され
ているように低融点金属を配合して、R電オオ料同士を
結合する方法が提案されている。確かにこの方法では導
電材料の充填率を低下させても、低下前と変わらぬ電磁
波遮蔽効果か得られ、耐ヒートサイクル性も極めて良い
効果があった。
As one of the solutions to these problems, for example,
As disclosed in No. 20270 and Japanese Unexamined Patent Publication No. 63-218310, a method has been proposed in which a low melting point metal is blended to bond R-electronic materials to each other. It is true that with this method, even if the filling rate of the conductive material was lowered, the same electromagnetic wave shielding effect as before the lowering could be obtained, and the heat cycle resistance was also extremely good.

[発明が解決しようとする課題] しかし、特公昭63−20270号による方法では、無
機もしくは有機の芯材に低融点金属を被覆した導電材料
を用いており、実際に成形する際に、導電材料と絶縁性
高分子材料の組み合わせによっては、濡れ性が悪く、4
電材料量士が相互に結合しない部分も現れ、低融点金属
て被覆していない導電材料を使った時よりも電磁波遮蔽
性が低下する場合もあり、特に芯月に非導電性の材料を
用いた時は上記のような濡れ性が非常に重要で使用され
る絶縁性高分子材料が限定されていた。
[Problems to be Solved by the Invention] However, the method disclosed in Japanese Patent Publication No. 63-20270 uses a conductive material in which an inorganic or organic core material is coated with a low melting point metal. Depending on the combination of and insulating polymer material, wettability may be poor and
There may be parts where the electrical materials do not bond to each other, and the electromagnetic wave shielding performance may be lower than when using low-melting point metals or uncoated conductive materials. Especially when using non-conductive materials for the core. At the time, wettability as described above was extremely important, and the types of insulating polymer materials that could be used were limited.

また、特開昭63−218310号による方法では、導
電性繊維、低融点金属及び絶縁性高分子材料の3者の濡
れ性を考慮する必要があり、その組み合わせによりては
、導電性繊維同士の相互の結合を妨げることがあった。
Furthermore, in the method disclosed in JP-A No. 63-218310, it is necessary to consider the wettability of the conductive fibers, the low-melting point metal, and the insulating polymer material, and depending on the combination, the wettability of the conductive fibers may This sometimes hinders mutual connection.

また、低融点金属の量を制御することか困難で、成形品
に過剰な低融点金属が海鳥状に残存し、成形品の強度を
劣化させたり、押出あるいは射出成形機等内部に残存し
、後処理に手間かかかる等の問題があった。
In addition, it is difficult to control the amount of low-melting point metal, and an excessive amount of low-melting point metal may remain in the molded product in a seabird shape, deteriorating the strength of the molded product, or remaining inside the extrusion or injection molding machine. There were problems such as post-processing being time-consuming.

そこて、木発明では以上の問題点を解決するとともに、
低融点金属と濡れ性の悪い導電材料及び全く導電性のな
い材料までも芯材として使用して成形することが可能な
複合導電性高分子材料成形体の製造方法を得ることにあ
る。
Therefore, the wooden invention solves the above problems, and
An object of the present invention is to obtain a method for manufacturing a composite conductive polymer material molded article, which can be molded using a conductive material having poor wettability with a low melting point metal, or even a material having no conductivity at all, as a core material.

[課題を解決するための手段] 木発明に係る複合導電性高分子オオ料成形体の製造方法
ては、導電性フィラーをマトリックスである絶縁性高分
子材料中に分散した組成物からなる複合導電性高分子材
料成形体の製造方法に於いて、マトリックスである絶縁
性高分子材料(D)中に金属、無機物又は有機物からな
る球状、粒状、フレーク状、ウィスカー状、或いはファ
イバー形状の材料を芯材(A)と、金属錫又は金属亜鉛
(B)と、有機酸銀・鉛塩又は有機酸銀又は有機酸鉛塩
(C) とを配合し、これを 150℃以上の温度で剪
断応力変形を加えながら、押出成形するものである。
[Means for Solving the Problems] A method for producing a composite conductive polymer material molded article according to the invention includes a composite conductive material comprising a composition in which a conductive filler is dispersed in an insulating polymer material as a matrix. In the method for producing a molded body of a polymeric material, a spherical, granular, flaky, whisker-shaped, or fiber-shaped material made of a metal, an inorganic substance, or an organic substance is placed as a core in an insulating polymeric material (D) that is a matrix. Material (A), metallic tin or metallic zinc (B), and organic acid silver/lead salt or organic acid silver or organic acid lead salt (C) are blended, and this is subjected to shear stress deformation at a temperature of 150°C or higher. It is extrusion molded while adding.

[作用コ 本発明においては、高分子7トリツクス(D)中に、芯
材(A) と金属錫又は金属亜鉛(B)  と有機酸銀
・鉛塩又は有機酸銀又は有機酸鉛塩(C)とを含浸或は
混合或いは塗布して配合し、 150℃以上の温度で剪
断応力変形を加えながら、成形させると、芯材表面上に
錫−鉛又は亜鉛−鉛又は亜鉛錫等の合金金属が析出し、
この合金金属層を持った芯材相互が電気的に交差結合し
て4電ネットとなり、この形成された導電ネッ1−は耐
ヒー1−サイクル性に極めて良好であり、かつ上述の如
き成形の際の問題点も解消できるものである。
[Function] In the present invention, the core material (A), metallic tin or metallic zinc (B), and organic acid silver/lead salt or organic acid silver or organic acid lead salt (C ) are impregnated, mixed or coated, and formed while applying shear stress deformation at a temperature of 150°C or higher, alloy metals such as tin-lead or zinc-lead or zinc-tin are formed on the surface of the core material. is precipitated,
The core materials having this alloy metal layer are electrically cross-coupled with each other to form a four-conductor net, and the formed conductive net has extremely good heat cycle resistance and can be molded as described above. This also solves the problems encountered in the process.

更に詳しくは、有機酸金属塩と金属のイオン交換を利用
して、芯材表面に合金金属を析出させ、芯材を導電化し
、かつ芯材同士を相互に結合させることにより、ネット
状構造を形成させる。これにより、導電性材料の充填量
の低減をはかり、かつヒートサイクル試験後の電磁波遮
蔽性の向上に役立てるものである。
More specifically, by using ion exchange between an organic acid metal salt and a metal, an alloy metal is precipitated on the surface of the core material, the core material is made conductive, and the core materials are bonded to each other, thereby creating a net-like structure. Let it form. This is intended to reduce the filling amount of the conductive material and to improve the electromagnetic wave shielding properties after the heat cycle test.

更に、製造された複合導電性高分子材料成形体は、イオ
ン交換によって合金金属の析出量を制御でき、しかも、
成形体内部で芯材表面たりに、合金金属が析出するので
、7トリツクス中に金属が過剰となって成形体に海鳥状
をつくることはなく、成形機に余分な金属か残ることは
ない。
Furthermore, the manufactured composite conductive polymer material molded article can control the amount of alloy metal precipitation through ion exchange, and
Since the alloy metal precipitates on the surface of the core material inside the molded body, there is no excess metal in the 7-trix, creating a seabird-like shape in the molded body, and no excess metal remains in the molding machine.

本発明に使用される芯材としては、銅、アルミニウム、
ニッケル、鉄、金、銀、ステンレス等の金属、金属酸化
物、金属窒化物、ガラス等の無機物や有機繊維等の有機
物から成る球状、粒状、フレーク状、ウィスカー状、或
いはファイバー形状のあらゆる材質、形状の材料で、こ
の芯材に予め金属錫又は金属亜鉛を被覆してもよいし、
又は被覆せず芯材と金属錫又は金属亜鉛とを一緒にマi
・リックスの絶縁性高分子材料中に配合してもよい。ま
た金属錫又は金属亜鉛と共に、金属のビスマス、インジ
ウム、アンチモン、カドミウム、銀などを同時に共存さ
せてもよい。
Core materials used in the present invention include copper, aluminum,
All spherical, granular, flake, whisker, or fiber-shaped materials made of metals such as nickel, iron, gold, silver, and stainless steel, inorganic substances such as metal oxides, metal nitrides, and glass, and organic substances such as organic fibers; This core material may be coated with metal tin or metal zinc in advance, or
Or, the core material and metal tin or metal zinc are mixed together without coating.
- May be blended into RIX's insulating polymer material. Furthermore, metals such as bismuth, indium, antimony, cadmium, and silver may coexist together with metal tin or metal zinc.

被覆方法としては、電気メツキ、真空蒸着、溶融メツキ
、無電解メツキ等があり、配合方法としては、バンバリ
ーミキサ−、ニーグー、オーブンロール等による混練機
練り込み、1軸、21!IIIその他押し出し機による
もの等があげられる。
Coating methods include electroplating, vacuum deposition, melt plating, electroless plating, etc., and blending methods include kneading with a Banbury mixer, Nigoo, oven roll, etc., single screw, 21! III and others using an extruder.

マトリックスとしての絶縁性高分子材料としては、ポリ
エヂレン樹脂、ポリスヂレン樹脂、ポリプロピレン樹脂
、ABS (アクリロニトリル・ブタジェン・スヂレン
)樹脂、ポリブヂレンテレフタレート樹脂、ポリカーボ
ネート樹脂等の熱可塑性樹脂、フェノール樹脂、エボギ
シ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル
樹脂等の熱硬化性樹脂、ポリウレタンゴム、5BR(ス
ヂレン・ブタジェンゴム)、NBRにトリル・ブタジェ
ンゴム)、ポリイソブチレンゴム等のゴム又はTPRな
どがあげられ、各々電子線、紫外線等放射線照射、或は
パーオキサイド等で架橋してもよい。さらに、特性に影
響しない範囲で滑剤、老化防止剤、重合度劣化防止剤、
紫外線吸収剤、無機及び有機フィラー、着色剤等の高分
子材料添加剤を加えることも出来る。
Examples of insulating polymer materials used as a matrix include thermoplastic resins such as polyethylene resin, polystyrene resin, polypropylene resin, ABS (acrylonitrile butadiene styrene) resin, polybutylene terephthalate resin, and polycarbonate resin, phenolic resin, and epoxy resin. , thermosetting resins such as melamine resin, urea resin, unsaturated polyester resin, polyurethane rubber, rubber such as 5BR (styrene-butadiene rubber), NBR (tolyl-butadiene rubber), polyisobutylene rubber, or TPR, etc. Crosslinking may be carried out by irradiation with radiation such as UV rays or ultraviolet rays, or by peroxide or the like. In addition, lubricants, anti-aging agents, polymerization degree deterioration inhibitors,
Polymeric material additives such as UV absorbers, inorganic and organic fillers, colorants, etc. can also be added.

本発明において芯材(A)の配合量は、全組成物に対し
、金属材の場合は1〜30重量%の範囲内、その他の芯
材では10〜70重量%の範囲内配合することか望まし
い。配合量が前記範囲量未満では導電性か低く、また、
前記範囲量を超えると、得られる材料の物性、その他の
特性か低下し好ましくない。
In the present invention, the blending amount of the core material (A) is within the range of 1 to 30% by weight for metal materials, and 10 to 70% by weight for other core materials, based on the total composition. desirable. If the blending amount is less than the above range, the conductivity will be low, and
If the amount exceeds the above range, the physical properties and other properties of the resulting material will deteriorate, which is not preferable.

金属錫又は金属亜鉛(B)の配合量は全組成に対して0
05〜5.0重量%の範囲で、有機酸銀・鉛塩又は有機
酸銀又は有機酸鉛塩(C)としては、有機酸にロジン酸
、ナフテン酸等を用いる。また、有機酸銀・鉛塩又は有
機酸鉛塩をそのままの状態て使用してもよいが、有機酸
銀・鉛塩又は有機酸銀又は有機酸鉛塩を溶剤に溶かし有
機酸銀・鉛塩又は有機酸銀又は有機酸鉛塩溶液として用
いてもよく、またその配合量は前組成に対して05〜4
50重量%の範囲で配合する。また、有機酸銀・鉛塩又
は有機酸銀又は有機酸鉛塩にヒスマス、インジウム、ア
ンチモン、カドミウム、亜鉛、銀などの有機酸塩を共存
させてもよい。具体的溶剤としては、スクワレンがある
。有機酸銀・鉛塩又は有機酸鉛塩と金属錫又は金属亜鉛
の配合割合は、錫。
The amount of metallic tin or metallic zinc (B) is 0 for the entire composition.
As the organic acid silver/lead salt or the organic acid silver or organic acid lead salt (C), rosin acid, naphthenic acid, etc. are used as the organic acid in the range of 0.05 to 5.0% by weight. In addition, organic acid silver/lead salt or organic acid lead salt may be used as is, but organic acid silver/lead salt or organic acid silver/lead salt may be dissolved in a solvent and organic acid silver/lead salt may be used. Alternatively, it may be used as an organic acid silver or organic acid lead salt solution, and the blending amount is 05 to 4% relative to the previous composition.
It is blended in a range of 50% by weight. Further, an organic acid salt such as hismuth, indium, antimony, cadmium, zinc, silver, etc. may coexist with the organic acid silver/lead salt or the organic acid silver or organic acid lead salt. A specific example of the solvent is squalene. The mixing ratio of organic acid silver/lead salt or organic acid lead salt and metallic tin or metallic zinc is tin.

鉛=6・4又錫 鉛=91となることか望ましい。そし
て浸漬方法によって、この有機酸銀・鉛塩又は有機酸鉛
塩を絶縁性高分子制着中に配合する場合、有機酸銀・鉛
塩又は有機酸鉛塩と溶剤の割合が13程度か望ましい。
Lead = 6.4 or tin Lead = 91 is desirable. When this organic acid silver/lead salt or organic acid lead salt is blended into the insulating polymer adhesive by the immersion method, the ratio of the organic acid silver/lead salt or organic acid lead salt to the solvent is preferably about 13. .

浸漬方法の他に、塗布、混合等の方法かあげられる。In addition to the dipping method, methods such as coating and mixing can be used.

この有機酸銀・鉛塩又は有機酸銀又は有機酸鉛塩、金属
錫又は金属亜鉛及び8月の配合させた絶縁性高分子材料
マトリックスを、 150℃以上の温度下で剪断応力変
形を加えながら、射出成形機押出機等で成形して複合導
電性高分子材料成形体を得る。
This organic acid silver/lead salt, organic acid silver or organic acid lead salt, metallic tin or metallic zinc, and the insulating polymer material matrix blended with the organic acid are subjected to shear stress deformation at a temperature of 150°C or higher. A composite conductive polymer material molded body is obtained by molding with an injection molding machine extruder or the like.

[実施例] 実施例 約5μmの錫メツキを施した直径50μmの銅繊維を2
00木に集束し、ABS樹脂(日本合成ゴム社製)と共
に押出し、ABS樹脂を溶融被覆した。これを冷却し、
ペレタイザーにて6mmの長さに切断し、マスター・ベ
レットとした。このマスター・ベレットを25重量%の
ロジン酸鉛溶液中(溶剤、スクワレン)に30分間浸漬
させた。その後80℃で1時間乾燥さゼ、このマスター
・ベレットにABS樹脂のバージンベレットを配合し、
錫メツキ銅繊維の充填率が15重重量のコンパウンドと
した。その後てこのコンパウンドを射出成形機にて成形
した。
[Example] Example: Two copper fibers with a diameter of 50 μm that were tin-plated with a thickness of about 5 μm.
00 wood, extruded with ABS resin (manufactured by Japan Synthetic Rubber Co., Ltd.), and melt-coated with ABS resin. Cool this and
It was cut into a length of 6 mm using a pelletizer to obtain a master pellet. The master pellet was immersed in a 25% by weight lead rosinate solution (solvent: squalene) for 30 minutes. After that, it was dried at 80℃ for 1 hour, and a virgin pellet of ABS resin was added to this master pellet.
The compound had a tin-plated copper fiber filling rate of 15 weight. Thereafter, this compound was molded using an injection molding machine.

成形品は厚さ2mm、6 cmX 6 cmの板状物で
あり、両端を削って端子とした。この二つの端子間の導
通抵抗を測定し、成形品の体積抵抗率を概算した。また
−40℃〜80℃で 600時間のビーl−サイクル試
験をした後、同様にして体積抵抗率を概算した。また、
アトパンテスト法により電磁波遮蔽効果を測定した。
The molded product was a plate-like product with a thickness of 2 mm and a size of 6 cm x 6 cm, and both ends were shaved to form terminals. The conduction resistance between these two terminals was measured, and the volume resistivity of the molded product was estimated. After conducting a 600 hour Biel cycle test at -40°C to 80°C, the volume resistivity was roughly estimated in the same manner. Also,
The electromagnetic shielding effect was measured using the atpan test method.

実施例 2 錫メツキを施した直径約50μmのカラス繊維を芯材と
して用いた以外は、実施例1と同様にして成形品を作り
、この成形品について実施例1と同様にして、体積抵抗
率及び電磁波遮蔽効果を測定した。
Example 2 A molded article was made in the same manner as in Example 1, except that a tin-plated glass fiber with a diameter of approximately 50 μm was used as the core material, and the volume resistivity of this molded article was determined in the same manner as in Example 1. and the electromagnetic wave shielding effect was measured.

実施例 3 芯材である65/35黄銅の長さ3mm短繊維と金属錫
の粉体を191の割合でA B S II脂(日本合成
ゴム社製)に二軸押出機によって混練した。この時、添
加物の充填率を15重量%とじた。この複合物ベレット
を25重歪量のロジン酸鉛溶液中(溶剤:スクワレン)
に30分間浸漬させたのち、80℃で1時間乾燥させた
。その後射出成形機にて成形した。
Example 3 A core material of 65/35 brass short fibers having a length of 3 mm and metal tin powder were kneaded in A B S II resin (manufactured by Japan Synthetic Rubber Co., Ltd.) at a ratio of 191 using a twin-screw extruder. At this time, the filling rate of the additive was limited to 15% by weight. This composite pellet was placed in a lead rosinate solution (solvent: squalene) at a strain of 25%.
After being immersed in water for 30 minutes, it was dried at 80° C. for 1 hour. After that, it was molded using an injection molding machine.

得られた成形品について体積抵抗率、電磁波遮蔽効果を
実施例1同様にして測定した。
The volume resistivity and electromagnetic wave shielding effect of the obtained molded article were measured in the same manner as in Example 1.

実施例 4 芯材である平均粒径か約100μmの銅粉と金属錫の粉
体を19=1の割合でABS樹脂(日本合成ゴム社製)
に、二軸押出機によって混練した。この時添加物の充填
率を15重量%とじた。この複合物ベレットを25重量
%のロジン酸鉛溶液中(溶剤スクワレン)に30分間浸
漬させたのち、80℃1時間乾燥させた。その後射出成
形機にて成形した。
Example 4 ABS resin (manufactured by Japan Synthetic Rubber Co., Ltd.) was prepared by mixing core material copper powder with an average particle diameter of about 100 μm and metal tin powder in a ratio of 19=1.
Then, the mixture was kneaded using a twin-screw extruder. At this time, the filling rate of the additive was limited to 15% by weight. This composite pellet was immersed in a 25% by weight lead rosinate solution (solvent squalene) for 30 minutes, and then dried at 80° C. for 1 hour. After that, it was molded using an injection molding machine.

得られた成形品について体積抵抗率、電磁波遮蔽効果を
実施例1と同様にして測定した。
The volume resistivity and electromagnetic wave shielding effect of the obtained molded article were measured in the same manner as in Example 1.

比較例 1 芯材に約5μmの錫メツキを施した直径約50μmの銅
繊維を用い、この錫メツキ銅繊維を 200本集束し、
ABS樹脂(日本合成ゴム社製)と共に押し出し、AB
S樹脂を溶融被覆した。これを冷却して、ペレタイザー
を用いて6mmの長さに切断してマスター・ベレットと
した。このマスター・ベレットにABS樹脂のバージン
ベレットを配合し、錫メツキ銅繊維の充填率が15重重
量となるようにした。而して調整したコンパラン1〜を
射出成形機にて成形した。
Comparative Example 1 Using copper fibers with a diameter of about 50 μm whose core material was tin-plated with a thickness of about 5 μm, 200 of these tin-plated copper fibers were bundled,
Extruded with ABS resin (manufactured by Japan Synthetic Rubber Co., Ltd.), AB
S resin was melt coated. This was cooled and cut into 6 mm lengths using a pelletizer to obtain master pellets. A virgin pellet made of ABS resin was blended into this master pellet so that the filling rate of tin-plated copper fibers was 15 weight. Comparans 1 to 1 were thus prepared and molded using an injection molding machine.

得られた成形品について体積抵抗率、電1ifl波遮蔽
効果を実施例1と同様にして測定した。
The volume resistivity and electric wave shielding effect of the obtained molded article were measured in the same manner as in Example 1.

実施例1,2,3及び4と比較例1にて得られた体積抵
抗率値と電磁波遮蔽効果値を第1表に示した。
Table 1 shows the volume resistivity values and electromagnetic shielding effect values obtained in Examples 1, 2, 3, and 4 and Comparative Example 1.

(以下、余白) [発明の効果] 以上説明したとおり、本発明の複合導電性高分子材料成
形体の製造方法によると、電磁波の耐ヒートサイクル性
に特に大きな効果が見られ、また、ガラス繊維などの無
機物でも、この製造方法を用いることで、単に金属繊維
に低融点金属を被覆した導電材料を用いた場合よりも、
はるかに効果が高い。
(Hereinafter, blank space) [Effects of the Invention] As explained above, according to the method for producing a composite conductive polymer material molded article of the present invention, a particularly large effect is seen in the heat cycle resistance of electromagnetic waves. By using this manufacturing method, even inorganic materials such as
Much more effective.

また、この製造方法により、4電材料の充填量を減らす
ことが可能となる上に、得られる成形対はマトリックス
である絶縁性高分子材料本来の物性が得られ、同時に高
い電磁波遮蔽効果を有す。
In addition, this manufacturing method makes it possible to reduce the filling amount of the 4-electric material, and the resulting molded pair has the physical properties inherent to the insulating polymer material that is the matrix, and at the same time has a high electromagnetic shielding effect. vinegar.

そして、それ自身導電性をもたない無機物、有機物にも
信頼性のある特性か得られるという効果かある。
Additionally, it has the effect of providing reliable characteristics even for inorganic and organic materials that do not have conductivity themselves.

代理人 弁理士 佐 藤 正 年Agent: Patent Attorney Tadashi Sato

Claims (1)

【特許請求の範囲】 導電性フィラーをマトリックスである絶縁性高分子材料
中に分散した組成物からなる複合導電性高分子材料成形
体の製造方法に於いて、 マトリックスである絶縁性高分子材料(D)中に金属、
無機物又は有機物からなる球状、粒状、フレーク状、ウ
ィスカー状、或いはファイバー形状の材料を芯材(A)
と、金属錫又は金属亜鉛(B)と、有機酸錫・鉛塩又は
有機酸錫又は有機酸鉛塩(C)とを配合し、 これを150℃以上の温度で剪断応力変形を加えながら
、押出成形することを特徴とする複合導電性高分子材料
成形体の製造方法。
[Claims] In a method for producing a composite conductive polymer material molded article comprising a composition in which a conductive filler is dispersed in an insulating polymer material as a matrix, the insulating polymer material as a matrix ( D) metal inside;
A core material (A) is a spherical, granular, flake, whisker, or fiber-shaped material made of inorganic or organic matter.
, metallic tin or metallic zinc (B), and organic acid tin/lead salt or organic acid tin or organic acid lead salt (C), and while applying shear stress deformation to this at a temperature of 150 ° C. or higher, A method for producing a composite conductive polymer material molded article, the method comprising extrusion molding.
JP2767489A 1989-02-08 1989-02-08 Preparation of composite conductive polymer material molding Pending JPH02208365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2767489A JPH02208365A (en) 1989-02-08 1989-02-08 Preparation of composite conductive polymer material molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2767489A JPH02208365A (en) 1989-02-08 1989-02-08 Preparation of composite conductive polymer material molding

Publications (1)

Publication Number Publication Date
JPH02208365A true JPH02208365A (en) 1990-08-17

Family

ID=12227501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2767489A Pending JPH02208365A (en) 1989-02-08 1989-02-08 Preparation of composite conductive polymer material molding

Country Status (1)

Country Link
JP (1) JPH02208365A (en)

Similar Documents

Publication Publication Date Title
KR101297156B1 (en) High performance emi/rfi shielding polymer composite
KR101212671B1 (en) Emi/rfi shielding polymer composite
JPS59152936A (en) Hybrid resin composition having excellent electromagnetic shielding property and rigidity
JP2956875B2 (en) Molding material for electromagnetic shielding
US20060128895A1 (en) Electriplast thermoset wet mix material and method of manufacture
JPS5814457B2 (en) Conductive plastic composition for shielding electromagnetic waves
CN103694697A (en) Thermal conducting material capable of selectively depositing metal, preparation method of the material and applications of the material
CN104470344A (en) Electromagnetic shielding composite material and preparation method thereof
JPS6320270B2 (en)
JPH02208365A (en) Preparation of composite conductive polymer material molding
KR100466134B1 (en) Electromagnetic Shielding Resin Composition
JPS5986637A (en) Electrically conductive inorganic powder
JPS5986638A (en) Resin composition having excellent electromagnetic wave shielding property and rigidity
JP2004027098A (en) Polypropylene resin composition
JP2004027097A (en) Thermoplastic resin composition
JPS6053546A (en) Electrically conductive plastic composition
JPH02274515A (en) Manufacture of composite, conductive and high-molecular molded body
KR102231389B1 (en) Method for manufacturing Electromagnetic wave shielding and heat radiation coating composition containing low specific gravity conductive powder
JPS5923595A (en) Electromagnetic shielding material
JPS6076542A (en) Electrically conductive resin
JPS6319543B2 (en)
JP2523097B2 (en) Conductive resin composition and molded article thereof
JP2004256568A (en) Polyproylene resin composition and molded product
JP2004027017A (en) Conductive resin composition
JPS61106654A (en) Electrically conductive resin composition