JPH0220832B2 - - Google Patents

Info

Publication number
JPH0220832B2
JPH0220832B2 JP57105739A JP10573982A JPH0220832B2 JP H0220832 B2 JPH0220832 B2 JP H0220832B2 JP 57105739 A JP57105739 A JP 57105739A JP 10573982 A JP10573982 A JP 10573982A JP H0220832 B2 JPH0220832 B2 JP H0220832B2
Authority
JP
Japan
Prior art keywords
head
pump
relationship
rotational speed
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57105739A
Other languages
Japanese (ja)
Other versions
JPS58222981A (en
Inventor
Keizo Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57105739A priority Critical patent/JPS58222981A/en
Publication of JPS58222981A publication Critical patent/JPS58222981A/en
Publication of JPH0220832B2 publication Critical patent/JPH0220832B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • F03B15/06Regulating, i.e. acting automatically
    • F03B15/14Regulating, i.e. acting automatically by or of water level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Description

【発明の詳細な説明】 本発明は水力機械のポンプ運転方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a pump in a hydraulic machine.

水力機械においては、実機と同じ幾何学的形状
を有する模型との間に相似則が成り立つ。従つ
て、一般に、実験室において模型実験を行い、そ
の結果から相似則を用いて、実機の性能を予測し
ている。第1図は案内羽根を有する一般的水力機
械の模型ポンプ性能を示すもので、横軸、縦軸に
は、それぞれ、模型試験流量Qn、模型試験落差
Hn及び模型試験効率ηnがとつてある。この図で、
1は案内羽根の開度を固定した場合の模型試験回
転速度Nnにおける模型試験落差Hnと模型試験流
量Qnとの関係を示す模型固有の特性曲線、2は
この特性に対応する模型効率曲線、3は模型落
差・流量特性曲線1の包絡曲線、4は模型効率曲
線2の包絡曲線で、a及びbはそれぞれ実機運転
範囲がLの場合の実機最高落差相当及び実機最低
落差相当点、Hna及びHnbはそれぞれa点及びb
点における模型落差、Qna及びQnbはそれぞれa
点及びb点における模型流量を示している。
In hydraulic machines, the law of similarity holds true between the actual machine and a model that has the same geometric shape. Therefore, generally, model experiments are conducted in a laboratory, and the performance of the actual machine is predicted using the similarity law based on the results. Figure 1 shows the performance of a model pump of a general hydraulic machine with guide vanes.The horizontal and vertical axes are model test flow rate Q n and model test head
H n and model test efficiency η n are determined. In this diagram,
1 is a model-specific characteristic curve showing the relationship between the model test head H n and the model test flow rate Q n at the model test rotation speed N n when the guide vane opening degree is fixed, and 2 is the model efficiency corresponding to this characteristic. Curve 3 is the envelope curve of the model head/flow characteristic curve 1, 4 is the envelope curve of the model efficiency curve 2, a and b are the points corresponding to the highest head of the actual machine and the lowest head of the actual machine, respectively, when the actual machine operating range is L, H na and H nb are point a and b respectively
The model head at the point, Q na and Q nb are each a
The model flow rate at point and point b is shown.

水力機械のポンプ運転においては、一般的に、
効率曲線の最高効率点を結んだ包絡曲線4に対応
する模型落差・流量包絡曲線3に沿つて運転され
る。
In pump operation of hydraulic machinery, generally,
It is operated along a model head/flow rate envelope curve 3 corresponding to an envelope curve 4 connecting the highest efficiency points of the efficiency curve.

相似則に基づいて模型性能から実機性能を求め
る一般換算式は、 H=(N/Nn・D/Dn2Hn ……(1) Q=N/Nn(D/Dn3Qn ……(2) P=gQH/η ……(3) η=ηn+Δη ……(4) として表わされる。
The general conversion formula for determining actual machine performance from model performance based on the law of similarity is: H=(N/N n・D/D n ) 2 H n ……(1) Q=N/N n (D/D n ) 3 Q n ...(2) P=gQH/η ...(3) η=η n +Δη ...(4)

ここで、N:実機回転速度 Nn:模型試験回転速度 D:実機代表寸法 Dn:模型代表寸法 H:実機落差 Hn:模型試験落差 Q:実機流量 Qn:模型試験流量 P:実機入力 g:重力の加速度 η:実機効率 ηn:模型試験効率 Δ〓:実機効率と模型効率の補正値 実機効率と模型効率との間には、実機寸法と模
型寸法との差に応じて定まる一定の関係があるこ
とが経験的に知られているので、Δηはこの関係
を用いて定められる。
Here, N: Actual machine rotation speed N n : Model test rotation speed D: Actual machine representative dimensions D n : Model representative dimensions H: Actual machine head H n : Model test head Q: Actual machine flow rate Q n : Model test flow rate P: Actual machine input g: Acceleration of gravity η: Actual machine efficiency η n : Model test efficiency Δ〓: Correction value between actual machine efficiency and model efficiency There is a constant value between the actual machine efficiency and model efficiency, which is determined according to the difference between the actual machine dimensions and the model dimensions. Since it is empirically known that there is a relationship, Δη is determined using this relationship.

第2図は、従来技術による回転速度一定で運転
される水力機械のポンプ定常運転における実機性
能を示したもので、この実機性能は模型寸法およ
び模型試験で得られた固有の性能曲線を用い、実
機寸法を定め、(1)(2)(3)および(4)式を用いて求めた
ものである。第2図の横軸には落差、縦軸には効
率、入力及び流量がとつてあり、曲線5,6及び
7がそれぞれ効率、入力及び流量を示している。
第1図に示す模型試験点a,bにおける模型試験
落差Hna,Hnbは、第2図の実機落差HA,HB
相当し、模型試験流量Qna,Qnbは第2図の実機
流量QA,QBにそれぞれ相当する。また、実機入
力および効率は各々、PA,PBおよびηAηBと表わ
される。
Figure 2 shows the performance of an actual machine in steady operation of a pump of a hydraulic machine operated at a constant rotation speed according to the conventional technology. It was determined by determining the actual machine dimensions and using equations (1), (2), (3), and (4). In FIG. 2, the horizontal axis shows the head, and the vertical axis shows the efficiency, input, and flow rate, and curves 5, 6, and 7 show the efficiency, input, and flow rate, respectively.
The model test heads H na and H nb at the model test points a and b shown in Fig. 1 correspond to the actual machine heads H A and H B in Fig. 2, and the model test flow rates Q na and Q nb in Fig. 2 correspond to the actual machine heads H A and H B in Fig. 2. They correspond to the actual machine flow rates Q A and Q B , respectively. Furthermore, the actual machine input and efficiency are expressed as P A , P B and η A η B , respectively.

水力機械のポンプあるいはポンプ水車に直結さ
れる電動機の容量は、この実機性能の入力の最大
値を越えるように定められるが、第2図から明ら
かなように、ほとんどの運転落差範囲において、
電動機の設計容量以下で運転せざるを得ない欠点
を有していた。
The capacity of the electric motor directly connected to the pump of the hydraulic machine or the pump-turbine is determined to exceed the maximum input value of the actual machine performance, but as is clear from Figure 2, in most operating head ranges,
This had the disadvantage that the motor had to be operated at less than its designed capacity.

本発明はこのような欠点を除去し、全ての落差
領域において設計容量に見合つた一定の入力で運
転できる水力機械のポンプ運転方法を提供するこ
とを目的とし、水力機械の固有の模型ポンプ性能
から相似則を用いて実機の種々の回転速度におけ
る落差と流量および入力の関係を求め、得られた
関係において運転落差範囲少なくとも一部におけ
る最大入力値又は予め計画された設備容量として
定まる最大入力値を選び、前記落差および前記最
大入力値と前記回転速度との関係を求める予備工
程と、水位条件より定まる前記落差に相当する落
差信号を前記予備工程で得られた関係を用い回転
速度信号に変換する工程と、該工程で求めた回転
速度で水力機械をその運転範囲の少なくとも一部
分において一定の最大入力で運転制御する工程と
を有することを特徴とするものである。
The purpose of the present invention is to eliminate such drawbacks and provide a pump operation method for a hydraulic machine that can be operated with a constant input commensurate with the design capacity in all head regions, and based on the inherent model pump performance of the hydraulic machine. Using the law of similarity, find the relationship between the head, flow rate, and input at various rotational speeds of the actual machine, and use the obtained relationship to determine the maximum input value in at least a part of the operating head range or the maximum input value determined as the pre-planned equipment capacity. a preliminary step of determining the relationship between the head and the maximum input value and the rotational speed, and converting a head signal corresponding to the head determined from the water level condition into a rotational speed signal using the relationship obtained in the preliminary step. and a step of controlling the operation of the hydraulic machine at a constant maximum input over at least a portion of its operating range at the rotational speed determined in the step.

そして、水位条件により落差が変化しても、自
動的に入力を一定に保つような回転速度を選択
し、可変速度で運転するもので、全ての実機ポン
プ運転領域において、電動機の設計容量に見合う
最大入力で運転することができる。その結果、電
動機の有効使用を可能ならしめ、ポンプ揚水量を
増加せしめ、等揚水量を得るためのポンプ運転時
間の短縮を可能ならしめる。
Even if the head changes depending on water level conditions, the system automatically selects a rotation speed that keeps the input constant and operates at a variable speed, which matches the design capacity of the motor in all actual pump operating ranges. Can be operated at maximum input. As a result, the electric motor can be used effectively, the amount of water pumped by the pump can be increased, and the pump operating time for obtaining the same amount of water can be shortened.

以下、実施例について説明する。 Examples will be described below.

第3図は、一実施例のポンプ運転方法のブロツ
ク線図で、8は信号変換器、9は回転速度制御
器、10は発電電動機、11はポンプ水車調速
機、12はポンプ水車を示している。信号変換器
8は水位関係より定まる落差Hに相当する落差信
号を運転すべき回転速度に相当する回転速度信号
に変換するもので、落差Hに応じ、水力機械固有
の性能曲線から得られる入力一定の条件を満足す
る回転速度Nを選択する機能を有し落差Hを一義
的に定まる回転速度に相当する回転速度信号に変
換する。この回転速度信号はサイクロコンバータ
等よりなる回転速度制御器9に伝達される。この
回転速度制御器9において伝達された回転速度信
号を運転すべき回転速度に一義的に対応する周波
数に変更し、この周波数を用いて発電電動機10
の回運速度を系統周波数を乱すことなく周波数制
御を行う。一方、この回転速度信号により、ポン
プ水車調速機11を介して、ポンプ水車12に設
けられた案内羽根の開度を制御する。このような
ポンプ運転方法を用いることによつて、全ての落
差領域において入力一定とする運転を可能ならし
めることができる。
FIG. 3 is a block diagram of a pump operating method according to an embodiment, in which 8 is a signal converter, 9 is a rotational speed controller, 10 is a generator motor, 11 is a pump turbine governor, and 12 is a pump turbine. ing. The signal converter 8 converts a head signal corresponding to the head H determined from the water level relationship into a rotational speed signal corresponding to the rotational speed at which the machine should be operated. It has a function of selecting a rotation speed N that satisfies the condition , and converts the head H into a rotation speed signal corresponding to a uniquely determined rotation speed. This rotational speed signal is transmitted to a rotational speed controller 9 consisting of a cycloconverter or the like. The rotation speed controller 9 changes the transmitted rotation speed signal to a frequency that uniquely corresponds to the rotation speed to be operated, and uses this frequency to control the generator motor 10.
frequency control is performed without disturbing the system frequency. On the other hand, based on this rotational speed signal, the opening degree of the guide vanes provided on the pump-turbine 12 is controlled via the pump-turbine speed governor 11 . By using such a pump operating method, it is possible to operate the pump with constant input in all head ranges.

第4図は信号変換器の一例で、落差信号をカム
13の回転角度に変換する信号変換素子14と、
カム曲面に入力を一定に保つ回転速度と落差との
関係が与えてあるカム13と、カム13の回転角
度を回転数信号に変換する信号変換素子15とよ
りなる。この信号変換器で落差信号はポテンシオ
メータ等よりなる信号変換素子14により回転角
度変化量として変換される。この回転角度変化量
はカム曲面の垂直方向変化量に変換され、差動ト
ランス等よりなる信号変換素子15によつて回転
数信号に変換される。
FIG. 4 shows an example of a signal converter, which includes a signal converting element 14 that converts a head signal into a rotation angle of the cam 13;
It consists of a cam 13, which has a relationship between rotational speed and head that keeps the input constant on the cam curved surface, and a signal conversion element 15 that converts the rotational angle of the cam 13 into a rotational speed signal. In this signal converter, the head signal is converted into a rotational angle change amount by a signal conversion element 14 consisting of a potentiometer or the like. This amount of change in rotational angle is converted into an amount of change in the vertical direction of the cam curved surface, and converted into a rotational speed signal by a signal conversion element 15 made of a differential transformer or the like.

次に、入力一定の条件を保つ回転速度と運転速
度との関係は次のようにして求められる。
Next, the relationship between the rotational speed and the operating speed that maintains a constant input condition is determined as follows.

まず、水力機械固有の模型性能から(1)(2)(3)およ
び(4)式を用いて種々の実機回転速度Nの場合にお
ける、流量Qおよび入力Pについて計算する。
First, the flow rate Q and the input P in the case of various actual machine rotational speeds N are calculated using equations (1), (2), (3), and (4) from the model performance specific to the hydraulic machine.

第2図に示す実機性能を得た回転速度をNとし
た場合の結果を示したのが第5図で、横軸には落
差H、縦軸には入力P及び流量Qがとつてあり、
何れの場合も上にゆくに従つてNは大きくなつて
いる。そして、落差HA,HBにおける入力Pがそ
れぞれPA,PB、流量QがそれぞれQA,QBで示し
てある。ここで最低落差HBにおいて入力が最大
値PBをとるとし、PBを一定に保つ運転点を選ぶ、
すなわち入力曲線がPCとなるようにすると、落
差Hに対応した流量曲線はQCの如く表わされ、
QCが入力一定としたときの流量包絡曲線、QA′が
入力一定としたときの落差HAにおけるポンプ流
量となる。この結果を用いて落差Hと回転速度N
との関係を求めると第6図の如くなり、これらの
関係は一義的に定まる包絡曲線で表わされること
がわかる。
Figure 5 shows the results when the rotational speed at which the actual machine performance shown in Figure 2 was obtained is taken as N. The horizontal axis is the head H, and the vertical axis is the input P and flow rate Q.
In either case, N increases as one goes up. The inputs P at the heads H A and H B are shown as P A and P B , respectively, and the flow rates Q are shown as Q A and Q B, respectively. Assuming that the input takes the maximum value P B at the lowest head H B , select the operating point that keeps P B constant.
In other words, if the input curve is set to be P C , the flow rate curve corresponding to the head H is expressed as Q C ,
Q C is the flow rate envelope curve when the input is constant, and Q A ′ is the pump flow rate at the head H A when the input is constant. Using this result, head H and rotational speed N
Figure 6 shows that these relationships are expressed by a uniquely defined envelope curve.

従つて、この実施例のポンプ運転方法を用いれ
ば、電動機の最大容量に見合つた最大入力で常に
ポンプ運転を行なうことが可能であり、かつ、第
5図より明らかな如く、最高落差HAにおける流
量QAQA′まで増加させることができる。また、
QA′,QB,QA′で囲まれた範囲のポンプ揚水量を
得ることができ、時間当りの揚水量を増加させる
ことを可能ならしめる。その結果、最も有効に機
器、あるいは設備を運用することができる。
Therefore, if the pump operation method of this embodiment is used, it is possible to always operate the pump at the maximum input corresponding to the maximum capacity of the electric motor, and as is clear from Fig. 5, the pump operation at the maximum head H A is possible. The flow rate can be increased up to Q A Q A ′. Also,
It is possible to obtain a pump pumping amount in the range surrounded by Q A ′, Q B , and Q A ′, making it possible to increase the pumping amount per hour. As a result, equipment or equipment can be operated most effectively.

なお、信号変換器は、落差Hに対応する落差信
号を入力一定とする回転速度信号を与えるマイク
ロプロセツサの如き電気的信号変換器であつても
同様の効果が得られる。また、第3図のブロツク
線図に示した方法に限らず、落差信号に対応し、
入力一定の条件で実機定常運転の回転速度を選定
する運転方法であれば同様に用いることができ、
同様の効果が得られる。
The same effect can be obtained even if the signal converter is an electrical signal converter such as a microprocessor that provides a rotational speed signal with a constant input head signal corresponding to the head H. In addition to the method shown in the block diagram in Fig. 3, it is also possible to
Any operating method that selects the rotation speed for steady operation of the actual machine under constant input conditions can be used in the same way.
A similar effect can be obtained.

以上の如く、本発明は、設計容量に見合つた一
定の入力で運転できる水力機械のポンプ運転方法
を提供することを可能とするもので、産業上の効
果の大なるものである。
As described above, the present invention makes it possible to provide a method for operating a pump of a hydraulic machine that can be operated with a constant input commensurate with the design capacity, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は案内羽根を有する水力機械の一般的な
模型ポンプ特性を示す線図、第2図は回転速度一
定で運転された場合の一般的な実機ポンプ特性を
示す線図、第3図は本発明の水力機械のポンプ運
転方法の一実施例のブロツク線図、第4図は第3
図の運転方法において用いる信号変換器の説明
図、第5図は回転速度を変化させた場合の一般的
性能の変化及び入力一定の条件を保つた場合の特
性を示す線図、第6図は入力一定の条件を保つた
場合の落差と回転速度との関係を示す線図であ
る。 8……信号変換器、9……回転速度制御器、1
0……発電電動機、11……ポンプ水車調速機、
12……ポンプ水車、13……カム、14,15
……信号変換素子。
Figure 1 is a diagram showing the general model pump characteristics of a hydraulic machine with guide vanes, Figure 2 is a diagram showing the characteristics of a typical actual pump when operated at a constant rotation speed, and Figure 3 is FIG. 4 is a block diagram of an embodiment of the method of operating a pump for a hydraulic machine according to the present invention.
An explanatory diagram of the signal converter used in the operating method shown in Fig. 5. Fig. 5 is a diagram showing the change in general performance when the rotation speed is changed and the characteristics when the input condition is kept constant. Fig. 6 is a diagram showing the characteristics when the input condition is kept constant. FIG. 3 is a diagram showing the relationship between head and rotation speed when a constant input condition is maintained. 8...Signal converter, 9...Rotation speed controller, 1
0... Generator motor, 11... Pump water turbine governor,
12...Pump water wheel, 13...Cam, 14,15
...Signal conversion element.

Claims (1)

【特許請求の範囲】[Claims] 1 水力機械の固有の模型ポンプ性能から相似則
を用いて実機の種々の回転速度における落差と流
量および入力の関係を求め、得られた関係におい
て運転落差範囲の少なくとも一部における最大入
力値又は予め計画された設備容量として定まる最
大入力値を選び、前記落差および前記最大入力値
と前記回転速度との関係を求める予備工程と、水
位条件より定まる前記落差に相当する落差信号を
前記予備工程で得られた関係を用い回転速度信号
に変換する工程と、該工程で求めた回転速度で水
力機械をその運転範囲の少なくとも一部分におい
て一定の最大入力で運転制御する工程とを有する
ことを特徴とする水力機械のポンプ運転方法。
1 Based on the inherent model pump performance of the hydraulic machine, use the law of similarity to find the relationship between the head, flow rate, and input at various rotational speeds of the actual machine, and from the obtained relationship, calculate the maximum input value in at least a part of the operating head range, or A preliminary step in which a maximum input value determined as the planned equipment capacity is selected and the relationship between the head and the maximum input value and the rotational speed is obtained, and a head signal corresponding to the head determined from water level conditions is obtained in the preliminary step. a step of converting the obtained relationship into a rotational speed signal; and a step of controlling the operation of a hydraulic machine at a constant maximum input over at least a portion of its operating range at the rotational speed determined in the step. How to operate the machine pump.
JP57105739A 1982-06-18 1982-06-18 Operating method for hydraulic machine Granted JPS58222981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57105739A JPS58222981A (en) 1982-06-18 1982-06-18 Operating method for hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57105739A JPS58222981A (en) 1982-06-18 1982-06-18 Operating method for hydraulic machine

Publications (2)

Publication Number Publication Date
JPS58222981A JPS58222981A (en) 1983-12-24
JPH0220832B2 true JPH0220832B2 (en) 1990-05-10

Family

ID=14415635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57105739A Granted JPS58222981A (en) 1982-06-18 1982-06-18 Operating method for hydraulic machine

Country Status (1)

Country Link
JP (1) JPS58222981A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2582737A1 (en) * 1985-06-03 1986-12-05 Neyrpic METHOD FOR REGULATING THE POWER OF HYDRAULIC TURBINES
JPH063187B2 (en) * 1986-04-26 1994-01-12 株式会社東芝 Steady-state operation method of variable speed hydraulic machine
JP2835193B2 (en) * 1991-02-07 1998-12-14 東京電力株式会社 Operation control method of variable speed hydraulic machine
JP2840053B2 (en) * 1995-12-15 1998-12-24 株式会社日立製作所 Variable speed pumping equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329434A (en) * 1976-08-30 1978-03-18 Toshiba Corp Power limiter for hydraulic power plant
JPS55118110A (en) * 1979-03-07 1980-09-10 Hitachi Ltd Control system for hydraulic turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329434A (en) * 1976-08-30 1978-03-18 Toshiba Corp Power limiter for hydraulic power plant
JPS55118110A (en) * 1979-03-07 1980-09-10 Hitachi Ltd Control system for hydraulic turbine

Also Published As

Publication number Publication date
JPS58222981A (en) 1983-12-24

Similar Documents

Publication Publication Date Title
FI89534C (en) FOERFARANDE FOER ATT UNDVIKA EN KRITISK HASTIGHET FOER ATT ANVAENDAS I SAMBAND MED STYRNINGEN AV HASTIGHETEN AV EN VINDTURBIN MED REGLERBAR HASTIGHET OCH ANLAEGGNING FOER STYRNING AV EN VINDTURBIN MED REGLERBAR HASTIGH
US5742515A (en) Asynchronous conversion method and apparatus for use with variable speed turbine hydroelectric generation
US4695736A (en) Variable speed wind turbine
US4773369A (en) Method of controlling an output of an internal combustion engine and/or a variable displacement hydraulic pump driven by the engine
US4703189A (en) Torque control for a variable speed wind turbine
US4375151A (en) Control in wave energy conversion device employing a flexible walled enclosure
JP2585233B2 (en) Variable speed turbine generator
KR890000264B1 (en) Method of starting a variable-speed pump turbine or a variable speed pump
ES8403200A1 (en) Motion responsive wind turbine tower damping
US4180976A (en) Siphon motor
JPS6158666B2 (en)
CA1284347C (en) Method and device for controlling the acceleration of an electric stepping motor
CA1308459C (en) Variable speed pumping-up electrical power system
EP0800616B1 (en) Asynchronous conversion method and apparatus for use with variable speed turbine hydroelectric generation
JPH0220832B2 (en)
JPH063187B2 (en) Steady-state operation method of variable speed hydraulic machine
JPS5818595A (en) Driving of variable speed hydrauric rotary machine
US2290867A (en) Control for power plants
JP2731147B2 (en) Control unit for hydroelectric power plant
SU1455024A1 (en) Rotational speed governor of thermal engine
SU1012217A1 (en) Pump pressure adjusting device
JPH0610464B2 (en) Variable speed hydraulic machine control method
JP2840053B2 (en) Variable speed pumping equipment
SU1377449A1 (en) Method of regulating load of wind-driven electric plant
JP2695813B2 (en) Operation control device of variable speed hydraulic machine