JPH0220802B2 - - Google Patents

Info

Publication number
JPH0220802B2
JPH0220802B2 JP59051261A JP5126184A JPH0220802B2 JP H0220802 B2 JPH0220802 B2 JP H0220802B2 JP 59051261 A JP59051261 A JP 59051261A JP 5126184 A JP5126184 A JP 5126184A JP H0220802 B2 JPH0220802 B2 JP H0220802B2
Authority
JP
Japan
Prior art keywords
strap
vanes
rings
blades
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59051261A
Other languages
Japanese (ja)
Other versions
JPS59211701A (en
Inventor
Hawaado Rii Resutaa
Mearii Jonson Kyasarin
Utsudobarii Joonzu Richaado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPS59211701A publication Critical patent/JPS59211701A/en
Publication of JPH0220802B2 publication Critical patent/JPH0220802B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/042Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators
    • F01D9/044Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators permanently, e.g. by welding, brazing, casting or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/006Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S29/00Metal working
    • Y10S29/026Method or apparatus with machining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S29/00Metal working
    • Y10S29/048Welding with other step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49323Assembling fluid flow directing devices, e.g., stators, diaphragms, nozzles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49789Obtaining plural product pieces from unitary workpiece
    • Y10T29/49796Coacting pieces

Description

【発明の詳細な説明】 発明の背景 本発明は蒸気タービンに関するもので、更に詳
しく言えば、蒸気タービンの動翼を衝撃するため
の蒸気の案内および加速用の羽根を含んだ仕切板
に関する。
BACKGROUND OF THE INVENTION The present invention relates to steam turbines, and more particularly to a partition plate containing steam guiding and accelerating vanes for impinging the rotor blades of a steam turbine.

従来、蒸気タービンでは蒸気通路内に配置され
た複数の固定羽根によつて形成されるノズルが使
用されるが、かかるノズルは流入した蒸気の方向
を円滑に所望の方向に変えかつ加速してタービン
動翼を衝撃させるよう空気力学的に設計されてい
る。蒸気通路内における精度はタービン動翼にと
つて重要である。すなわち、動力を浪費する乱流
や設計はずれの流れ特性を回避するよう正確に成
形されかつ安定に支持された仕切板の羽根を用い
て高い精度で蒸気を案内しなければならないので
ある。
Traditionally, steam turbines use a nozzle formed by a plurality of fixed vanes arranged in a steam passage, and such a nozzle smoothly redirects and accelerates the incoming steam in a desired direction, and flows into the turbine. It is aerodynamically designed to impact the moving blades. Accuracy within the steam path is important for turbine rotor blades. This means that steam must be guided with precision using precisely shaped and stably supported partition vanes to avoid power-wasting turbulence and undesigned flow characteristics.

蒸気タービンの仕切板は、従来、スペーサとし
て知られる半円形の帯金に設けられた切抜き穴の
中に羽根の両端を挿入することによつて形成され
てきた。かかる羽根の両端がスペーサに仮着け溶
接された後、外側および内側の半円形リングがス
ペーサおよび羽根に本溶接される。羽根とリング
との満足すべき接合を達成するためには、リング
とスペーサとの間に極めて深い溶接を施し、それ
によつて溶接部が両者の界面に十分に深く溶込ん
で羽根にも接触結合するようにすることが必要で
ある。
Steam turbine partitions have traditionally been formed by inserting the ends of the blades into cutouts in semicircular metal bands known as spacers. After the ends of such vanes are tack welded to the spacer, the outer and inner semicircular rings are permanently welded to the spacer and vane. In order to achieve a satisfactory bond between the vanes and the ring, a very deep weld must be made between the ring and the spacer so that the weld penetrates deep enough into the interface between the two to provide a contact bond to the vanes as well. It is necessary to do so.

米国特許第4288677号明細書中に記載のごとく、
溶込みの深さが増加するに従つて溶接欠陥も増加
する。かかる溶接欠陥としては、たとえば割れ、
スラグ巻込み、不完全な溶込みなどが挙げられる
が、これらはノズル羽根の破損や不安定化をもた
らすことがある。その上、このように深い溶接は
蒸気通路のゆがみを生じて設計上の空気力学的特
性からの逸脱をもたらし、それによつて装置の総
合効率を低下させる傾向がある。
As described in U.S. Pat. No. 4,288,677,
As the depth of penetration increases, the number of weld defects also increases. Such welding defects include, for example, cracks,
Examples include slag entrainment and incomplete penetration, which can lead to damage or instability of the nozzle blades. Additionally, such deep welds tend to cause distortion of the steam path resulting in a deviation from the designed aerodynamics, thereby reducing the overall efficiency of the device.

スペーサの厚さは、比較的小さい(たとえば
1/4インチ未満)のが通例であつた。その理由
は、従来の打抜き技術によつて加工するにはそれ
が限度だつたからである。このように厚さが小さ
いため、スペーサはそれ自体で羽根を支持し得る
構造部材としてよりも内側および外側リングへの
溶接に先立つ位置決め部材として有効であつた。
The thickness of the spacer has typically been relatively small (eg, less than 1/4 inch). The reason for this is that there is a limit to what can be processed using conventional punching techniques. This small thickness made the spacer more useful as a positioning member prior to welding to the inner and outer rings than as a structural member capable of supporting the vanes in its own right.

ゆがみを引起こすもう1つの原因は、スペーサ
および羽根を半円形のサブアセンブリに組立てる
ことにあつた。加熱や溶接時の収縮、材料の応力
除去処理および焼戻しに由来するゆがみは、内側
および外側リングとの接合前および接合後のいず
れにおいてもサブアセンブリのゆがみを引起こす
傾向があつた。このようなゆがみの原因は、少な
くとも部分的には、半円形サブアセンブリ中にお
ける応力の変動が半円のゆがみを引起こすことに
あると考えられる。
Another source of distortion was the assembly of the spacer and vanes into a semicircular subassembly. Distortion from heating, shrinkage during welding, material stress relief treatments, and tempering tended to cause distortion of the subassembly both before and after joining with the inner and outer rings. It is believed that such distortion is due, at least in part, to stress variations in the semicircular subassembly causing distortion of the semicircle.

従来の製造技術によれば、仕切板のサブアセン
ブリ同士を結合するために平坦な半径方向合せ面
が使用されてきた。その結果、接線方向に沿つて
ノズル羽根同士が重なり合うため、各々の半円形
サブアセンブリの各端にあるノズル羽根を切断す
ることが通例必要とされてきた。この場合、蒸気
通路中に比較的柔軟な羽根断片が存在することに
なり、それらがゆがみや振動を生じて蒸気の流れ
の空気力学的効率を低下させることがあつた。
Conventional manufacturing techniques have used flat radial mating surfaces to join partition subassemblies. As a result, it has typically been necessary to cut the nozzle vanes at each end of each semicircular subassembly due to the tangential overlap of the nozzle vanes. In this case, relatively flexible vane segments would be present in the steam path, which could cause distortion and vibration, reducing the aerodynamic efficiency of the steam flow.

発明の目的 本発明の目的の1つは、先行技術の欠点を排除
するような蒸気タービン用の仕切板を提供するこ
とにある。
OBJECTS OF THE INVENTION One of the objects of the invention is to provide a partition plate for a steam turbine that eliminates the disadvantages of the prior art.

また、改良された空気力学的ノズルを有する蒸
気タービン用の仕切板を提供することも本発明の
目的の1つである。
It is also an object of the invention to provide a partition plate for a steam turbine having an improved aerodynamic nozzle.

更にまた、ノズル羽根が帯金に対し構造的に固
定されかつ帯金が360度の環状構造を有する結果、
組立て時の偏差、熱応力および収縮応力に原因す
るゆがみが低減しかつ一層厳格な許容差を保持す
ることができるような蒸気タービン用の仕切板を
提供することも本発明の目的の1つである。
Furthermore, as a result of the nozzle vanes being structurally fixed to the strap and the strap having a 360 degree annular structure,
It is also an object of the invention to provide a partition plate for a steam turbine in which distortions due to assembly deviations, thermal and shrinkage stresses are reduced and tighter tolerances can be held. be.

更にまた、蒸気通路の180度扇形部分間の分離
が互いに隣接する羽根間の切断面に沿つて行われ
るような蒸気タービン用の仕切板を提供すること
も本発明の目的の1つである。
Furthermore, it is an object of the invention to provide a partition plate for a steam turbine in which the separation between 180 degree sectors of the steam passage is along the cutting plane between adjacent blades.

更にまた、羽根の両端に位置する帯金が互いに
隣接した羽根間の湾曲した切断面に沿つて切断さ
れておりかつ内側および外側リングの合せ面が平
面であるような蒸気タービン用の仕切板を提供す
ることも本発明の目的の1つである。
Furthermore, the present invention provides a partition plate for a steam turbine in which the straps located at both ends of the blades are cut along the curved cutting plane between adjacent blades, and the mating surfaces of the inner and outer rings are flat. It is also an object of the present invention to provide.

本発明の一側面に従えば、半円形の内側帯金、
前記内側帯金と同心的に配置された半円形の外側
帯金、および前記内側帯金と前記外側帯金との間
に配置された複数の羽根によつて蒸気通路が形成
され、前記羽根の内端および外端は前記内側帯金
および前記外側帯金に設けられた溝穴に嵌入し、
前記羽根の前記内端および外端は構造溶接部によ
つて前記内側帯金および前記外側帯金に固定さ
れ、前記内側帯金の内面には上流側および下流側
の界面に位置する溶接部によつて半円形の内側リ
ングが固定され、前記外側帯金の外面には上流側
および下流側の界面に位置する溶接部によつて半
円形の外側リングが固定され、かつ前記内側帯
金、前記外側帯金および前記構造溶接部は前記羽
根と前記内側リングおよび前記外側リングとの間
の溶接を必要としなくても前記羽根を支持するの
に有効であることを特徴とするタービン用の180
度半仕切板が提供される。
According to one aspect of the invention, a semicircular inner strap;
A steam passage is formed by a semicircular outer band that is arranged concentrically with the inner band, and a plurality of blades that are arranged between the inner band and the outer band. The inner end and the outer end fit into slots provided in the inner strap and the outer strap,
The inner and outer ends of the vanes are secured to the inner strap and the outer strap by structural welds, and the inner strap includes welds located at the upstream and downstream interfaces on the inner surface of the inner strap. A semicircular inner ring is thus fixed, a semicircular outer ring is fixed to the outer surface of the outer strap by welds located at the upstream and downstream interfaces, and the inner strap, the 180 for a turbine, wherein the outer strap and the structural welds are effective to support the blade without requiring welds between the blade and the inner ring and the outer ring;
A half-partition plate is provided.

本発明の別の側面に従えば、(a)360度の内側帯
金を形成し、(b)360度の外側帯金を形成し、(c)羽
根の内端および外端を収容するための複数の溝穴
を前記内側帯金および前記外側帯金に設け、(d)前
記内側帯金および前記外側帯金を同軸的に保持
し、(e)複数の前記羽根を前記溝穴に挿入し、(f)前
記羽根の前記内端および外端を前記内側帯金およ
び前記外側帯金に仮着け溶接し、(g)形成される蒸
気通路のゆがみを最小限に抑えるのに有効な溶接
手順に従つて前記羽根の前記内端および外端を前
記内側帯金および前記外側帯金に対し構造的に溶
接し、(h)前記蒸気通路に応力除去処理および焼戻
しを施し、次いで(i)互いに隣接した羽根の中間に
位置する第1および第2の切断面に沿いながら約
180度だけ離隔した2つの箇所において前記内側
帯金および前記外側帯金を切断する諸工程から成
ることを特徴とする、蒸気タービン用仕切板中に
蒸気通路を形成する方法が提供される。
According to another aspect of the invention, (a) forming a 360 degree inner band, (b) forming a 360 degree outer band, and (c) accommodating the inner and outer ends of the vane. a plurality of slots are provided in the inner strap and the outer strap, (d) the inner strap and the outer strap are held coaxially, and (e) a plurality of the vanes are inserted into the slots. (f) tack welding said inner and outer ends of said vane to said inner and outer ferrules; and (g) a weld effective to minimize distortion of the steam passage formed. structurally welding the inner and outer ends of the vane to the inner and outer straps according to the procedure; (h) stress relieving and tempering the steam passage; and (i) Approximately along the first and second cut planes located midway between adjacent blades.
A method of forming a steam passageway in a steam turbine partition plate is provided, characterized in that it comprises the steps of cutting the inner band and the outer band at two points separated by 180 degrees.

本発明の更に別の側面に従えば、(a)360度の内
側帯金を形成し、(b)360度の外側帯金を形成し、
(c)羽根の内端および外端を収容するための複数の
溝穴を前記内側帯金および前記外側帯金に設け、
(d)前記内側帯金および前記外側帯金を同軸的に保
持し、(e)複数の前記羽根を前記溝穴に挿入し、(f)
前記羽根の前記内端および外端を前記内側帯金お
よび前記外側帯金を仮着け溶接し、(g)形成される
蒸気通路のゆがみを最小限に抑えるのに有効な溶
接手順に従つて前記羽根の前記内端および外端を
前記内側帯金および前記外側帯金に対し構造的に
溶接し、(h)前記蒸気通路に応力除去処理および焼
戻しを施し、(i)互いに隣接した羽根の中間に位置
する第1および第2の切断面に沿いながら約180
度だけ離隔した2つの箇所において前記内側帯金
および前記外側帯金を切断して第1および第2の
蒸気通路部分を作製し、(j)両端に概して平坦な合
せ面を有する1対の180度内面半リングを形成し、
(k)上流側および下流側の界面に位置する溶接部を
用いて前記内側半リングを各々の前記蒸気通路部
分の前記内側帯金に固定し、(l)両端に概して平坦
な合せ面を有する1対の180度外側半リングを形
成し、次いで(m)上流側および下流側の界面に
位置する溶接部を用いて前記外側半リングを各々
の前記蒸気通路部分の前記外側帯金に固定する諸
工程から成ることを特徴とするタービン用仕切板
の製造方法が提供される。
According to yet another aspect of the invention, (a) forming a 360 degree inner band; (b) forming a 360 degree outer band;
(c) providing a plurality of slots in the inner strap and the outer strap for accommodating the inner and outer ends of the vanes;
(d) holding the inner strap and the outer strap coaxially; (e) inserting a plurality of the vanes into the slot; (f)
(g) tack welding the inner and outer ends of the vane to the inner and outer straps, and the inner and outer ends of the vanes are structurally welded to the inner and outer straps; (h) the steam passageway is stress-relieved and tempered; Approximately 180 degrees along the first and second cutting planes located at
(j) cutting the inner strap and the outer strap at two points separated by an angle of 180 degrees to create first and second steam passage sections; Forms a half-ring inside the degree,
(k) securing said inner half-ring to said inner ferrule of each said steam passage section with welds located at the upstream and downstream interfaces; and (l) having generally flat mating surfaces at each end. forming a pair of 180 degree outer half-rings, and then (m) securing said outer half-rings to said outer strap of each said steam passage section using welds located at the upstream and downstream interfaces; A method for manufacturing a turbine partition plate is provided, which is characterized by comprising various steps.

本発明の上記およびその他の目的、特徴並びに
利点は、添付の図面を参照しながら以下の説明を
読むことによつて自ら明らかとなろう。なお、図
面中では同じ構成要素は同じ参照番号によつて示
されている。
These and other objects, features, and advantages of the present invention will become apparent upon reading the following description in conjunction with the accompanying drawings. In addition, the same components are indicated by the same reference numerals in the drawings.

実施例の説明 先ず第1図を見ると、車室12および回転軸1
4を含む軸流蒸気タービン10の断面図が示され
ている。複数のタービン動翼16は、常法に従
い、軸14と共に回転し得るよう軸14に固定さ
れている。入口の仕切板18は環状に並んだ羽根
20を含んでいて、それにより蒸気室22から導
入された蒸気は案内加速されて第1のタービン動
翼列24を衝撃する。
DESCRIPTION OF THE EMBODIMENTS First, looking at FIG.
A cross-sectional view of an axial steam turbine 10 including 4 is shown. A plurality of turbine rotor blades 16 are fixed to shaft 14 in a conventional manner so as to rotate therewith. The inlet partition plate 18 includes annularly arranged vanes 20 so that the steam introduced from the steam chamber 22 is guided and accelerated to impinge on the first row of turbine rotor blades 24 .

後続の仕切板26は各対のタービン動翼列16
の間に配置されていて、上流側から流入した蒸気
を再び案内加速し、そして最適の角度および流速
で下流側のタービン動翼列を衝撃させるために役
立つ。
A subsequent partition plate 26 separates each pair of turbine rotor blade rows 16.
It serves to guide and accelerate the steam entering from the upstream side again, and to impact the downstream turbine rotor blade row at an optimal angle and flow velocity.

各々の仕切板26は、外側スペーサ28および
内側スペーサ30の間に羽根20を含んでいる。
外側スペーサ28には外側リング32が固定され
ていて、これは常法に従つて車室12と係合して
いる。内側スペーサ30には内側リング34が固
定されていて、これは軸14から離隔した状態で
懸垂されている。通常のごとく、回転する軸14
に沿つての軸方向蒸気漏れを防止しながら仕切板
26に対して軸14を回転させるため、内側リン
グ34の内端に位置する封止部36に軸封止手段
(図示せず)を設けることもできる。
Each partition plate 26 includes a vane 20 between an outer spacer 28 and an inner spacer 30.
An outer ring 32 is secured to the outer spacer 28 and engages the passenger compartment 12 in a conventional manner. An inner ring 34 is fixed to the inner spacer 30 and is suspended at a distance from the shaft 14. As usual, rotating shaft 14
A shaft sealing means (not shown) is provided in a sealing portion 36 located at the inner end of the inner ring 34 to rotate the shaft 14 relative to the partition plate 26 while preventing axial steam leakage along the shaft. You can also do that.

次に第2図を見ると、先行技術に従つて製造さ
れた仕切板の軸方向断面図が示されている。先
ず、羽根20が外側スペーサ28および内側スペ
ーサ30に仮着け溶接される。次いで、羽根20
はそれぞれ位置40および42において外側およ
び内側スペーサに漏止め溶接される。この結果、
外側スペーサ28、内側スペーサ30および羽根
20は半円形の集合体を成して保持されるが、か
かる集合体は溶込み深さの大きい溶接部44,4
6,48および50によつて半円形の外側リング
32および内側リング34に溶接される。なお、
溶接部44〜50の各々はスペーサとリングとの
界面の奥深くまで溶込んで羽根20の未端に接触
し、それによつて羽根20をリング32および3
4に対し強固に固定していることに注目すべきで
ある。すなわち、スペーサ28および30は主と
して羽根20の位置決めのために使用されている
のであつて、構造支持体を成す外側リング32お
よび内側リング34に溶接されて初めて羽根20
は強固に固定されるのである。
Turning now to FIG. 2, there is shown an axial cross-sectional view of a partition plate made in accordance with the prior art. First, the vanes 20 are tack welded to the outer spacer 28 and inner spacer 30. Next, the feather 20
are seal welded to the outer and inner spacers at locations 40 and 42, respectively. As a result,
The outer spacer 28, the inner spacer 30, and the vane 20 are held in a semicircular assembly, which is a welded portion 44, 4 with a large penetration depth.
6, 48 and 50 are welded to the semicircular outer ring 32 and inner ring 34. In addition,
Each of the welds 44-50 penetrates deep into the spacer-ring interface and contacts the distal ends of the vanes 20, thereby connecting the vanes 20 to the rings 32 and 3.
It should be noted that it is firmly fixed to 4. That is, the spacers 28 and 30 are primarily used for positioning the blades 20, and only after being welded to the outer ring 32 and the inner ring 34, which form the structural support, can the blades 20 be positioned.
is firmly fixed.

次に第3図を見ると、本発明に基づく仕切板の
断面図が示されている。この場合、外側帯金52
および内側帯金54はそれぞれ溝穴56および5
8を有していて、それらの中に羽根20の末端6
0および62が嵌入している。末端60および6
2は、外側リング32および内側リング34との
組立てに先立ち、64および66に示されるごと
く外側帯金52および内側帯金54に対してそれ
ぞれ強固に溶接されている。後述の通り、64お
よび66における溶接は帯金52および54が
360度の完全な環状構造溶を有している間に実施
される。帯金52および54の厚さおよび強度
は、外側リング32および内側リング34への直
接溶接を必要としなくても羽根20に対する完全
な構造支持体として役立つのに十分なものであ
る。その結果、外側帯金52は最小の溶接部68
および70によつて外側リング32に溶接され
る。すなわち、それらの溶接部は帯金52の上流
端および下流端をリング32に対して強固に固定
しさえすればよいのであつて、羽根20の末端6
0に接触する必要はないのである。同様に、帯金
54の上流端および下流端は最小の溶接部72お
よび74によつて内側リング34に固定されるの
であつて、それらの溶接部は羽根20の末端62
に接触する必要はないのである。
Turning now to FIG. 3, a cross-sectional view of a partition plate according to the present invention is shown. In this case, the outer strap 52
and inner strap 54 have slots 56 and 5, respectively.
8, including the distal end 6 of the vane 20.
0 and 62 are inserted. Ends 60 and 6
2 are firmly welded to the outer strap 52 and the inner strap 54, respectively, as shown at 64 and 66, prior to assembly with the outer ring 32 and inner ring 34. As will be described later, the welds at 64 and 66 are performed when the bands 52 and 54
It is carried out while having a complete annular structure melt of 360 degrees. The thickness and strength of straps 52 and 54 are sufficient to serve as complete structural support for vane 20 without the need for direct welding to outer ring 32 and inner ring 34. As a result, the outer strap 52 has the smallest weld 68
and 70 to the outer ring 32. That is, those welds only need to firmly fix the upstream and downstream ends of the band 52 to the ring 32, and the welds only need to firmly fix the upstream and downstream ends of the band 52 to the ring 32.
There is no need to touch 0. Similarly, the upstream and downstream ends of strap 54 are secured to inner ring 34 by minimal welds 72 and 74, which welds connect distal ends 62 of vanes 20.
There is no need to come into contact with it.

場合によつては、蒸気の膨脹を可能にするた
め、図示のごとくに外側帯金52が広がつている
こともある。
In some cases, the outer strap 52 may be flared as shown to allow steam expansion.

次に第4図を見ると、内側帯金54、外側帯金
52および羽根20から成る予備集合体が示され
ている。内側帯金54および外側帯金52を形成
するには、帯板を曲げて輪を作り、帯板の両端同
士を適当に溶接し、次いで常法に従つて輪に応力
除去処理および焼戻しを施すことにより、図示の
ごとき360度の環状構造物を得ればよい。外側帯
金52の溝穴56および内側帯金54の溝穴58
は放電加工のごとき任意適宜の方法によつて形成
し得るが、好適な実施例に従えば溝穴56および
58はレーザ切断によつて形成される。外側帯金
52および内側帯金54は羽根20に対する実質
的な支持体として働かなければならないから本発
明においては比較的厚い材料が必要とされるが、
かかる材料に溝穴を設けるためには上記の切断技
術のいずれを用いても満足すべき結果が得られ
る。
Turning now to FIG. 4, a preassembly consisting of inner strap 54, outer strap 52 and vane 20 is shown. Inner strap 54 and outer strap 52 are formed by bending the strips to form a ring, suitably welding the ends of the strips together, and then stress relieving and tempering the rings in a conventional manner. By doing so, it is sufficient to obtain a 360 degree annular structure as shown in the figure. Slot 56 in outer strap 52 and slot 58 in inner strap 54
Although slots 56 and 58 may be formed by any suitable method, such as electrical discharge machining, in accordance with a preferred embodiment, slots 56 and 58 are formed by laser cutting. Because outer strap 52 and inner strap 54 must serve as substantial support for vane 20, relatively thick materials are required in the present invention;
Any of the cutting techniques described above can be used to create slots in such materials with satisfactory results.

適正な同軸的相対位置を占めるようにして外側
帯金52および内側帯金54を表面(図示せず)
上にしつかりと保持した後、たとえば羽根20を
外側帯金52の溝穴56から内側帯金54の溝穴
58の中へ滑り込ませることによつて羽根20が
設置される。本発明のある実施例に従えば、溝穴
56および58はそれぞれの帯金52および54
を貫通している。しかるに、一方の溝穴56また
は58がたとえば放電加工によつて形成された盲
穴でありかつ他方が帯金の材料を貫通していても
よいことは当業者にとつて自明であろう。所要数
の羽根20を設置して360度集合体を形成した後、
羽根20が帯金52および54に溶接される。か
かる溶接に際しては、この段階における熱的ゆが
みを最小限に抑えるため、内側帯金54および外
側帯金52並びに羽根20の加熱をできるだけ抑
制するようにすることが好ましい。
Surface (not shown) outer strap 52 and inner strap 54 in proper coaxial relative position.
After being held firmly on top, the vane 20 is installed, for example, by sliding the vane 20 from the slot 56 of the outer strap 52 into the slot 58 of the inner strap 54. According to some embodiments of the invention, slots 56 and 58 are connected to respective bands 52 and 54.
penetrates through. However, it will be obvious to those skilled in the art that one of the slots 56 or 58 could be a blind hole, for example formed by electrical discharge machining, and the other could pass through the material of the strap. After installing the required number of blades 20 to form a 360 degree assembly,
Vanes 20 are welded to straps 52 and 54. During such welding, it is preferable to suppress heating of the inner band 54, outer band 52, and blades 20 as much as possible in order to minimize thermal distortion at this stage.

次に第5図も参照しながら説明すれば、仮着け
溶接の後、たとえばガスタングステンアーク溶接
法および(または)ガス金属アーク溶接法を用い
た構造的な溶接が実施される。こうして得られた
溶接部64および66(図示せず)は羽根20を
内側帯金54および外側帯金52に対して構造的
に結合するが、この場合の帯金はまだ360度の環
状構造を成している。なお、溶接の手順は溶接に
原因するゆがみが最小限に抑えられるように選定
することができる。たとえば、集合体の反対側に
位置する各対の羽根を順次に溶接することによつ
てゆがみを消去または低減させることができる。
この工程に際して内側帯金54および外側帯金5
2に360度の環状構造を保持させることにより、
帯金に固有の幾何学的剛性を利用して熱的ゆがみ
がもたらす力を分散させ、それによつて互いに隣
接した羽根が構成するノズル内の蒸気通路を設計
パラメータの範囲内に保つことが可能となる。
Referring now to FIG. 5, after the tack welding, structural welding is performed using, for example, gas tungsten arc welding and/or gas metal arc welding. The resulting welds 64 and 66 (not shown) structurally couple the vanes 20 to the inner and outer straps 54 and 52, although the straps still form a 360 degree annular structure. has been completed. Note that the welding procedure can be selected so that distortion caused by welding is minimized. For example, distortion can be eliminated or reduced by sequentially welding each pair of vanes on opposite sides of the assembly.
During this process, the inner strap 54 and the outer strap 5
By making 2 maintain a 360 degree annular structure,
The inherent geometric stiffness of the band can be used to distribute the forces caused by thermal distortion, thereby keeping the steam passage in the nozzle of adjacent vanes within design parameters. Become.

全ての羽根20の両端を確実に溶接した後、得
られた集合体に対して通常の保護雰囲気熱処理技
術を用いた応力除去処理および焼戻しを施すこと
により、溶接完了後にも集合体中に存続すること
のある残留応力が除去され、かつ溶接熱の影響を
受けた区域の焼戻しが行われる。応力除去処理の
後、内側帯金54および外側帯金52は互いに隣
接した羽根20間の切断面に沿いながら180度だ
け離隔した2つの箇所において切断される。たと
えば、第5図に点線76で示されるような湾曲し
た切断面を使用することにより、集合体を2つの
180度扇形部分に分割することができる。なお、
羽根の配列に応じ、直線や線分の組合せに沿つて
形成されるような切断面を使用することもでき
る。後にタービン内において末端同士を係合させ
る時、真円からのずれをできるだけ小さくするた
め、切断面76に沿つて切断を行う際に除去され
る材料の量は最小限に抑えることが好ましい。切
断面76に沿つての切断はたとえば通常の移動電
線電極式放電加工技術を用いて行うことができる
が、その場合にはたとえば0.012インチ分の材料
が除去される。仕切板の半径と比較すれば、この
程度の材料除去量は問題とならない。次いで、別
個に作製された外側リング32および内側リング
34(第3図)の180度断片が上記の180度扇形部
分に接合される。その際には、最小の溶接部68
〜74の使用によつて外側帯金52が外側リング
32に固定されかつ内側帯金54が内側リング3
4に固定される。
After ensuring that both ends of all the blades 20 are welded, the resulting assembly is subjected to stress relief treatment and tempering using normal protective atmosphere heat treatment techniques, so that the blades 20 remain in the assembly even after welding is completed. Possible residual stresses are removed and the areas affected by the welding heat are tempered. After the stress relief treatment, the inner strap 54 and the outer strap 52 are cut at two locations separated by 180 degrees along the cut plane between adjacent blades 20. For example, by using a curved cut plane as shown by dotted line 76 in FIG.
Can be divided into 180 degree fan-shaped parts. In addition,
Depending on the arrangement of the blades, a cut surface formed along a straight line or a combination of line segments may also be used. Preferably, the amount of material removed when making the cut along cutting plane 76 is minimized to minimize deviations from roundness when the ends are later engaged in the turbine. Cutting along cutting plane 76 may be performed, for example, using conventional moving wire electrode electrical discharge machining techniques, where, for example, 0.012 inches of material is removed. Compared to the radius of the partition plate, this amount of material removal is not a problem. Separately made 180 degree segments of outer ring 32 and inner ring 34 (FIG. 3) are then joined to the 180 degree sector. In that case, the smallest welded part 68
74, the outer strap 52 is fixed to the outer ring 32 and the inner strap 54 is fixed to the inner ring 3.
It is fixed at 4.

次に第6図を見ると、仕切板の一方の組立済み
半円形部分の合せ面が示されている。外側リング
32上には、相手方の部材の対応する合せ面と接
触するための平坦な半径方向合せ面78が設けら
れていることが認められよう。合せピン(図示せ
ず)を具備した相手方の外側リングの位置決めお
よび保持を行うため、合せ穴80を設けることも
できる。
Turning now to FIG. 6, the mating surfaces of one assembled semicircular portion of the partition plate are shown. It will be appreciated that a flat radial mating surface 78 is provided on the outer ring 32 for contacting a corresponding mating surface of a mating member. Dowel holes 80 may also be provided for positioning and retaining a mating outer ring with dowel pins (not shown).

内側リング34上には、相手方の部材の対応す
る合せ面と接触するための平坦な半径方向合せ面
82が設けられている。通常のごとく、合せ面8
2から突出しかつ相手方の合せ面のほぞ穴(図示
せず)と係合するほぞ84を設けることもでき
る。また、相手方の合せ面の合せ穴(図示せず)
に嵌入することによつて組立て時の案内用として
役立つ合せピン86を設けることもできる。な
お、切断面76は湾曲していると同時に仕切板2
6の平面に対し傾斜している一方、合せ面78お
よび82は好ましくは延長すれば中心軸と交わる
ような半径方向の平面であることに注目すべきで
ある。内側帯金54および外側帯金52を合せ面
78および82に平面に沿つて切断したならば軸
方向に切断面によつて羽根が2つの部分に分割さ
れることが避けられないが、湾曲した切断面76
を使用することによつて全ての羽根20を完全な
ものとすることができる。また、合せ面78およ
び82が平面であることにより、2つの半円形部
分の位置決めおよび係合は容易なものとなるので
ある。
A flat radial mating surface 82 is provided on the inner ring 34 for contacting a corresponding mating surface of a mating member. As usual, mating surface 8
A tenon 84 can also be provided which projects from 2 and engages with a mortise (not shown) in the mating surface of the mating member. Also, a mating hole (not shown) on the mating surface of the other party.
A dowel pin 86 can also be provided which serves as a guide during assembly by being fitted into it. Note that the cut surface 76 is curved and at the same time the partition plate 2
It should be noted that while inclined to the plane of 6, mating surfaces 78 and 82 are preferably radial planes that extend to intersect the central axis. If the inner strap 54 and the outer strap 52 are cut along the plane of the mating surfaces 78 and 82, it is inevitable that the blade will be divided into two parts by the cut plane in the axial direction. Cut surface 76
By using this, all the blades 20 can be made perfect. Also, because mating surfaces 78 and 82 are flat, positioning and engagement of the two semicircular portions is facilitated.

このように、本発明に基づく仕切板において
は、360度の内側帯金54および外側帯金52を
用いて蒸気通路を形成しながらそれらに固有の幾
何学的剛性を利用して応力を分散させると共に最
小の溶接部を用いて帯金をリングに固定すること
により、製造中に生じる応力に原因するゆがみが
抑制されかつ低減される。また、互いに隣接した
羽根20の中間に位置する湾曲した切断面76の
使用により、支持強度の劣る羽根断片がもたらす
乱流が排除される。羽根20の構造支持体を成す
のは内側帯金54および外側帯金52であるか
ら、内側帯金54および外側帯金52を内側リン
グ34および外側リング32に固定する際には両
者の界面に最小限度の溶接を施せばよいのであつ
て、溶込みの深さが羽根の末端にまで達するほど
大きいかどうか配慮する必要はない。
Thus, in the partition plate according to the present invention, the 360-degree inner ferrule 54 and outer ferrule 52 are used to form a steam passage while utilizing their inherent geometric rigidity to distribute stress. In addition, by securing the strap to the ring with a minimum of welds, distortions due to stresses occurring during manufacturing are suppressed and reduced. Also, the use of curved cuts 76 intermediate adjacent blades 20 eliminates turbulence caused by blade segments with poor support strength. Since the inner band 54 and the outer band 52 form the structural support of the blade 20, when the inner band 54 and the outer band 52 are fixed to the inner ring 34 and the outer ring 32, the interface between the two is fixed. It is sufficient to perform the minimum amount of welding, and there is no need to consider whether the depth of penetration is large enough to reach the end of the blade.

本発明に基づく仕切板においてはリング32お
よび(または)34と羽根20との間の直接溶接
は不要であるが、このことが溶接部の重なり合い
を排除すると考えるべきではない。ある種の仕切
板においては、羽根20が仕切板の上流端または
下流端に近接して位置するため、帯金とリングと
の界面に最小の溶接部を設けただけでも直接に羽
根と接触してしまうことがある。かかる偶発的な
接触が起こつたからと言つてて、その仕切板が本
発明の範囲から除外されると考えるべきではな
い。
Although a direct weld between the rings 32 and/or 34 and the vanes 20 is not required in the diaphragm according to the invention, this should not be considered to preclude overlapping welds. In some types of partition plates, the vanes 20 are located close to the upstream or downstream ends of the divider plate, so that even a minimal weld at the interface between the strap and the ring does not allow direct contact with the vanes. Sometimes it happens. The occurrence of such accidental contact should not be considered to exclude the partition from the scope of the present invention.

以上、添付の図面に関連して本発明の好適な実
施の態様を記載したが、本発明がそれらの特定の
実施の態様によつて制限されないことは言うまで
もない。すなわち、前記特許請求の範囲によつて
定義された本発明の精神および範囲から逸脱する
ことなしに様々な変更や改変を加え得ることは当
業者にとつて自明であろう。
Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to these specific embodiments. That is, it will be obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention as defined by the claims.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は代表的な蒸気タービンの軸方向断面
図、第2図は先行技術に基づく蒸気タービン用仕
切板の一部の拡大断面図、第3図は本発明に基づ
く蒸気タービン用仕切板の一部の拡大断面図、第
4図は仕切板の蒸気通路を組立てる際の一工程を
示す斜視図、第5図は第4図の蒸気通路の拡大
図、そして第6図は本発明に基づく組立済み仕切
板の一方の半円形部分の合せ面領域の拡大図であ
る。 主な符号の説明図中、20は羽根、26は仕切
板、32は外側リング、34は内側リング、52
は外側帯金、54は内側帯金、56および58は
溝穴、60および62は羽根の末端、64および
66は構造溶接部、68,70,72および74
は最小の溶接部、76は切断面、そして78およ
び82は合せ面を表わす。
FIG. 1 is an axial sectional view of a typical steam turbine, FIG. 2 is an enlarged sectional view of a portion of a steam turbine partition plate according to the prior art, and FIG. 3 is an enlarged sectional view of a steam turbine partition plate according to the present invention. FIG. 4 is a perspective view showing one step in assembling the steam passage of the partition plate, FIG. 5 is an enlarged view of the steam passage of FIG. 4, and FIG. 6 is based on the present invention. FIG. 7 is an enlarged view of the mating surface area of one semicircular portion of the assembled partition plate. In the explanatory diagram of main symbols, 20 is a blade, 26 is a partition plate, 32 is an outer ring, 34 is an inner ring, 52
are outer straps, 54 are inner straps, 56 and 58 are slots, 60 and 62 are vane ends, 64 and 66 are structural welds, 68, 70, 72 and 74
represents the smallest weld, 76 represents the cut surface, and 78 and 82 represent the mating surfaces.

Claims (1)

【特許請求の範囲】 1 タービン用仕切板の製造方法が、 異なる直径の2つの360度の帯金を形成し、 羽根の両端を収容するための複数個の溝穴を
各々の前記帯金に形成し、 前記帯金を相互に同心的整合状態に配置して内
側帯金と外側帯金に定め、該内側帯金と外側帯金
に通された前記羽根の内側及び外側末端を夫々溶
接し、 互いに隣接した羽根の中間に位置する第1およ
び第2の切断面に沿いながら約180゜だけ離隔した
2つの箇所において前記内側帯金および前記外側
帯金の両方を切断し、 両端に概して平坦な合せ面を有する1対の180゜
の内側半リングと外側半リングを形成し、 前記内側半リングおよび前記外側半リングを前
記内側帯金および前記外側帯金に夫々溶接する諸
工程からなり、隣接した羽根の中間に位置する切
断部は前記内側及び外側半リングの合せ面とは同
一の半径方向平面内に存在しない方法。 2 特許請求の範囲第1に記載の方法に於て、前
記内側帯金および前記外側帯金の両方を切断する
工程が、隣接する羽根の間を湾曲した面を切断し
て第1及び第2の半蒸気通路を作成する方法。
[Claims] 1. A method for manufacturing a partition plate for a turbine, comprising: forming two 360-degree bands of different diameters, and forming a plurality of slotted holes in each band for accommodating opposite ends of blades. forming the straps, placing the straps in concentric alignment with each other to define an inner strap and an outer strap, and welding the inner and outer ends of the vanes threaded through the inner strap and the outer strap, respectively; , cutting both the inner ferrule and the outer ferrule at two locations approximately 180° apart along first and second cutting planes located intermediate between adjacent vanes, with a generally flat surface at each end; forming a pair of 180° inner half-rings and outer half-rings having matching surfaces, and welding the inner half-rings and the outer half-rings to the inner strap and the outer strap, respectively; A method in which the cuts located midway between adjacent vanes do not lie in the same radial plane as the mating surfaces of the inner and outer half rings. 2. In the method according to claim 1, the step of cutting both the inner band and the outer band includes cutting a curved surface between adjacent blades to cut the first and second blades. How to create a semi-steam passage.
JP59051261A 1983-03-21 1984-03-19 Parting plate for steam turbine and manufacture thereof Granted JPS59211701A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/477,345 US4509238A (en) 1983-03-21 1983-03-21 Method for fabricating a steam turbine diaphragm
US477345 1990-02-08

Publications (2)

Publication Number Publication Date
JPS59211701A JPS59211701A (en) 1984-11-30
JPH0220802B2 true JPH0220802B2 (en) 1990-05-10

Family

ID=23895526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59051261A Granted JPS59211701A (en) 1983-03-21 1984-03-19 Parting plate for steam turbine and manufacture thereof

Country Status (5)

Country Link
US (1) US4509238A (en)
JP (1) JPS59211701A (en)
KR (1) KR890001320B1 (en)
CA (1) CA1233124A (en)
CH (1) CH665258A5 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247871A (en) * 1989-03-20 1990-10-03 Thomson Japan Kk Audio recorder for recording audio signal in analog system

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2619330B1 (en) * 1987-08-12 1994-03-11 Snecma PROCESS FOR PRODUCING STATOR STAGES OF COMPRESSOR OR TURBINE, BLADES AND GRIDS OF BLADES THUS OBTAINED
US4827588A (en) * 1988-01-04 1989-05-09 Williams International Corporation Method of making a turbine nozzle
FR2661345B1 (en) * 1990-04-25 1992-07-03 Snecma DEVICE FOR AUTOMATED POINTING OF WAFERS ON BLADES OF A TURBOMACHINE AND CORRESPONDING METHOD.
US5146679A (en) * 1991-01-16 1992-09-15 Ortolano Ralph J Method of converting grouped blading to equivalent integral covered blading
US5238368A (en) * 1991-01-16 1993-08-24 Ortolano Ralph J Converting grouped blading to equivalent integral covered blading
US5474419A (en) * 1992-12-30 1995-12-12 Reluzco; George Flowpath assembly for a turbine diaphragm and methods of manufacture
US5586864A (en) * 1994-07-27 1996-12-24 General Electric Company Turbine nozzle diaphragm and method of assembly
US5655876A (en) * 1996-01-02 1997-08-12 General Electric Company Low leakage turbine nozzle
US5788456A (en) * 1997-02-21 1998-08-04 Dresser-Rand Company Turbine diaphragm assembly and method thereof
DE19813958C1 (en) * 1998-03-28 1999-11-25 Mtu Muenchen Gmbh Method for producing a built guide ring of a gas turbine, in particular an aircraft engine, and a guide ring produced according to the method
EP1143108A1 (en) * 2000-04-07 2001-10-10 Siemens Aktiengesellschaft Method for manufacturing a bladed stator segment and bladed stator segment
IT1317277B1 (en) * 2000-04-18 2003-05-27 Nuovo Pignone Spa PROCEDURE FOR THE REALIZATION OF A STATIC DIAPHRAGM IN A STEAM UNATURBINE AND STATIC DIAPHRAGM SO REALIZED.
DE10044577A1 (en) * 2000-09-08 2002-03-21 Hauni Maschinenbau Ag Method and device for separating a double-width starting wrapping material web into two partial webs
EP1249612B1 (en) * 2001-03-15 2004-01-28 VARIAN S.p.A. Method of manufacturing a stator stage for a turbine pump
EP1512832A1 (en) * 2003-09-02 2005-03-09 Alstom Technology Ltd Method of producing a turbine rotor having a regulating stage
US20050220622A1 (en) * 2004-03-31 2005-10-06 General Electric Company Integral covered nozzle with attached overcover
US7469452B2 (en) * 2005-01-26 2008-12-30 Honeywell International Inc. Impeller weld restraining fixture
TWI247642B (en) * 2005-03-15 2006-01-21 Jian-Shian Li Position-actuating and controlling device for direct movement of electrode of electro-discharge machine
US20070084051A1 (en) * 2005-10-18 2007-04-19 General Electric Company Methods of welding turbine covers and bucket tips
US7654794B2 (en) * 2005-11-17 2010-02-02 General Electric Company Methods and apparatus for assembling steam turbines
US7780407B2 (en) * 2006-01-04 2010-08-24 General Electric Company Rotary machines and methods of assembling
US7748956B2 (en) * 2006-12-19 2010-07-06 United Technologies Corporation Non-stablug stator apparatus and assembly method
US8262359B2 (en) * 2007-01-12 2012-09-11 Alstom Technology Ltd. Diaphragm for turbomachines and method of manufacture
GB0700633D0 (en) * 2007-01-12 2007-02-21 Alstom Technology Ltd Turbomachine
CZ18174U1 (en) * 2007-10-11 2008-01-07 Sedláček@Vlastimil Blade spacer ring
US9359913B2 (en) 2013-02-27 2016-06-07 General Electric Company Steam turbine inner shell assembly with common grooves
EP3123002B1 (en) * 2014-03-27 2019-01-09 Siemens Aktiengesellschaft Stator vane support system within a gas turbine engine
US10830074B2 (en) * 2018-07-03 2020-11-10 Raytheon Technologies Corporation Potted stator vane with metal fillet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496306A (en) * 1972-05-10 1974-01-21
JPS52143309A (en) * 1976-05-24 1977-11-29 Hitachi Ltd Manufacturing method of turbine diaphragm
JPS5420180A (en) * 1977-07-11 1979-02-15 Matsushita Electric Ind Co Ltd Noodle making machine
JPS5632006A (en) * 1979-08-24 1981-04-01 Toshiba Corp Turbine nozzle

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1470499A (en) * 1920-04-27 1923-10-09 Gen Electric Elastic-fluid turbine
US1470502A (en) * 1920-07-03 1923-10-09 Gen Electric Method of making blade rings for elastic-fluid turbines
US1470507A (en) * 1921-02-16 1923-10-09 Gen Electric Method of making rotor elements for elastic-fluid turbines
US1938382A (en) * 1933-03-17 1933-12-05 Gen Electric Method of manufacturing nozzle diaphragms and the like
US2110679A (en) * 1936-04-22 1938-03-08 Gen Electric Elastic fluid turbine
US2264877A (en) * 1940-11-15 1941-12-02 Gen Electric Elastic fluid turbine diaphragm
US2299449A (en) * 1941-07-05 1942-10-20 Allis Chalmers Mfg Co Diaphragm construction
US2373558A (en) * 1942-10-31 1945-04-10 Gen Electric Method of making elastic fluid turbine diaphragms and the like
CH482915A (en) * 1967-11-03 1969-12-15 Sulzer Ag Guide device for axial turbine
US3564188A (en) * 1969-05-07 1971-02-16 Hexcel Corp Electric discharge method of cutting suspended metal work pieces
US3802046A (en) * 1972-01-27 1974-04-09 Chromalloy American Corp Method of making or reconditioning a turbine-nozzle or the like assembly
JPS5912390B2 (en) * 1978-09-29 1984-03-22 株式会社日立製作所 Turbine diaphragm welding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496306A (en) * 1972-05-10 1974-01-21
JPS52143309A (en) * 1976-05-24 1977-11-29 Hitachi Ltd Manufacturing method of turbine diaphragm
JPS5420180A (en) * 1977-07-11 1979-02-15 Matsushita Electric Ind Co Ltd Noodle making machine
JPS5632006A (en) * 1979-08-24 1981-04-01 Toshiba Corp Turbine nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247871A (en) * 1989-03-20 1990-10-03 Thomson Japan Kk Audio recorder for recording audio signal in analog system

Also Published As

Publication number Publication date
CA1233124A (en) 1988-02-23
KR840008029A (en) 1984-12-12
KR890001320B1 (en) 1989-04-29
CH665258A5 (en) 1988-04-29
US4509238A (en) 1985-04-09
JPS59211701A (en) 1984-11-30

Similar Documents

Publication Publication Date Title
JPH0220802B2 (en)
US5474419A (en) Flowpath assembly for a turbine diaphragm and methods of manufacture
US7997860B2 (en) Welded nozzle assembly for a steam turbine and related assembly fixtures
US6553665B2 (en) Stator vane assembly for a turbine and method for forming the assembly
US5788456A (en) Turbine diaphragm assembly and method thereof
US8702385B2 (en) Welded nozzle assembly for a steam turbine and assembly fixtures
US8215904B2 (en) Assembling method of stator blade ring segment, stator blade ring segment, coupling member, welding method
US2681788A (en) Gas turbine vane structure
US20130017067A1 (en) Method of beam welding of an impeller with performance of two passes on a slot ; impeller and turbo machine having such weld configuration
CN1963158A (en) Apparatus for channeling steam flow to turbines
CN109070258B (en) Turbine exhaust casing and method of manufacturing the same
EP1450984B1 (en) A method for manufacturing a stator or rotor component
JP2019512063A (en) Method of manufacturing a bladed ring for radial flow turbomachines and bladed ring obtained using said method
US5807074A (en) Turbine nozzle diaphragm joint
GB2132512A (en) Welded stator vane assemblies for turbomachines
EP1582698A1 (en) Integral covered nozzle with attached overcover
JPS59206181A (en) Production of turbine nozzle diaphragm
JPH05231102A (en) Manufacture of turbine partition wall
JPS58143103A (en) Manufacturing method of turbine nozzle diaphragm
KR101796590B1 (en) nozzle plate assembly for turbine
US20230235677A1 (en) Nozzle module, nozzle diaphragm, steam turbine, method for assembling nozzle diaphragm, method for assembling steam turbine, and method for disassembling steam turbine
JPS60216004A (en) Turbine nozzle diaphragm
JPS58190502A (en) Manufacture of nozzle diaphragm
JPS5965501A (en) Manufacture of turbine nozzle diaphragm
JPS592761B2 (en) Nozzle details