JPH02207822A - Treatment of incinerator waste gas - Google Patents

Treatment of incinerator waste gas

Info

Publication number
JPH02207822A
JPH02207822A JP1026936A JP2693689A JPH02207822A JP H02207822 A JPH02207822 A JP H02207822A JP 1026936 A JP1026936 A JP 1026936A JP 2693689 A JP2693689 A JP 2693689A JP H02207822 A JPH02207822 A JP H02207822A
Authority
JP
Japan
Prior art keywords
exhaust gas
fine particles
ammonia
ammonium chloride
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1026936A
Other languages
Japanese (ja)
Inventor
Mitsuyuki Nishihara
充幸 西原
Tetsuo Kimura
哲雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1026936A priority Critical patent/JPH02207822A/en
Publication of JPH02207822A publication Critical patent/JPH02207822A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To treat the waste gas by sprinkling a liq. chemical contg. a fine alkaline particle and gaseous ammonia into a reaction tower through which the waste gas passes, allowing the formed ammonium chloride to react with the unreacted fine alkaline particle, allowing the regenerated ammonia to react with nitrogen oxides and decomposing the nitrogen oxides into nitrogen and water. CONSTITUTION:The liq. chemical contg. an alkali and gaseous ammonia are supplied into a gas 37 as a processing agent 36, provided with centrifugal force, moved in the radial direction, allowed to collide with a crushing rod 11, pulverized and injected toward the periphery. The formed ammonium chloride alphais introduced into the agglomerate of the fine alkaline particle gamma, and sublimed to make the agglomerate porous. The sublimed ammonium chloride alpha is solidified, adsorbed and fixed on a bag filter 27. The solid reacts with the unreacted fine alkaline particle gamma, and ammonia is regenerated. When the treated waste gas 38 passes through a catalyst bed 30 heated by a steam pipe heater 31, the nitrogen oxides and ammonia in the gas are subjected to a catalytic reaction and decomposed into nitrogen and water.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、焼却炉排ガスの処理方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for treating incinerator exhaust gas.

従来の技術 従来、焼却炉排ガスの処理方法としては、たとえばCa
(OH)Q等のアルカリ成分微粒子を反応塔内の排ガス
中に散布し、アルカリ成分微粒子と排ガス中の硫黄酸化
物及び塩化水素とを反応させ、Ca5O,及びCaCj
2として吸収固定し、これらを排ガス中より除去する方
法がある・発明が解決しようとする課題 しかし、上記した従来の構成によれば、アルカリ成分微
粒子どうしが結合して凝集し、この凝集物の周囲がCa
CJz等の反応生成物によってコラティングされるため
に、アルカリ成分微粒子の反応面積が狭くなるとともに
未反応のアルカリ成分微粒子が凝集物の内部に閉じ込め
られ、排ガス中の硫黄酸化物及び塩化水素に対するアル
カリ成分微粒子の反応効率が低くなり、硫黄酸化物及び
塩化水素を吸収除去するに要する当量以上にアルカリ成
分微粒子を反応塔内に散布しなければならない問題があ
った。
BACKGROUND OF THE INVENTION Conventionally, as a method for treating incinerator exhaust gas, for example, Ca
Alkaline component fine particles such as (OH)Q are dispersed into the exhaust gas in the reaction tower, and the alkali component fine particles are reacted with sulfur oxides and hydrogen chloride in the exhaust gas to form Ca5O and CaCj.
2, there is a method of absorbing and fixing these and removing them from the exhaust gas.Problems to be Solved by the InventionHowever, according to the above-mentioned conventional configuration, alkaline component fine particles combine and aggregate, and this aggregate The surrounding area is Ca
Because of the reaction products such as CJz, the reaction area of the alkali component fine particles becomes narrower and the unreacted alkali component fine particles are trapped inside the aggregates, causing the alkali to react with the sulfur oxides and hydrogen chloride in the exhaust gas. There is a problem in that the reaction efficiency of the component fine particles becomes low, and the alkaline component fine particles must be dispersed into the reaction column in an amount greater than the equivalent amount required to absorb and remove sulfur oxides and hydrogen chloride.

本発明は上記課題を解決するもので、排ガス中の硫黄酸
化物及び塩化水素に対してアルカリ成分微粒子を有効に
作用させることができる焼却炉排ガスの処理方法を提供
することを目的とする。
The present invention solves the above-mentioned problems, and aims to provide a method for treating incinerator exhaust gas in which alkaline component fine particles can effectively act on sulfur oxides and hydrogen chloride in the exhaust gas.

課題を解決するための手段 上記課題を解決するために本発明は、排ガスが流通する
反応塔内に処理剤としてアルカリ成分微粒子を含んだ薬
液とアンモニュウムを散布し、排ガス中の窒素酸化物と
硫黄酸化物および塩化水素にアンモニュウムとアルカリ
成分微粒子を反応させ、アンモニアと塩化水素の反応に
より生成する塩化アンモニュウムを、反応生成物をとも
なって凝集するアルカリ成分微粒子の凝集物中に取り込
ませ、この取り込まれた塩化アンモニュウムの昇華作用
により前記凝集物を多孔質化するとともに微細化し、前
記凝集物中に未反応状態で存在するアルカリ成分微粒子
の反応面積を広げて硫黄酸化物および塩化水素に対する
反応を促進させる焼却炉排ガスの処理方法において、ア
ルカリ成分微粒子を含んだ薬液中の水分の気化熱により
排ガスを冷却することによって昇華した塩化アンモニュ
ウムを凝結させ、凝結した塩化アンモニュウムの固体微
粒子を含む処理排ガスをバグフィルタを介して吸引する
ことにより、塩化アンモニュウムの固体微粒子とアルカ
リ成分微粒子および反応生成物を処理排ガス中から分離
除去するとともに、バグフィルタ表面に吸着固定された
塩化アンモニュウム°に未反応のアルカリ成分微粒子を
反応させて塩化アンモニュウムからアンモニアを再生し
、この再生されたアンモニアを含む処理排ガスを触媒床
に導き、処理排ガス中の窒素酸化物とアンモニアを反応
させて窒素と水に分解する構成としたものである。
Means for Solving the Problems In order to solve the above problems, the present invention sprays ammonium and a chemical solution containing alkali component fine particles as a processing agent into a reaction tower through which exhaust gas flows, thereby reducing nitrogen oxides and sulfur in the exhaust gas. Ammonium and alkali component fine particles are reacted with the oxide and hydrogen chloride, and the ammonium chloride produced by the reaction of ammonia and hydrogen chloride is incorporated into the aggregate of the alkali component fine particles that aggregate with the reaction product. The sublimation action of the ammonium chloride makes the aggregate porous and makes it finer, expanding the reaction area of the alkali component fine particles present in the unreacted state in the aggregate and promoting the reaction against sulfur oxides and hydrogen chloride. In a method for treating incinerator exhaust gas, ammonium chloride sublimated by cooling the exhaust gas with the heat of vaporization of water in a chemical solution containing fine alkaline particles is condensed, and the treated exhaust gas containing solid fine particles of condensed ammonium chloride is passed through a bag filter. By suctioning through the filter, solid fine particles of ammonium chloride, alkaline component fine particles, and reaction products are separated and removed from the treated exhaust gas, and unreacted alkaline component fine particles are absorbed into the ammonium chloride adsorbed and fixed on the bag filter surface. Ammonia is regenerated from ammonium chloride through a reaction, and the treated exhaust gas containing the regenerated ammonia is guided to a catalyst bed, where nitrogen oxides and ammonia in the treated exhaust gas are reacted and decomposed into nitrogen and water. be.

作用 上記した構成により、アルカリ成分微粒子の凝集物中に
取り込まれた塩化アンモニュウムが昇?することによっ
て、凝集物中で塩化アンモニュウムの占めていた部分が
空洞となり、凝集物が多孔質化されるとともに、アルカ
リ成分微粒子どうしの結合が解かれて凝集物が微細化さ
れる。このことによって未反応のアルカリ成分微粒子の
反応面積が拡大し、アルカリ成分微粒子の反応効率が向
上するのでアルカリ成分微粒子の散布量が抑制される。
Effect: With the above-mentioned configuration, ammonium chloride incorporated into the agglomerates of alkaline component fine particles rises. By doing so, the portion occupied by ammonium chloride in the aggregate becomes a cavity, making the aggregate porous, and at the same time, the bonds between the alkaline component fine particles are broken and the aggregate is made finer. This expands the reaction area of unreacted alkali component fine particles, improves the reaction efficiency of the alkali component fine particles, and suppresses the amount of alkali component fine particles to be sprayed.

また、排ガス中の窒素酸化物はアンモニアと反応して窒
素と水に分解されて除去される。そして、生成した塩化
アンモニュウムからアンモニアが再生され、再生された
アンモニアが処理排ガス中の窒素酸化物と反応して窒素
と水に分解されるので有害物質である塩化アンモニュウ
ムを別途手段によって処理する必要がなくなるとともに
、窒素酸化物の除去効率が高まる。
Furthermore, nitrogen oxides in the exhaust gas react with ammonia, decompose into nitrogen and water, and are removed. Then, ammonia is regenerated from the generated ammonium chloride, and the regenerated ammonia reacts with nitrogen oxides in the treated exhaust gas and decomposes into nitrogen and water, so it is necessary to treat ammonium chloride, which is a harmful substance, by a separate means. As the nitrogen oxides disappear, the removal efficiency of nitrogen oxides increases.

実施例 以下本発明の一実施例を図面に基づいて説明する。第1
図において、反応塔のケーシング1の下部には排ガス2
の供給口3が形成されており、ケーシング1の上部には
次工程に連通ずる排出口4が形成されている。そして、
ケーシング1には中空状の第1駆動軸5がケーシング1
の天板6を上下方向に貫通して挿通されており、この第
1駆動軸5は上部軸受7を介して天板6に回転自在に保
持されるとともに、処理剤投入通路8を形成している。
EXAMPLE An example of the present invention will be described below based on the drawings. 1st
In the figure, the lower part of the casing 1 of the reaction tower has an exhaust gas 2
A supply port 3 is formed in the upper part of the casing 1, and a discharge port 4 is formed in the upper part of the casing 1 to communicate with the next process. and,
A hollow first drive shaft 5 is attached to the casing 1.
The first drive shaft 5 is rotatably held by the top plate 6 via an upper bearing 7, and forms a processing agent input passage 8. There is.

また、第1駆動軸5には第1駆動装置9が連結されてお
り、この第1駆動装置9は第1駆動軸5を軸心まわりの
一方向に高速に回転ものである。さらに、第1駆動軸5
の下端開口の周囲には第1拡散板10が設けられており
、第1拡散板10の周縁部には複数の破砕棒Uが適当間
隔ごとに位置して垂設されている。
Further, a first drive device 9 is connected to the first drive shaft 5, and this first drive device 9 rotates the first drive shaft 5 in one direction around the axis at high speed. Furthermore, the first drive shaft 5
A first diffusion plate 10 is provided around the opening at the lower end of the first diffusion plate 10, and a plurality of crushing rods U are vertically disposed at appropriate intervals on the peripheral edge of the first diffusion plate 10.

そして、第2拡散板12が破砕棒11を介して第1拡散
板10に対向する位置に配置されており、この第2拡散
板■2はケーシング1の底板I3を上下方向に貫通して
ケーシング1の内部に挿通された第2駆動軸14の上端
に固定されている。また、第2拡散板12の上には複数
の立設された分散板15が放射状に配置されている。さ
らに、第2駆動軸14は第2軸受11iを介して底板1
3に回転自在に支持されており、第2駆動軸14の下端
側には第2駆動装置17が連結されている。この第2駆
動装置I7は第2駆動軸14を第1駆動軸5の回転方向
と相反する方向に高速に回転させるものである。
A second diffusion plate 12 is arranged at a position facing the first diffusion plate 10 via a crushing rod 11, and this second diffusion plate 2 vertically penetrates the bottom plate I3 of the casing 1 and is inserted into the casing 1. The second drive shaft 14 is fixed to the upper end of the second drive shaft 14 inserted into the inside of the second drive shaft 14 . Furthermore, a plurality of standing dispersion plates 15 are arranged radially above the second dispersion plate 12 . Further, the second drive shaft 14 is connected to the bottom plate 1 through the second bearing 11i.
3, and a second drive device 17 is connected to the lower end side of the second drive shaft 14. This second drive device I7 rotates the second drive shaft 14 at high speed in a direction opposite to the rotational direction of the first drive shaft 5.

そして、第2駆動軸I4には複数の粉砕板18が所定の
間隔をあけて設けられて彰り、粉砕板I8には多数のビ
ン19が同心円状に、かつ複数列伏に配置されている。
A plurality of crushing plates 18 are provided at predetermined intervals on the second drive shaft I4, and a large number of bins 19 are arranged concentrically and in multiple rows on the crushing plate I8. .

また、ケーシング1の内壁には複数の固定板20が粉砕
板18の相互間に位置して設けられており、固定板20
は第3軸受21を介して第2駆動軸14を回転自在に支
持している。さらに、固定板20には多数のビン22が
粉砕板18のビン19の相互間に位置するように設けら
れている。
Further, a plurality of fixing plates 20 are provided on the inner wall of the casing 1 and are located between the crushing plates 18.
rotatably supports the second drive shaft 14 via the third bearing 21. Furthermore, a large number of bins 22 are provided on the fixed plate 20 so as to be located between the bins 19 of the crushing plate 18.

そして、ケーシング1の排出口4は整流板23を介して
バグハウス24に連通しており、バグハウス24は上室
25と下室26に区画されて下室2Bがケーシング1の
排出口4に連通している。また、下室2Bには複数のバ
グフィルタ27が上室25に連通して設けられており、
下室2Bの底部にはダストコンベア2日が各バグフィル
タ27の下方に位置して設けられている。また、ダスト
コンベア28の終端に位置してバグハウス24のダスト
排出口29が形成されている。
The outlet 4 of the casing 1 communicates with the baghouse 24 via the rectifying plate 23, and the baghouse 24 is divided into an upper chamber 25 and a lower chamber 26, with the lower chamber 2B connected to the outlet 4 of the casing 1. It's communicating. Further, a plurality of bag filters 27 are provided in the lower chamber 2B so as to communicate with the upper chamber 25.
A dust conveyor 2 is provided at the bottom of the lower chamber 2B so as to be located below each bag filter 27. Further, a dust outlet 29 of the baghouse 24 is formed at the terminal end of the dust conveyor 28.

そして、バグハウス24の上室25には複数の触媒床3
0が各バグフィルタ27の間に位置して設けられており
、各触媒床30の間には加熱用のスチーム管31が配設
されている。また、上室25の上流側には通風ダクト3
1が連通しており、通風ダクト32はファン33を介し
てケーシング1に連通している。さらに、上室25の下
流側には排風口34が吸引装置35に連通して形成され
ている。
In the upper chamber 25 of the baghouse 24, a plurality of catalyst beds 3 are provided.
0 is provided between each bag filter 27, and a heating steam pipe 31 is provided between each catalyst bed 30. In addition, a ventilation duct 3 is provided on the upstream side of the upper chamber 25.
1 is in communication with the casing 1, and the ventilation duct 32 is in communication with the casing 1 via a fan 33. Further, an exhaust port 34 is formed on the downstream side of the upper chamber 25 and communicates with a suction device 35 .

以下、上記構成における作用について説明する。The effects of the above configuration will be explained below.

第1駆動装置9に駆動される第1駆動軸5、および第2
駆動装置17に駆動される第2駆動軸14の回転によっ
て第1拡散板!Oと第2拡散板12を相反する方向に高
速で回転させながら、第1駆動軸5の1喘開口から処理
剤3BとしてCa(OH)si等のアルカリ成分を含有
した薬液とアンモニュウムを第1拡散板10と第2拡散
板!2の間の間隙37に供給する。         
          、そして、間隙3フに供給された
処理剤38に第2拡散板12の回転によって遠心力を付
与する。このとき、分散板15は第2拡散板12の周方
向において処理剤38を受は止めて処理剤3Bの周方向
への滑動を阻止し、処理剤3Gに確実に遠心力を付与す
る。
A first drive shaft 5 driven by a first drive device 9, and a second drive shaft 5 driven by a first drive device 9.
The rotation of the second drive shaft 14 driven by the drive device 17 causes the first diffusion plate! While rotating O and the second diffusion plate 12 at high speed in opposite directions, a chemical solution containing an alkaline component such as Ca(OH)si and ammonium are first introduced as the treatment agent 3B through the first opening of the first drive shaft 5. Diffusion plate 10 and second diffusion plate! 2 to the gap 37 between the two.
Then, centrifugal force is applied to the processing agent 38 supplied to the gap 3 by rotation of the second diffusion plate 12. At this time, the dispersion plate 15 receives and stops the processing agent 38 in the circumferential direction of the second diffusion plate 12, prevents the processing agent 3B from sliding in the circumferential direction, and reliably applies centrifugal force to the processing agent 3G.

そして、遠心力を付与された処理剤36を分散板15に
沿って第2拡散板I2の上を半径方向に移動させ、分散
板15を離れた後に破砕棒Uに衝突させて微粒子に粉砕
し、第2拡散板12の周囲に噴出させる。このとき、破
砕棒11は第2拡散板12の回転方向と相反する方向に
移動しているので、破砕棒!lと処理剤36の衝突速度
が相乗的に高められ、処理剤36の粉砕効率が向上する
Then, the processing agent 36 subjected to centrifugal force is moved in the radial direction on the second diffusion plate I2 along the distribution plate 15, and after leaving the distribution plate 15, it collides with the crushing rod U and is crushed into fine particles. , is ejected around the second diffusion plate 12. At this time, the crushing rod 11 is moving in a direction opposite to the direction of rotation of the second diffuser plate 12, so the crushing rod! The collision speed of L and the processing agent 36 is increased synergistically, and the pulverization efficiency of the processing agent 36 is improved.

そして、ケーシング1の内部に噴出された処理剤3Bは
、破砕板18および固定板2oに設けたビン19゜22
に衝突してさらに粉砕されながら供給口3からケーシン
グ1の内部に供給された排ガス2と接触し、排ガス2中
の有害成分である窒素酸化物と硫黄酸化物および塩化水
素と反応した後に処理排ガス38とともに排出口4から
バグハウス24にに送られる。この反応式を下記に示す
Then, the processing agent 3B spouted into the inside of the casing 1 is transferred to the bottles 19 and 22 provided on the crushing plate 18 and the fixed plate 2o.
The exhaust gas 2 is further pulverized by colliding with the exhaust gas 2 supplied into the casing 1 from the supply port 3, and reacts with the harmful components of nitrogen oxides, sulfur oxides, and hydrogen chloride in the exhaust gas 2, and then becomes the treated exhaust gas. 38 and is sent to the baghouse 24 from the discharge port 4. This reaction formula is shown below.

N H3+ HCI−+N H4C1 2NH3+sO,−i−(NH4)2804Ca (O
H)* +2HC1 →CaC7g +2H20 Ca (OH)Q +5O− 一+CaSO4+2H2O NH3+NO4→NQ+nHa O そして、上記の反応生成工程においては、第2図に示す
ように、アンモニアと塩化水素の反応により生成する塩
化アンモニュウムαが、反応生成物βをともなって凝集
するアルカリ成分微粒子γの凝集物中に取り込まれる。
N H3+ HCI-+N H4C1 2NH3+sO, -i-(NH4)2804Ca (O
H)* +2HC1 → CaC7g +2H20 Ca (OH)Q +5O- 1+CaSO4+2H2O NH3+NO4→NQ+nHa O And, in the above reaction production step, as shown in Figure 2, ammonium chloride α produced by the reaction of ammonia and hydrogen chloride is incorporated into the aggregate of alkaline component fine particles γ that aggregate together with the reaction product β.

そして、取り込まれた塩化アンモニュウムαが昇華によ
って脱気することにより凝集物中で塩化アンモニュウム
αの占めていた部分が空洞となり、凝集物が多孔質化さ
れるとともにアルカリ成分微粒子γどうしの結合が解か
れて凝集物が微細化され、凝集物中に未反応杖態で存在
するアルカリ成分微粒子γの反応面積が広げられて硫黄
酸化物および塩化水素に対する反応が促進される。この
ことによって、アルカリ成分微粒子γを当量以上に散布
する必要がなくなり、アルカリ成分微粒子γの散布量を
抑制することができる。
Then, as the ammonium chloride α taken in is degassed by sublimation, the part occupied by ammonium chloride α in the aggregate becomes a cavity, the aggregate becomes porous, and the bonds between the alkaline component fine particles γ are broken. As a result, the aggregates are made finer, and the reaction area of the alkali component fine particles γ present in the form of unreacted rods in the aggregates is expanded, thereby promoting the reaction against sulfur oxides and hydrogen chloride. This eliminates the need to spray more than the equivalent amount of alkaline component fine particles γ, and it is possible to suppress the amount of alkali component fine particles γ to be sprayed.

そして、アルカリ成分微粒子γを含んだ薬液中の水分の
気化熱により排ガス2を冷却することによって昇華した
塩化アンモニュウムαを凝結させる。この凝結した塩化
アンモニュウムαの固体微粒子は処理排ガス38ととも
に整流板23を通ってバグハウス24の内部に導かれ、
バグフィルタ27を介して吸引装置35に吸引されるこ
とによって処理排ガス38から分離除去される。このと
き、第3図に示すように、バグフィルタ27によって未
反応のアルカリ成分微粒子γやCa C12やCa S
 Oaや(NH4)2S04が同時に処理排ガス38か
ら分離除去され、除去物によってバグフィルタ27の周
囲にケーキ層39が形成される。そして、バグフィルタ
24の表面に吸着固定された塩化アンモニュウムαに未
反応のアルカリ成分微粒子γが反応し、塩化アンモニュ
ウムαからアンモニアが再生される。この反応は下記に
示すものである。
Then, the exhaust gas 2 is cooled by the heat of vaporization of the water in the chemical solution containing the alkali component fine particles γ, and the sublimated ammonium chloride α is condensed. The solid fine particles of ammonium chloride α that have condensed are guided into the baghouse 24 through the rectifying plate 23 together with the treated exhaust gas 38.
It is separated and removed from the treated exhaust gas 38 by being sucked into the suction device 35 through the bag filter 27 . At this time, as shown in FIG. 3, unreacted alkali component fine particles γ, Ca C12, and Ca S
Oa and (NH4)2S04 are simultaneously separated and removed from the treated exhaust gas 38, and a cake layer 39 is formed around the bag filter 27 by the removed substances. Then, the unreacted alkali component fine particles γ react with the ammonium chloride α adsorbed and fixed on the surface of the bag filter 24, and ammonia is regenerated from the ammonium chloride α. This reaction is shown below.

2N84 C!+Ca (OH)2 →2NH3+CaCノ2 + H20 そして、再生されたアンモニアと処理排ガス38はバグ
フィルタ27を通って上室25に流入し、スチーム管3
1に加熱される触媒床30を通過する。このとき処理排
ガス38中の窒素酸化物とアンモニアが触媒作用をうけ
て反応し、窒素と水に分解される。
2N84C! +Ca(OH)2 →2NH3+CaCノ2+H20 Then, the regenerated ammonia and the treated exhaust gas 38 flow into the upper chamber 25 through the bag filter 27, and the steam pipe 3
It passes through a catalyst bed 30 which is heated to 1. At this time, nitrogen oxides and ammonia in the treated exhaust gas 38 react with each other under catalytic action, and are decomposed into nitrogen and water.

この反応は下記に示すものである。This reaction is shown below.

NH3+NOx →N2  + n H20また、上室
25にはファン33によってケーシング6内の熱風が通
気ダクト32を介して供給され、上室25内の温度が高
温に保たれるので結露が防止される。
NH3 + NOx → N2 + n H20 Further, hot air inside the casing 6 is supplied to the upper chamber 25 by a fan 33 via the ventilation duct 32, and the temperature inside the upper chamber 25 is maintained at a high temperature, thereby preventing dew condensation.

そして、バグフィルタ27に付着した除去物はバグフィ
ルタ27に振動、もしくは逆洗風を加えることにより、
バグフィルタ27から剥離されてダストコンベア28上
に落下し、ダスト排出口29から取り出される。
The removed substances adhering to the bag filter 27 can be removed by applying vibration or backwashing air to the bag filter 27.
It is peeled off from the bag filter 27, falls onto the dust conveyor 28, and is taken out from the dust outlet 29.

発明の効果 以上述べたように、本発明によれば、アルカリ成分微粒
子の凝集物中に塩化アンモニュウムを取り込ませ、この
塩化アンモニュウムの昇華によって、凝集物中で塩化ア
ンモニュウムの占めていた部分を空洞となし、凝集物を
多孔質化するとともに、アルカリ成分微粒子どうしの結
合を解いて凝集物を微細化することができ、未反応のア
ルカリ成分微粒子の反応面積を拡大させて、アルカリ成
分微粒子の反応効率を向上させてアルカリ成分微粒子の
散布量を抑制することができる。しかも、昇華した塩化
アンモニュウムからアンモニアを再生し、塩化アンモニ
ュウムをダスト成分中に移行する塩素分と気体アンモ二
ュウムに分解するので、処理排ガス中に塩化アンモニュ
ウムが移行することを防止できるとともに、再生された
アンモニアを処理排ガス中の窒素酸化物と反応させるこ
とにより、窒素酸化物の除去効率を高めることができる
Effects of the Invention As described above, according to the present invention, ammonium chloride is incorporated into the aggregate of alkaline component fine particles, and by sublimation of the ammonium chloride, the portion occupied by ammonium chloride in the aggregate is made into a cavity. None, it is possible to make the aggregate porous and make the aggregate finer by breaking the bonds between the alkaline component fine particles, expanding the reaction area of the unreacted alkali component fine particles, and increasing the reaction efficiency of the alkali component fine particles. can be improved and the amount of alkali component fine particles sprayed can be suppressed. Furthermore, since ammonia is regenerated from sublimated ammonium chloride and ammonium chloride is decomposed into chlorine and gaseous ammonium, which migrate into the dust components, it is possible to prevent ammonium chloride from migrating into the treated exhaust gas, and to prevent ammonium chloride from being regenerated. By reacting the ammonia with nitrogen oxides in the treated exhaust gas, the removal efficiency of nitrogen oxides can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体構成図、第2図は
同実施例における反応生成工程を示す模式図、第3図は
バグフィルタにおける分離除去吠態を示す模式図である
。 2・・・排ガス、27・・・バグフィルタ、38・・・
処理剤、α・・・塩化アンモニュウム、β・・・反応生
成物、γ・・・アルカリ成分微粒子。
FIG. 1 is an overall configuration diagram showing one embodiment of the present invention, FIG. 2 is a schematic diagram showing a reaction generation process in the same embodiment, and FIG. 3 is a schematic diagram showing the state of separation and removal in a bag filter. 2... Exhaust gas, 27... Bag filter, 38...
Processing agent, α...ammonium chloride, β...reaction product, γ...alkaline component fine particles.

Claims (1)

【特許請求の範囲】[Claims] 1、排ガスが流通する反応塔内に処理剤としてアルカリ
成分微粒子を含んだ薬液とアンモニア気体を散布し、排
ガス中の窒素酸化物と硫黄酸化物および塩化水素にアン
モニア気体とアルカリ成分微粒子を反応させ、アンモニ
アと塩化水素の反応により生成する塩化アンモニュウム
を、反応生成物をともなって凝集するアルカリ成分微粒
子の凝集物中に取り込ませ、この取り込まれた塩化アン
モニュウムの昇華作用により前記凝集物を多孔質化する
とともに微細化し、前記凝集物中に未反応状態で存在す
るアルカリ成分微粒子の反応面積を広げて硫黄酸化物お
よび塩化水素に対する反応を促進させる焼却炉排ガスの
処理方法において、アルカリ成分微粒子を含んだ薬液中
の水分の気化熱により排ガスを冷却することによって昇
華した塩化アンモニュウムを凝結させ、凝結した塩化ア
ンモニュウムの固体微粒子を含む処理排ガスをバグフィ
ルタを介して吸引することにより、塩化アンモニュウム
の固体微粒子とアルカリ成分微粒子および反応生成物を
処理排ガス中から分離除去するとともに、バグフィルタ
表面に吸着固定された塩化アンモニュウムに未反応のア
ルカリ成分微粒子を反応させて塩化アンモニュウムから
アンモニアを再生し、この再生されたアンモニアを含む
処理排ガスを触媒床に導き、処理排ガス中の窒素酸化物
とアンモニアを反応させて窒素と水に分解することを特
徴とする焼却炉排ガスの処理方法。
1. Sprinkle a chemical solution containing alkali component fine particles as a treatment agent and ammonia gas into the reaction tower through which exhaust gas flows, and cause the ammonia gas and alkali component fine particles to react with nitrogen oxides, sulfur oxides, and hydrogen chloride in the exhaust gas. , ammonium chloride produced by the reaction of ammonia and hydrogen chloride is incorporated into the aggregate of alkali component fine particles that aggregate with the reaction product, and the aggregate is made porous by the sublimation action of the incorporated ammonium chloride. In a method for treating incinerator exhaust gas, in which the alkali component fine particles present in an unreacted state in the agglomerate are further refined and the reaction area of the alkali component fine particles present in the aggregate is expanded to promote the reaction against sulfur oxides and hydrogen chloride. The sublimated ammonium chloride is condensed by cooling the exhaust gas with the heat of vaporization of water in the chemical solution, and the treated exhaust gas containing the condensed solid fine particles of ammonium chloride is sucked through a bag filter. Alkaline component fine particles and reaction products are separated and removed from the treated exhaust gas, and unreacted alkali component fine particles are reacted with ammonium chloride adsorbed and fixed on the bag filter surface to regenerate ammonia from ammonium chloride. A method for treating incinerator exhaust gas characterized by introducing treated exhaust gas containing ammonia into a catalyst bed, causing nitrogen oxides in the treated exhaust gas to react with ammonia and decomposing it into nitrogen and water.
JP1026936A 1989-02-06 1989-02-06 Treatment of incinerator waste gas Pending JPH02207822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1026936A JPH02207822A (en) 1989-02-06 1989-02-06 Treatment of incinerator waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1026936A JPH02207822A (en) 1989-02-06 1989-02-06 Treatment of incinerator waste gas

Publications (1)

Publication Number Publication Date
JPH02207822A true JPH02207822A (en) 1990-08-17

Family

ID=12207038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1026936A Pending JPH02207822A (en) 1989-02-06 1989-02-06 Treatment of incinerator waste gas

Country Status (1)

Country Link
JP (1) JPH02207822A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248418A (en) * 1996-03-15 1997-09-22 Nittetsu Mining Co Ltd Waste gas treatment method and apparatus
CN109395524A (en) * 2018-12-19 2019-03-01 武汉天空蓝环保科技有限公司 The ultra-clean processing system of flue gas based on particulate matter chemical agglomeration and bag-type dust

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102285A (en) * 1978-01-30 1979-08-11 Hitachi Plant Eng & Constr Co Ltd Purifying method for exhaust gas of municipal incinerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102285A (en) * 1978-01-30 1979-08-11 Hitachi Plant Eng & Constr Co Ltd Purifying method for exhaust gas of municipal incinerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248418A (en) * 1996-03-15 1997-09-22 Nittetsu Mining Co Ltd Waste gas treatment method and apparatus
CN109395524A (en) * 2018-12-19 2019-03-01 武汉天空蓝环保科技有限公司 The ultra-clean processing system of flue gas based on particulate matter chemical agglomeration and bag-type dust

Similar Documents

Publication Publication Date Title
US3780499A (en) System for the liquid-phase removal of a component from the gas stream especially the absorption of sulfur trioxide in sulfuric acid
KR101056101B1 (en) Wet cleaning device and method for controlling NOx emissions
CN104353336B (en) A kind of low temperature purifying technique of coke oven stack gases and equipment thereof
CN108371872A (en) The desulfuring and denitrifying apparatus of NO_x Reduction by Effective
CN108079785B (en) Double-moving-bed reactor and application and treatment method thereof in flue gas dedusting and denitration integrated device
JP2019531881A (en) Flue gas denitration method
JP4573281B2 (en) Process for recovering acid from acid solution of metal
CN210544355U (en) Denitration equipment
JPH02207822A (en) Treatment of incinerator waste gas
US6214310B1 (en) Process for the extraction and regeneration of acids from spent acids
CN105674756A (en) Method and device for treating waste gas of TFT glass substrate kiln
JPH02207820A (en) Treatment of incinerator waste gas
JPH02207818A (en) Device for treating incinerator waste gas
CN105194961B (en) A kind of smoke dust circulation filter
CN106975353A (en) A kind of tail gas processing mechanism and processing method
JPH02207821A (en) Treatment of incinerator waste gas
JPS62210029A (en) Exhaust gas purifying device
JP2001027112A (en) NOx REMOVAL SYSTEM
JPH02207819A (en) Treatment of incinerator waste gas
EP0016591B1 (en) Treatment of effluent gases from the manufacture of fertilizer and products obtained thereby
US3497328A (en) Treatment of contaminated gases and the like
CN210057855U (en) Flue gas treatment system
CN206810212U (en) A kind of inert atmosphere granulating system
CN215276586U (en) Dry desulfurization and denitrification device
TW202325385A (en) Exhaust gas purification device