JPH02207460A - Fully solid state lithium battery - Google Patents

Fully solid state lithium battery

Info

Publication number
JPH02207460A
JPH02207460A JP1028318A JP2831889A JPH02207460A JP H02207460 A JPH02207460 A JP H02207460A JP 1028318 A JP1028318 A JP 1028318A JP 2831889 A JP2831889 A JP 2831889A JP H02207460 A JPH02207460 A JP H02207460A
Authority
JP
Japan
Prior art keywords
active material
electrode active
lithium
positive electrode
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1028318A
Other languages
Japanese (ja)
Inventor
Akiyoshi Inubushi
昭嘉 犬伏
Takefumi Nakanaga
偉文 中長
Yuji Tada
祐二 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP1028318A priority Critical patent/JPH02207460A/en
Publication of JPH02207460A publication Critical patent/JPH02207460A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the safety of a battery by using a solid electrolyte prepared by dissolving a lithium salt in a specific organic compound or its mixture. CONSTITUTION:A fully solid state lithium battery is manufactured by combining a positive active material and a negative active material with a solid electrolyte prepared by dissolving a lithium salt in oligoethyleneoxy polyphosphazene having allyl groups formed by randomly arranging segments represented by formulas I, II, III. A battery having low charge-discharge loss, no leakage, and no ignition can be obtained. In the formulas, R shows methyl, ethyl, or propyl group alone, or its mixture, n and k are the mean repeating number of ethyleneoxy units, 0<=n<=15, 0<=k<=5 and 1, m, n are zero or a positive integer of 3 <=1+m+n<=200000, nnot equal to 0.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高エネルギー密度の全固体型リチウム1次並び
に2次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to high energy density all-solid-state lithium primary and secondary batteries.

(在米の技術) 従来上りリチウムを負極活物質として用いる高エネルギ
ー密度電池に関する多くの研究がなされている。特にリ
チウム1次電池に関しては、既に市販されており、その
需要も増加の一途を辿っている0例えば、弗化黒鉛を正
極活物質に用い、リチウムもしくはりチウム−アルミニ
ウム合金を負極活物質に用いたリチウム1次電池や、二
酸化マンガンを正極活物質として用いたリチウム1次電
池がよく知られている。
(Technology based in the United States) Much research has been conducted on high-energy density batteries that use conventional lithium as the negative electrode active material. In particular, primary lithium batteries are already commercially available, and the demand for them is only increasing. Lithium primary batteries using manganese dioxide as a positive electrode active material and lithium primary batteries using manganese dioxide as a positive electrode active material are well known.

又充放電が可能なリチウム2次電池に関しては、最近活
発な研究がなされており、電池構成部材や電池構成につ
いて数多(の提案がなされている。
Furthermore, active research has been conducted recently on rechargeable and dischargeable lithium secondary batteries, and numerous proposals have been made regarding battery constituent members and battery configurations.

例えば、正極活物質としてV6O13、M o S 2
、TiS2、Cr30a、M n 02等が用いられ、
負極活物質としてリチウム、リチウム−アルミニウム合
金等が用いられたリチウム2次電池が提案されている。
For example, V6O13, MoS2 as a positive electrode active material
, TiS2, Cr30a, M n 02, etc. are used,
A lithium secondary battery using lithium, a lithium-aluminum alloy, or the like as a negative electrode active material has been proposed.

しかし、これらリチウム電池は、当初からの問題点が今
なお解決されていない、第1の問題点として、正極活物
質もしくは負極活物質と電気化学反応をするためのリチ
ウムイオンの移動ができる電解質物質として、例えばプ
ロピレンカーボネート、テトラヒドロフラン、2−メチ
ルテトラヒドロ7ラン、ジオキソレン、7セト二トリル
、ホルムアミド、エチレンカーボネー)、1.2−ノメ
トキンエクン、ジメチルホルムアミド、ニシロメタン、
ツメチルスルホキシド等の1種以上の非プロトン性有機
溶媒に、L iClo 、、LiBF、%LiA s 
F s、L:AlC1,、L i P F !等のリチ
ウム塩を溶解させた電解質が利用されているが、可燃性
液体であるため、液漏れによる周辺機器部材の汚損、引
火及び発火等の危険性、そしてこれらの原因により誘発
するi着機器の誤稼動、更に過充電によるWk裂の危険
性が挙げられる。
However, the problems with these lithium batteries from the beginning have not yet been resolved.The first problem is that an electrolyte material that can move lithium ions for an electrochemical reaction with the positive electrode active material or negative electrode active material Examples include propylene carbonate, tetrahydrofuran, 2-methyltetrahydro-7rane, dioxolene, 7-cetonitrile, formamide, ethylene carbonate), 1,2-nometochineecune, dimethylformamide, dichloromethane,
LiClo, , LiBF, %LiAs in one or more aprotic organic solvents such as trimethyl sulfoxide.
F s, L: AlC1,, L i P F ! Electrolytes in which lithium salts such as E.g. There is a risk of malfunction and WK cracking due to overcharging.

第2の問題点として、2次電池における充放電の繰り返
しにより、リチウム負極上で発生する電解液の対流が、
Liデンドライト結晶の成長を促進し、最終的には正極
に接して短絡する問題が挙げられる。
The second problem is that due to repeated charging and discharging in the secondary battery, convection of the electrolyte that occurs on the lithium negative electrode
The problem is that it promotes the growth of Li dendrite crystals and eventually comes into contact with the positive electrode and short-circuits.

これら2つの大きな問題、へは、電解質が可燃性液体で
あることに起因している。この問題点を解決すべく固体
電解質を利用したリチウム電池の検討がなされている0
例えば、1藤は〔第52回新材料研究会講演レボ−) 
(1983年12月8日)〕に非晶貿Li、SO,−L
i、PO−系固体電解質を用いで、正極をT is 2
9%、負極をリチウム膜として薄型の全固体リチウム2
次電池を提案している。しかしこのものは容量が小さく
、低温での電池特性が悪く、実用化されていない、又ピ
ー・エム・プロンスキーらはジャーナル・オブ・アメリ
カン・ケミ。
These two major problems stem from the fact that the electrolyte is a flammable liquid. In order to solve this problem, lithium batteries using solid electrolytes are being studied.
For example, 1 Fuji [52nd New Materials Research Conference Lecture Review]
(December 8, 1983)
i, using a PO-based solid electrolyte, the positive electrode is T is 2
9%, thin all-solid lithium 2 with lithium film as negative electrode
We are proposing the next battery. However, this product has a small capacity and poor battery characteristics at low temperatures, so it has not been put into practical use, and P.M. Plonsky et al.

カル・ソサエティ第106巻e  6854頁 198
4年(P。
Cal Society Volume 106 e 6854 pages 198
4th year (P.

M、Blonsky  et  ale J、Am+C
hew、 Soc、t106、 6854. 1984
)に電気化学電池用電解質として、ポリホス77ゼンが
有用であると記述している。しかしながら、彼等は30
℃〜97℃の範囲で交流電導度のデータを示しているに
過ぎず、問題解決に至っていない。
M, Blonsky et ale J, Am+C
hew, Soc, t106, 6854. 1984
) describes that polyphos-77zene is useful as an electrolyte for electrochemical cells. However, they are 30
It only shows AC conductivity data in the range of 97°C to 97°C, and does not solve the problem.

(発明が解決しようとする課題) 本発明の目的は、上記問題点を改良して小型、軽量で充
放電容量が大きく、優れた電池特性を持つ全固体型リチ
ウム1次及び2次電池を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to improve the above-mentioned problems and provide all-solid-state lithium primary and secondary batteries that are small, lightweight, have a large charge/discharge capacity, and have excellent battery characteristics. It's about doing.

(課題を解決するための手段) 本発明は正極活物質、負極活物質及び次式(■)。(Means for solving problems) The present invention relates to a positive electrode active material, a negative electrode active material, and the following formula (■).

(U)、(I[I)で示されるセグメントが任意に配列
したアリル基を有するオリゴエチレンオキシポリホスフ
ァゼン或いはその混合物に、リチウム塩を溶解した固体
電解質を組み合わせてなる全固体型リチウム電池に係る
An all-solid-state lithium battery comprising an oligoethyleneoxypolyphosphazene or a mixture thereof having an allyl group in which segments represented by (U) and (I[I) are arbitrarily arranged, and a solid electrolyte in which a lithium salt is dissolved. .

0(CH2CH20)hCHzCH=CH2L) (に
 1−12CF12 (J )h CM 2 シti 
= シM 20(CH,CH20)kR 0(CH,CH,0)hCH,CH=CH。
0(CH2CH20)hCHzCH=CH2L) (to 1-12CF12 (J)h CM2 city
= siM20(CH,CH20)kR0(CH,CH,0)hCH,CH=CH.

(但し、Rはメチル、エチル、プロピル基の単一もしく
は混合したものを示し、h及びkはエチレンオキシ単位
の平均の繰り返し数を意味し、それぞれO≦h≦15.
0≦に≦15の範囲の実数値をとるものであり、また1
、 lit nは3≦l十曽+n≦200000の範囲
の0又は正の整数値をとり、かつn−1である。) 本発明の全固体型リチウム電池では、電解質としてイオ
ン伝導度を大きく改善し、かつ引火性及び発火性の無い
オリゴエチレンオキシポリホスファゼン化合物を固体電
解質として採用した。更に既知の正極活物質を用いる上
で、本固体電解質との界面密着性を改善し、正極性能を
改善するために、(V 205)l−X * (A )
xの水和ゾル(但しAは金属又は半金属の酸化物、O≦
x≦0.6)を混合することもできる。既知の負極活物
質と上述の改善された固体電解質及び正極活物質との組
み合わせにより、在米のリチウム電池より優れた特性が
得られ、更に全固体型のフィルム状リチウム電池が構成
できることを見い出した。
(However, R represents a single or mixed methyl, ethyl, or propyl group, h and k mean the average repeating number of ethyleneoxy units, and O≦h≦15.
It takes a real value in the range of 0≦≦15, and 1
, lit n takes 0 or a positive integer value in the range of 3≦lToso+n≦200000, and is n-1. ) In the all-solid-state lithium battery of the present invention, an oligoethyleneoxypolyphosphazene compound, which has greatly improved ionic conductivity and is neither flammable nor ignitable, is used as the solid electrolyte. Furthermore, when using a known positive electrode active material, in order to improve the interfacial adhesion with the present solid electrolyte and improve the positive electrode performance, (V 205) l-X * (A)
Hydrated sol of x (where A is a metal or metalloid oxide, O≦
x≦0.6) can also be mixed. We have discovered that by combining a known negative electrode active material with the improved solid electrolyte and positive electrode active material described above, it is possible to obtain characteristics superior to those of lithium batteries made in the United States, and to construct an all-solid-state film lithium battery. .

本発明に使用する正極活物質としては、リチウム1次電
池用として、MnO2、黒鉛、弗化黒鉛等が用いられ、
又リチウム2次電池用として、MnO2、(Li20)
x・(MnO2)+−x(但し、0<x≦0゜6〕等の
マンガン酸化物系、M o S 2、Mo53、TiS
2、V、S、等の遷移金属力ルコデン化合物系、■20
1、V s O。、非晶’fJ V 20 s  P 
t Os等ノハナノウム酸化物系、ポリアニリンに代表
される有機ポリマー系の正極活物質が用いられる。一般
にこれら正極活物質を用いで、正極を形成するにはアセ
チレンブラック、ケッチエンブラック、グラファイトの
ような導電性粉末を混合し、これに更にポリテトラフル
オロエチレン、ポリエチレン、ポリスチレンのような結
合剤粉末を所要に応じて加え、この混合物を混線、成形
して所定厚みのペレット又はシートとして、ステンレス
、ニッケル等の金網等に着設し正極とすることができる
。このように形成された正極材料を使用して、本発明の
目標を十分達成することができるが、全固体型のフィル
ム状リチウム電池を構成するための正極材料の形成方法
としては次の様な方法が効果的である。
As the positive electrode active material used in the present invention, MnO2, graphite, graphite fluoride, etc. are used for lithium primary batteries.
Also, for lithium secondary batteries, MnO2, (Li20)
Manganese oxides such as x・(MnO2)+-x (0<x≦0゜6), MoS2, Mo53, TiS
2. Transition metal compounds such as V, S, etc., ■20
1, V s O. , amorphous 'fJ V 20 s P
A cathode active material based on a nanonumerary oxide such as tOs, or an organic polymer type such as polyaniline is used. Generally, using these positive electrode active materials, to form a positive electrode, a conductive powder such as acetylene black, Ketchien black, or graphite is mixed, and a binder powder such as polytetrafluoroethylene, polyethylene, or polystyrene is further mixed. is added as required, and this mixture is cross-wired and formed into pellets or sheets of a predetermined thickness, which can be attached to a wire mesh made of stainless steel, nickel, etc. to form a positive electrode. Although the goals of the present invention can be fully achieved using the cathode material formed in this way, the following method is recommended for forming the cathode material for constructing an all-solid-state film lithium battery. The method is effective.

即ち、既知の正極活物質ニ(V 205)l−X + 
(A )xの水和ゾル液を添加混合する。ここでO<x
≦0.6である。又Aは金属又は半金属の酸化物であり
、具体例としてM o O3、WO2、C「01、Ti
e、、Gem2、Sin、、B 120−1Te02な
どを挙げることができる。このゾルは層状構造を持つ■
20゜フィブリルが、繊維束を形成し、この繊維が網目
状に分散した構造を持ち、デスト酸化物(A)は、その
網目空間もしくは眉間に均一に分散し、又はインターカ
レートして存在するため、このゾルの乾燥体は繊維方向
への電子伝導性が高く、更に繊維状分子(V20s)と
粒状分子(A)がハイブリッド化しているために材料の
安定性が高い、正極活物質と(VzOsL−X・(A 
)xとの重量混合比率は特に制限は無いが、1 :0,
02から0,02: 1のI囲が好ましい、又この正極
混合物中の水分量を制御することにより塗布型正極材、
ロール正置成形によるシート状正極材、プレス成形によ
る基板密着型正極材等の加工が可能である。
That is, the known positive electrode active material d(V 205)l−X +
(A) Add and mix the hydrated sol solution of x. Here O<x
≦0.6. Further, A is an oxide of a metal or a metalloid, and specific examples include M o O3, WO2, C'01, Ti
Examples include e, , Gem2, Sin, , B 120-1Te02, and the like. This sol has a layered structure■
The 20° fibrils form a fiber bundle, and the fibers have a structure in which they are dispersed in a network, and the dest oxide (A) is present in the network space or between the eyebrows, or as an intercalate. Therefore, the dried form of this sol has high electron conductivity in the direction of the fibers, and also has high material stability due to the hybridization of fibrous molecules (V20s) and granular molecules (A). VzOsL-X・(A
) There is no particular restriction on the weight mixing ratio with x, but 1:0,
An I range of 0.02 to 0.02:1 is preferable, and by controlling the amount of water in this positive electrode mixture, a coated positive electrode material,
It is possible to process a sheet-like positive electrode material by roll position molding, a substrate-adhesive positive electrode material by press molding, etc.

又、本発明に使用しているアリル基を有するオリゴエチ
レンオキシポリホスファゼン化合物を正極活物質に添加
混合して得られた正極材は、正極活物質内へのリチウム
イオンドープ量が多くなり、その上、固体電解質層と正
極層との界面の安定性が増す、正極活物質とオリゴエチ
レンオキシポリホスファゼン化合物の重量混合比率は特
に制限は無いが、1 :0.005から1 :0.9の
範囲が好ましい。
In addition, the positive electrode material obtained by adding and mixing the allyl group-containing oligoethyleneoxypolyphosphazene compound used in the present invention to the positive electrode active material has a large amount of lithium ions doped into the positive electrode active material. Above, there is no particular restriction on the weight mixing ratio of the positive electrode active material and the oligoethyleneoxypolyphosphazene compound, which increases the stability of the interface between the solid electrolyte layer and the positive electrode layer, but it is preferably from 1:0.005 to 1:0.9. A range is preferred.

この場合もポリホス77ゼン化合物の添加量を制御する
ことによって塗布型正極材、シート状正極材、基板密着
型正極材等の加工が可能である。
In this case as well, by controlling the amount of the polyphos-77zene compound added, it is possible to process the material into coated cathode materials, sheet-like cathode materials, substrate-adhesive cathode materials, and the like.

ここで(V205L−X・(A )xの水和ゾル液の合
成法は、V 20 sと添加する他の酸化物を所定量比
で混合し、得られた混合物を融解し、この融液を高速で
回松している金属ロール表面へ吹き出させ、急冷凝固さ
せる。この凝固体はアモルファス構造である。この7モ
ル77人体を水に溶解することにより(VzOd+−に
・(A)にの水和ゾル液が得られる。又その他の方法と
してV、Olのアルコキシドと(A)酸化物のアルコキ
シドを所定量混合し、加水分解して調製することもでき
る。更にイオン交換法や組成融液を直接水中へ吹き出し
、所望のゾル液を調製することも可能である。
Here, the method for synthesizing the hydrated sol of (V205L-X/(A)x is to mix V20s and other oxides to be added in a predetermined ratio, melt the resulting mixture, is blown onto the surface of a metal roll spinning at high speed, and is rapidly cooled and solidified. This solidified material has an amorphous structure. By dissolving 7 moles of this human body in water, A hydrated sol solution can be obtained.Also, as another method, it can also be prepared by mixing a predetermined amount of alkoxides of V and Ol and alkoxides of (A) oxide and hydrolyzing the mixture.Furthermore, it can be prepared by an ion exchange method or a composition melt. It is also possible to prepare a desired sol by blowing directly into water.

本発明において用いられる負極活物質は、リチウムある
いはリチウム合金であり、更にはウッド合金も使用可能
である。これらを負極材とする場合は、シート状やフィ
ルム状に加工して使用するか、ニッケルやステンレス板
上に圧着したシート板状で使用する。又、真空蒸着法や
スパッター法等のPVD法もしくはCVD法によりニッ
ケルやステンレス板上に負極活物質の薄膜を形成させた
ものを用いることがでおる。
The negative electrode active material used in the present invention is lithium or a lithium alloy, and a wood alloy can also be used. When these are used as negative electrode materials, they are processed into sheets or films, or used in the form of sheets crimped onto nickel or stainless steel plates. Alternatively, a thin film of a negative electrode active material formed on a nickel or stainless steel plate by a PVD method such as a vacuum evaporation method or a sputtering method or a CVD method can be used.

本発明では電解質としては、前記式(I)、(■)。In the present invention, as the electrolyte, the above formulas (I) and (■) are used.

(I[[)で示されるセグメントが任意に配列したアリ
ル基を有するオリゴエチレンオキシポリホスフアゼン或
いはその混合物に、リチウム塩を溶解したものを用いる
。このポリマーはオリゴエチレンオキシ基とアリル基を
ホスホニトリルを主鎖とする無機高分子骨格に配置した
ポリマーであり、柔らかく、水溶性であり、しかもLi
C4’OいLiBF、、LiAsF、、L:AlC1,
、LiPF5等のリチウムイオンイ云導用電解質として
必要なリチウム塩類を溶解する能力を持っている。又、
側鎖末端にアリル基を導入したことにより側鎖末端の架
橋が可能であり、骨格及びfllI鎖の特性を消失させ
ることなく、膜形状の保持を優れたものとすることがで
きる。これらの特性は、前述のリチウム電池の問題を解
決する上で好適なものである。
(I[[) A lithium salt dissolved in oligoethyleneoxypolyphosphazene having allyl groups in which segments are arbitrarily arranged or a mixture thereof is used. This polymer is a polymer in which oligoethyleneoxy groups and allyl groups are arranged in an inorganic polymer skeleton with a phosphonitrile main chain, and is soft and water-soluble.
C4'OLiBF, , LiAsF, , L: AlC1,
It has the ability to dissolve lithium salts required as electrolytes for lithium ion conduction, such as , LiPF5, etc. or,
By introducing an allyl group to the end of the side chain, the end of the side chain can be crosslinked, and the membrane shape can be excellently maintained without losing the characteristics of the skeleton and the flI chain. These characteristics are suitable for solving the problems of lithium batteries mentioned above.

本発明において用いられる式(1)、 ([[)、 (
Ill)で示されるセグメントが任意に配列したアリル
基を有するオリゴエチレンオキシポリホスファゼンは、
次のようにして合成される。即ち、ヘキサクロロトリホ
スホニトリルを開環重合して得たジクロロホスホニトリ
ルポリマーに、予め1llstしておいたオリゴエチレ
ングリコールモノアルキルエーテル及びオリゴエチレン
グリコールモノアリルエーテルのアルカリ金属アルコラ
ードを所定量反応させることにより9I造することがで
きる0反応は通常の有機溶媒、例えばテトラヒドロ7ラ
ン(THF)、ジグライム等を用いて、約40℃以下で
各成分を混合し、続けて数時間加熱還流させることによ
り行うことができ、アルカリ金属としてはナトリウム、
リチウム等を好適に用いることができる。
Formula (1) used in the present invention, ([[), (
Oligoethyleneoxypolyphosphazene in which the segment represented by Ill) has an arbitrarily arranged allyl group is
It is synthesized as follows. That is, by reacting a dichlorophosphonitrile polymer obtained by ring-opening polymerization of hexachlorotriphosphonitrile with a predetermined amount of an alkali metal alcoholade of oligoethylene glycol monoalkyl ether and oligoethylene glycol monoallyl ether, which had been prepared in advance. The reaction that can produce 9I can be carried out by mixing the components at about 40°C or less using a common organic solvent such as tetrahydrofane (THF), diglyme, etc., and then heating and refluxing for several hours. The alkali metals include sodium,
Lithium or the like can be suitably used.

このポリマーを電解質として用いる場合、下記のような
溶媒にポリマーを溶解させた溶液に、リチウム塩の溶媒
溶液を添加し、均一に溶解させた後、製膜して用いるこ
とができる。又、使用目的に応じ、製膜前或いは製膜後
に加熱、超音波照射、紫外線照射等の処理による複合化
を行ってもよい。
When using this polymer as an electrolyte, a solvent solution of a lithium salt is added to a solution in which the polymer is dissolved in the following solvent, and after uniformly dissolving the polymer, it can be used by forming a film. Further, depending on the purpose of use, compositing may be performed by treatment such as heating, ultrasonic irradiation, ultraviolet irradiation, etc. before or after film formation.

溶媒としては例えばTHF、ジオキサン、ノメトキシエ
タン等のエーテル類、ア七トン、メチルエチルケトン(
MEK)等のケトン類、メタ7−ル、エタノール等のフ
ルフール類、アセトニトリル、プロピレンカーボネート
等を例示することができる。
Examples of solvents include ethers such as THF, dioxane, nomethoxyethane, a7tone, methyl ethyl ketone (
Examples include ketones such as MEK), furfurs such as methanol and ethanol, acetonitrile, and propylene carbonate.

本発明において用いられるポリマーがその分子内に有す
るアリル基は、その複合化処理に関し、有効に作用して
いるものと思われる。即ち、詳細は不明であるものの、
アリル基同士のカップリング及びアリル基と添加した塩
との反応或いは相互作用により、電池の電解質として都
合のよい形態を構築し、保持せしめているものと考えら
れる。
It seems that the allyl group that the polymer used in the present invention has in its molecule acts effectively in the conjugation process. In other words, although the details are unknown,
It is thought that the coupling between the allyl groups and the reaction or interaction between the allyl groups and the added salt establishes and maintains a form convenient for use as a battery electrolyte.

本発明で用いられるリチウム塩としては、LiCtO,
、LiAIC/−1LiBF−5LiCZ%LiPF6
、LiAsF、、CF 2 S Os L i等から選
ばれる一種以上の塩が好適に利用される。又電池構成上
、必要に応じて不織布もしくは多孔性膜等のセパレータ
ー膜を設置することもできる。
Lithium salts used in the present invention include LiCtO,
, LiAIC/-1LiBF-5LiCZ%LiPF6
, LiAsF, CF 2 SOs Li, etc., are preferably used. In addition, a separator membrane such as a nonwoven fabric or a porous membrane may be installed as necessary depending on the battery configuration.

電池の作製方法は、例えば所定のステンレス板に正極活
物質を塗布し、乾燥後、予め調製しておいた固体電解質
の溶液をその正極材料表面上に塗布し、脱溶媒して成膜
後、不活性〃ス雰囲気中もしくは乾燥空気中で別に作製
した負極活物質のシートを密着したステンレス板とシー
ル材を用いて真空シールすることにより得られる。
A method for manufacturing a battery is, for example, by applying a positive electrode active material to a predetermined stainless steel plate, drying it, applying a solution of a solid electrolyte prepared in advance onto the surface of the positive electrode material, removing the solvent, and forming a film. It is obtained by vacuum-sealing a separately prepared sheet of negative electrode active material in an inert gas atmosphere or dry air using a stainless steel plate and a sealing material.

上記の各部材を使用して本発明の全固体型リチウム電池
を作成した一例を第1図に示す、この電池は全固体型フ
イルム状電池の一例を示したもので、適用形態及び構成
はこの限りでなく、ボタン型、シリング−型等の電池に
も適用できるのは言うまでもない。
An example of an all-solid-state lithium battery of the present invention made using the above-mentioned members is shown in FIG. 1. This battery shows an example of an all-solid-state film battery, and the application form and configuration are Needless to say, the invention is not limited to this, and can also be applied to button-type, Schilling-type, etc. batteries.

(実 施 例) 以下、本発明を実施例により詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to Examples.

尚、電池の作成及び測定はアルゴン雰囲気中で行った。Note that the battery preparation and measurements were performed in an argon atmosphere.

実施例1 (1)正極体の作製 正極活物質のM n 02、(LnO)o、+(MnO
z)o、*、(Li20)。、、(MnO,)、、、、
MOS、、TiS2、■201、■、0゜、非晶質(V
 20 s )。0.、・(P2O3)。、。1、黒鉛
、フッ化黒鉛はレアーメタリック社製の99.9%純度
のものを使用し、又2元系酸化物組成物については所定
の比率で混合し、加熱して固溶体化せしめて再度粉砕し
た。又非晶質(V 20 s)o、ms ” (P x
o s)o、oslt V 2o 、及t/ P t 
Osを所定量混合し、加熱融液化して、その組成物融液
を高速回軟しているロール表面上に吹き出し、tOS〜
10’℃/秒の速度で急冷せしめて非晶質化試料とした
。非晶質化の評価は、X線回折法により、回折ピークの
ないバーローパターンを確認した。
Example 1 (1) Preparation of positive electrode body Positive electrode active material M n 02, (LnO)o, +(MnO
z) o, *, (Li20). ,,(MnO,),,,,
MOS,, TiS2, ■201, ■, 0°, amorphous (V
20s). 0. ,・(P2O3). ,. 1. Graphite and fluorinated graphite are manufactured by Rare Metallic Co., Ltd. with a purity of 99.9%, and the binary oxide composition is mixed at a predetermined ratio, heated to form a solid solution, and then ground again. did. Also, amorphous (V 20 s) o, ms ” (P x
o s) o, oslt V 2o, and t/P t
A predetermined amount of Os is mixed, heated to form a melt, and the resulting composition melt is blown out onto the surface of a roll that is being softened at high speed.
The sample was rapidly cooled at a rate of 10'°C/sec to obtain an amorphous sample. For evaluation of amorphization, a Barlow pattern with no diffraction peak was confirmed by X-ray diffraction.

又ポリアニリンはステンレス板上に電解重合し、析出さ
せてポリアニリン正極II(厚さ100μ−)を形成さ
せた。このように準備された正極活物質は、乳鉢にで均
質な粒度にそろえた。導電材料としてアセチレンプラッ
クを、又成形用結合剤としで、ポリテトラプルオロエチ
レンを用いて、正極活物質と各々5 :25ニア0で混
合し、ロールプレスによりシート成型を行った。このシ
ートから所定の寸法を打ち抜いて正極材料とした。ここ
で正極材料の寸法は、(幅)55−一×(長さ)90−
一で厚さ0.5mmである。集電材とケーシング材を兼
ねたステンレス板(幅)60m*X(長さ)100mm
X(厚さ)50μ輪上に正極材料を成型した。
Further, polyaniline was electrolytically polymerized and precipitated on a stainless steel plate to form a polyaniline positive electrode II (thickness: 100 μm). The positive electrode active material prepared in this manner was placed in a mortar to have a uniform particle size. Acetylene plaque was used as a conductive material, and polytetrafluoroethylene was used as a molding binder. They were mixed with a positive electrode active material at a ratio of 5:25 to 0, respectively, and sheet molding was performed using a roll press. A positive electrode material was punched out from this sheet to a predetermined size. Here, the dimensions of the positive electrode material are (width) 55-1 x (length) 90-
The thickness is 0.5 mm. Stainless steel plate that serves as current collector and casing material (width) 60m*X (length) 100mm
The positive electrode material was molded onto a X (thickness) 50μ ring.

(Z)負極体の作製 (幅)60maX(長さ)100mmX(厚jL )5
0/j mf)集電材とケーシング材を兼ねたステンレ
ス板上に負極活物質として、リチウム金属管又はリチウ
ム−アルミニウム合金(1/1)箔又はLi  (Pb
−Cd・In)合金(1/1)笛、いわゆるLi−ウッ
ド合金を圧着して負極体とした。
(Z) Preparation of negative electrode body (width) 60 ma x (length) 100 mm x (thickness jL) 5
0/j mf) A lithium metal tube, lithium-aluminum alloy (1/1) foil, or Li (Pb
-Cd.In) alloy (1/1) whistle, a so-called Li-wood alloy, was crimped to form a negative electrode body.

(3)電解質の作製 (HP to(CHzCHzO)tcHtcH= C1
(21゜−53(0(CHzCllzO)ycHsl+
、nt ) nで示される平均分子量約26万のホス7
7ゼンボリv−101rとLiC!!041gをTHF
189gに溶解し室温で均一溶液とした。
(3) Preparation of electrolyte (HP to (CHzCHzO)tcHtcH= C1
(21°-53(0(CHzCllzO)ycHsl+
, nt) Phos7 with an average molecular weight of about 260,000, denoted by n
7 Zenbori V-101r and LiC! ! 041g in THF
It was dissolved in 189 g to form a homogeneous solution at room temperature.

(4)電池の組み立て 第1図は本発明による電池の一兵体例であるシート型電
池の断面概略図であり、外形寸法は60+amX 10
0mmの名刺サイズに合わせたものであり、厚さは約1
−一のものである0図中1は正極材料、2は負極材料、
3はLiC10,を溶解したホス7アゼンボリマー膜、
4はステンレス板、5はシール材である。電池の組み立
てにあたっては、上記の正極体上に上記の電解質液を塗
布し、THFを除去した後、負極材料をシール材を介し
て貼り合わせ、真空シールを行い、電池を完成させた。
(4) Battery assembly Figure 1 is a schematic cross-sectional view of a sheet-type battery, which is an example of the battery according to the present invention, and the external dimensions are 60+am x 10
It is made to fit a business card size of 0mm, and the thickness is approximately 1mm.
- In the figure, 1 is the positive electrode material, 2 is the negative electrode material,
3 is a phos7 azene polymer film in which LiC10 is dissolved,
4 is a stainless steel plate, and 5 is a sealing material. In assembling the battery, the above electrolyte solution was applied onto the above positive electrode body, THF was removed, and then the negative electrode material was bonded together via a sealing material and vacuum sealed to complete the battery.

比較のために、電解液をプロピレンカーボネートとジメ
トキシエタンの1:1混合液にL i C104を1m
ol/Zで溶解したものとし、ポリプロピレン製不總布
に含浸させたものを使用する以外は、実施例と同様の電
池を作製し、これを比較例1及び2とした。
For comparison, 1 m of Li C104 was added to a 1:1 mixture of propylene carbonate and dimethoxyethane as an electrolyte.
Comparative Examples 1 and 2 were produced in the same manner as in the Example except that the battery was dissolved in OL/Z and impregnated into a polypropylene cloth.

(5)電池の充放電特性の測定 これらの電池につき、2次電池として4vと2■の間で
0.5輸Aの定電流充放電を行い、このときの各サイク
ルにおける電池の容量維持率(初回の放電容量を100
%とする)を測定した。その結果を第1表に示す。
(5) Measurement of charging and discharging characteristics of batteries These batteries were charged and discharged at a constant current of 0.5 A between 4V and 2■ as secondary batteries, and the capacity retention rate of the batteries in each cycle was (Initial discharge capacity is 100
%) was measured. The results are shown in Table 1.

実施例2 正極活物質に(V 205L−X ・(A )x ・n
H20ゾル液又はアリル基を有するオリゴエチレンオキ
シポリホスファゼン化合物を混合して得られる液状物か
ら湿状物を各々の状態に応じ、目的に合わせて、塗布、
乾燥法による薄膜状正極材料及びロールプレス成型法に
よるシート状正極材料更には、電池1集電板に、個別に
プレス成型法による圧着した正極材料等に加工して、各
々正極材料とし、ホス77ゼンボリマーを平均分子量約
32万の(NPiO(C2CH20)、CH2CH=C
11□10.+4io(CIlzCH20)tcHsl
+1s )で示されるものとしたことを除いては実施例
に同様に電池を組み立でた。これらの電池につき4vと
2vの闇で充放電(0,5mA定電流)を行い、二の時
の300サイクルまでの平均放電量を測定しこ、結果を
#S2表に示す。
Example 2 Positive electrode active material (V 205L-X ・(A )x ・n
Applying a wet product from a liquid product obtained by mixing an H20 sol solution or an oligoethyleneoxypolyphosphazene compound having an allyl group according to each condition and purpose.
A thin film positive electrode material by drying method and a sheet positive electrode material by roll press molding method are further processed into positive electrode materials, etc., which are individually crimped by press molding method on the current collector plate of battery 1, respectively, as positive electrode materials, and Phos77 Zenvolimer was used as a compound with an average molecular weight of about 320,000 (NPiO(C2CH20), CH2CH=C
11□10. +4io(CIlzCH20)tcHsl
A battery was assembled in the same manner as in the example except that the battery was used as shown in +1s). These batteries were charged and discharged (0.5 mA constant current) in the dark at 4 V and 2 V, and the average discharge amount up to 300 cycles was measured. The results are shown in Table #S2.

表中の添加剤(VzOs)+−x・(A)×の水和ゾル
液の調製は、非晶質(V2O5)I−X・(A )xを
前述の液体m急冷法により作製し、この非晶質体を水に
分散溶解せしめて(V 20 s)+−x・(A)×の
水和ゾル液を調製した0式中のAは金属酸化物又は半金
属酸化物を示し、−例としてGem2、Sin、を用い
てV2O5、(V 2o s)o、* ・(GeO2)
0.1、(V2O5)。、、・(S io 2)。0.
の各水利ゾルをill製した。第2図は、(V 20 
s)o、s −(GeO2)a、l水和ゾルの乾燥物の
X#a回折図であるが、V2O5及び(V 205)6
.4− (S io z)o*1l−)イテモ# 2図
と同様であった。
To prepare the hydrated sol solution of the additive (VzOs)+-x・(A)× in the table, the amorphous (V2O5)I-X・(A)x was prepared by the liquid m quenching method described above. This amorphous body was dispersed and dissolved in water to prepare a hydrated sol solution of (V 20 s) + - x (A) ×. A in the formula 0 represents a metal oxide or a metalloid oxide, - Using Gem2, Sin, as an example, V2O5, (V 2os) o, * ・(GeO2)
0.1, (V2O5). ,,・(S io 2). 0.
Each aquarium sol was manufactured by ill. Figure 2 shows (V 20
s) O, s - (GeO2) a, X#a diffractogram of a dry hydrated sol, showing V2O5 and (V 205)6
.. 4-(Sio z)o*1l-) Itemo #2 It was the same as in Figure 2.

(発明の効果) 本発明によれば充放電ロスの少ない液漏れのない、又引
火、発火の危険性の無い全固体型のリチウム電池が得ら
れる。又本発明のリチウム電池は、充放電可能な2次電
池として物性評価をしているが、当然1次電池として使
用が可能である。又本発明によれば電池部材が非常に薄
(作製できることから、全固体型のフィルム状リチウム
電池が得られるため、その応用が幅広く展開できる。
(Effects of the Invention) According to the present invention, an all-solid-state lithium battery with less charge/discharge loss, no leakage, and no risk of ignition or ignition can be obtained. Although the lithium battery of the present invention has been evaluated for its physical properties as a rechargeable and dischargeable secondary battery, it can of course be used as a primary battery. Further, according to the present invention, since the battery member can be made very thin, an all-solid-state film-like lithium battery can be obtained, and its applications can be expanded widely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電池の一兵体例であるシート型電
池の断面概略図である0図中1は、正極材料、2は負極
材料、3はLiC10,塩を溶解したポリホスファゼン
化合物固体電解質、4はステンレス板の電極兼カバー材
、5はシール材である。 第2図は本発明に用いた正極活物質への添加物質(Vz
Oi)o、s・(GeOz)o、+の水和ゾル液の乾燥
物のX線回折パターンを示す、この化合物は層状構造を
持つことが判る。 (以 上) 出 願 人 大塚化学株式会社 代 理 人  弁理士 1)村  巌 第2 2θ(deg、) CUKa
Fig. 1 is a schematic cross-sectional view of a sheet type battery which is an example of a battery according to the present invention. , 4 is a stainless steel plate serving as an electrode/cover material, and 5 is a sealing material. Figure 2 shows additive substances (Vz
The X-ray diffraction pattern of the dried hydrated sol of Oi)o,s·(GeOz)o,+ shows that this compound has a layered structure. (The above) Applicant Otsuka Chemical Co., Ltd. Agent Patent attorney 1) Iwao Mura 2nd 2θ (deg,) CUKa

Claims (10)

【特許請求の範囲】[Claims] (1)正極活物質、負極活物質及び次式( I )、(II
)、(III)で示されるセグメントが任意に配列したア
リル基を有するオリゴエチレンオキシポリホスフアゼン
或いはその混合物に、リチウム塩を溶解した固体電解質
を組み合わせてなる全固体型リチウム電池。 ▲数式、化学式、表等があります▼( I ) ▲数式、化学式、表等があります▼(II) ▲数式、化学式、表等があります▼(III) (但し、Rはメチル、エチル、プロピル基の単一もしく
は混合したものを示し、h及びkはエチレンオキシ単位
の平均の繰り返し数を意味し、それぞれ0≦h≦15、
0≦k≦15の範囲の実数値をとるものであり、またl
、m、nは3≦l+m+n≦200000の範囲の0又
は正の整数値をとり、かつn≠0である。)
(1) Positive electrode active material, negative electrode active material and the following formulas (I), (II
An all-solid-state lithium battery comprising an oligoethyleneoxypolyphosphazene having an allyl group in which the segments shown in ) and (III) are arbitrarily arranged, or a mixture thereof, and a solid electrolyte in which a lithium salt is dissolved. ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (I) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (II) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (III) (However, R is a methyl, ethyl, propyl group h and k mean the average repeating number of ethyleneoxy units, 0≦h≦15, respectively.
It takes a real value in the range 0≦k≦15, and l
, m, and n take 0 or positive integer values in the range of 3≦l+m+n≦200000, and n≠0. )
(2)正極活物質がMnO_2、LiMn_2O_4又
は(Li_2O)x・(MnO_2)_1−x(0<x
≦0.6)であり、負極活物質がリチウム又はリチウム
合金である請求項1記載の全固体型リチウム電池。
(2) The positive electrode active material is MnO_2, LiMn_2O_4 or (Li_2O)x・(MnO_2)_1-x (0<x
≦0.6), and the negative electrode active material is lithium or a lithium alloy.
(3)正極活物質がMoS_2又はTiS_2であり、
負極活物質がリチウム又はリチウム合金である請求項1
記載の全固体型リチウム電池。
(3) the positive electrode active material is MoS_2 or TiS_2,
Claim 1 wherein the negative electrode active material is lithium or a lithium alloy.
All-solid-state lithium battery described.
(4)正極活物質がポリアニリン化合物であり、負極活
物質がリチウム又はリチウム合金である請求項1記載の
全固体型リチウム電池。
(4) The all-solid-state lithium battery according to claim 1, wherein the positive electrode active material is a polyaniline compound, and the negative electrode active material is lithium or a lithium alloy.
(5)正極活物質がV_2O_5、V_6O_1_3又
は非晶質(V_2O_5)_1−y・(P_2O_5)
y(0≦y<0.1)であり、負極活物質がリチウム又
はリチウム合金である請求項1記載の全固体型リチウム
電池。
(5) The positive electrode active material is V_2O_5, V_6O_1_3 or amorphous (V_2O_5)_1-y・(P_2O_5)
The all-solid-state lithium battery according to claim 1, wherein y (0≦y<0.1) and the negative electrode active material is lithium or a lithium alloy.
(6)正極活物質が黒鉛又はフッ化黒鉛であり、負極活
物質がリチウム、リチウム合金又はウツド合金である請
求項1記載の全固体型リチウム電池。
(6) The all-solid-state lithium battery according to claim 1, wherein the positive electrode active material is graphite or fluorinated graphite, and the negative electrode active material is lithium, a lithium alloy, or a wood alloy.
(7)請求項2〜6のいずれかに記載の正極活物質に(
V_2O_5)_1−x・(A)xの水和ゾル液を混合
して得られる液状物を、塗布、乾燥して形成される薄膜
状正極材料と、リチウム、リチウム合金又はウツド合金
からなる負極活物質を用いる請求項1記載の全固体型リ
チウム電池。 (但し、Aは金属酸化物又は半金属酸化物、0≦x≦0
.6である。)
(7) The positive electrode active material according to any one of claims 2 to 6 (
V_2O_5)_1-x・(A) A thin film-like positive electrode material formed by coating and drying a liquid obtained by mixing the hydrated sol of x, and a negative electrode active material made of lithium, lithium alloy or wood alloy. The all-solid-state lithium battery according to claim 1, which uses a substance. (However, A is a metal oxide or a metalloid oxide, 0≦x≦0
.. It is 6. )
(8)正極活物質と(V_2O_5)_1−x・(A)
xの重量混合比率が1:0.02から0.02:1の範
囲である請求項1記載の全固体型リチウム電池。
(8) Positive electrode active material and (V_2O_5)_1-x・(A)
The all-solid-state lithium battery according to claim 1, wherein the weight mixing ratio of x is in the range of 1:0.02 to 0.02:1.
(9)請求項2〜6のいずれかに記載の正極活物質に、
請求項1記載のアリル基を有するオリゴエチレンオキシ
ポリホスフアゼンを混合し、加圧成形して得られる正極
材料と、リチウム、リチウム合金又はウツド合金からな
る負極活物質を用いる請求項1記載の全固体型リチウム
電池。
(9) The positive electrode active material according to any one of claims 2 to 6,
A positive electrode material obtained by mixing the oligoethyleneoxypolyphosphazene having an allyl group according to claim 1 and press-molding the mixture, and a negative electrode active material comprising lithium, a lithium alloy, or a wood alloy. Solid-state lithium battery.
(10)正極活物質とアリル基を有するオリゴエチレン
オキシポリホスフアゼンの重量混合比率が1:0.00
5から1:0.9である請求項9記載の全固体型リチウ
ム電池。
(10) The weight mixing ratio of the positive electrode active material and oligoethyleneoxypolyphosphazene having an allyl group is 1:0.00.
The all-solid-state lithium battery according to claim 9, wherein the ratio is 5 to 1:0.9.
JP1028318A 1989-02-06 1989-02-06 Fully solid state lithium battery Pending JPH02207460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028318A JPH02207460A (en) 1989-02-06 1989-02-06 Fully solid state lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028318A JPH02207460A (en) 1989-02-06 1989-02-06 Fully solid state lithium battery

Publications (1)

Publication Number Publication Date
JPH02207460A true JPH02207460A (en) 1990-08-17

Family

ID=12245263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028318A Pending JPH02207460A (en) 1989-02-06 1989-02-06 Fully solid state lithium battery

Country Status (1)

Country Link
JP (1) JPH02207460A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2663468A1 (en) * 1990-06-18 1991-12-20 Technology Finance Corp LITHIUM AND MANGANESE OXIDE COMPOUNDS USEFUL AS ELECTROCHEMICAL CELL ELECTRODE, PROCESS FOR MANUFACTURING THE SAME, AND ELECTROCHEMICAL CELL USING THE SAME AS CATHODE.
WO2009001526A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation All solid polymer battery
JP2009104891A (en) * 2007-10-23 2009-05-14 Panasonic Corp Dry polymer electrolyte, and all-solid polymer battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2663468A1 (en) * 1990-06-18 1991-12-20 Technology Finance Corp LITHIUM AND MANGANESE OXIDE COMPOUNDS USEFUL AS ELECTROCHEMICAL CELL ELECTRODE, PROCESS FOR MANUFACTURING THE SAME, AND ELECTROCHEMICAL CELL USING THE SAME AS CATHODE.
WO2009001526A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation All solid polymer battery
US8318342B2 (en) 2007-06-22 2012-11-27 Panasonic Corporation All solid-state polymer battery
JP2009104891A (en) * 2007-10-23 2009-05-14 Panasonic Corp Dry polymer electrolyte, and all-solid polymer battery

Similar Documents

Publication Publication Date Title
KR101850901B1 (en) All solid lithium secondary battery comprising gel polymer electrolyte and method for manufacturing the same
KR101876861B1 (en) Hybrid solid electrolyte for all solid lithium secondary battery and method for preparing the same
EP0581785A1 (en) METHOD FOR THE PREPARATION OF LiMn 2?O 4? AND LiCoO 2? INTERCALATION COMPOUNDS FOR USE IN SECONDARY LITHIUM BATTERIES.
WO2003088272A1 (en) Ion-conductive electrolyte and cell employing the same
US20220328874A1 (en) Solid polymer electrolyte containing boron and fluorine structures, and preparation method and application thereof
JP2759479B2 (en) All-solid-state lithium secondary battery
JP2002280072A (en) Battery incorporating organic/inorganic composite polymer solid electrolyte
US5153080A (en) All solidstate secondary battery
KR20180051716A (en) Spray-Coated Lithium-Ion Conducting Hybrid Solid Electrolyte For Lithium Battery, Method Of Manufacturing The Same, And Lithium Battery Comprising The Same
JP2740960B2 (en) Lithium secondary battery
US5183716A (en) All solid-state battery
JPH08153514A (en) Film-shaped negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using same
JP2000182602A (en) Nonaqueous secondary battery
JPH05314965A (en) Battery positive electrode sheet, manufacture thereof and totally solid secondary battery
JP2002042785A (en) Lithium battery
KR102597591B1 (en) Polymer solid electrolyte with excellent high voltage stability and its manufacturing method
JPH02207460A (en) Fully solid state lithium battery
JP3734258B2 (en) Ion conductive electrolyte and battery using the same
JP2819027B2 (en) All-solid secondary battery
KR102253763B1 (en) Manufacturing method of solid-state composite electrolyte membrane for secondary battery having compact structure
JP2022155549A (en) Power storage device and coating liquid for negative electrode protective film
CN111900459A (en) PEO-based composite solid electrolyte and preparation method thereof
JP7523659B2 (en) Composition for producing solid electrolyte, solid electrolyte and lithium secondary battery using the same
KR100457093B1 (en) Fabrication of a polymer electrolyte for lithium/sulfur battery and room temperature lithium/sulfur battery containing the same with one flat voltage
JP3053404B2 (en) All-solid lithium secondary battery