JPH02207443A - Ion beam device - Google Patents

Ion beam device

Info

Publication number
JPH02207443A
JPH02207443A JP1028103A JP2810389A JPH02207443A JP H02207443 A JPH02207443 A JP H02207443A JP 1028103 A JP1028103 A JP 1028103A JP 2810389 A JP2810389 A JP 2810389A JP H02207443 A JPH02207443 A JP H02207443A
Authority
JP
Japan
Prior art keywords
electrodes
ion
electrode
solid insulator
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1028103A
Other languages
Japanese (ja)
Inventor
Masayasu Furuya
降矢 正保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1028103A priority Critical patent/JPH02207443A/en
Publication of JPH02207443A publication Critical patent/JPH02207443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To disable foul particles to approach the inner face of a solid insulator even when a jumping movement of foul particles is repeated by forming electrodes to be arranged in multiple steps in a prescribed form. CONSTITUTION:Electrodes 10, 11 and 12 for ion pullout or acceleration in the vacuum atmosphere are arranged in multiple steps while solid insulators 3 are interposed between respective mutually adjacent pairs of them. The shape of each electrodes is so formed that an interval between mutually opposing adjacent electrodes may form a part widening on the side of an ion running path from the respective solid insulators in the peripheral direction around the ion running path for instance, broken line shape in multiple steps where the sectional shapes of the respective electrodes enlarge their tilting angles successively in the axial direction. Thereby, a wall of an electric line of force convexly curing from the solid insulator side to the ion running path side so that foul particles are shifted in the direction of a weak electric field while performing jumping movement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体製造プロセスで使用されているイオ
ン注入装置等、真空雰囲気中でイオンを引き出しあるい
は加減速するための電極をイオンの引出し方向あるいは
加減速の方向に固体絶縁物を介して多段に配してなる電
極系を有するイオンビーム装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an ion implanter used in a semiconductor manufacturing process, etc., in which an electrode for extracting or accelerating or decelerating ions in a vacuum atmosphere is connected in the direction of ion extraction. Alternatively, the present invention relates to an ion beam device having an electrode system arranged in multiple stages with solid insulators interposed in the acceleration/deceleration direction.

〔従来の技術〕[Conventional technology]

第4図は真空雰囲気中でイオンを加減速する従来の電極
系構成の一例を示す概要図である。真空雰囲気を形成す
る真空容器は高圧ハウジング1゜低圧ハウジング2.固
体絶縁物3を用いて形成され、この真空容器内に、ここ
には特に図示しないが、イオン源を内蔵するとともに真
空排気装置等を備えている。イオンを加減速する電極系
は高圧電極4.中圧電極5.低圧電極6を有し、これら
の電極は固体絶縁物3により位置を固定されかつ互いに
絶縁されている0図中左方から来たイオンビーム7は、
電極系が形成する静電界の作用で加減速されて右方へ向
かう、ここで、固体絶縁物3の真空側沿面の汚損を防ぐ
ため、図のようにイオンビームの走行路から該沿面が直
視できないように各電極を円筒状に形成して同軸に配置
しているのが一般的である。なお、汚損勧賞はイオンビ
ームが電極等に当たった時に発生するスパッタ粒子が主
である。
FIG. 4 is a schematic diagram showing an example of a conventional electrode system configuration for accelerating and decelerating ions in a vacuum atmosphere. The vacuum container that forms the vacuum atmosphere consists of a high pressure housing 1 degree and a low pressure housing 2 degrees. It is formed using a solid insulator 3, and is provided with an ion source and a vacuum evacuation device, etc., although not particularly shown, in this vacuum container. The electrode system that accelerates and decelerates ions is a high-voltage electrode 4. Medium voltage electrode5. The ion beam 7 coming from the left in the figure has a low voltage electrode 6, which is fixed in position by a solid insulator 3 and insulated from each other.
The ion beam accelerates and decelerates to the right due to the action of the electrostatic field formed by the electrode system, and in order to prevent the vacuum-side creeping surface of the solid insulator 3 from being contaminated, the creeping surface is directly visible from the ion beam travel path as shown in the figure. Generally, each electrode is formed into a cylindrical shape and arranged coaxially to prevent this. Note that contamination is mainly caused by sputtered particles generated when the ion beam hits an electrode or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般に、イオンビームが電極やハウジングに当たるとス
パッタリングによって金属原子が発生し、これが真空雰
囲気内で直進して構造物に衝突、付着する。この付着原
子は運転時間とともに堆積し、ついには剥離して微粒子
になる。この堆積、@離は真空容器内のいたる所で発生
するが、その場所が電極間の場合、第3図に示すように
、粒子先端部に電界が集中し、電界方向に静電力が作用
する。
Generally, when an ion beam hits an electrode or housing, metal atoms are generated by sputtering, which travel straight in a vacuum atmosphere and collide with and adhere to structures. These attached atoms accumulate over time and eventually separate into fine particles. This deposition and separation occur everywhere in the vacuum chamber, but when the deposition occurs between the electrodes, as shown in Figure 3, the electric field is concentrated at the tip of the particle, and an electrostatic force acts in the direction of the electric field. .

ここで符号8は一方の電極面を意味する。具体的には、
粒子表面の垂直方向の電界をEとすると、静電応力 P−□墨。El     aゆ :真空の誘電率が発生
し、粒子表面積を考慮すると静電力ΔF−□虐。E8Δ
S     AS:ll小面積が作用する。これを粒子
表面全体で求めることによって粒子に作用する垂直方向
の静電力が決まる。
Here, the reference numeral 8 means one electrode surface. in particular,
If the electric field in the direction perpendicular to the particle surface is E, then the electrostatic stress P-□Black. Elayu: Vacuum permittivity occurs, and when particle surface area is taken into account, electrostatic force ΔF-□. E8Δ
SAS:ll small area acts. By determining this over the entire particle surface, the vertical electrostatic force acting on the particle is determined.

この静電力は電界空間の平均電界E0を10’V/m(
IKV/m)とすれば、例えば直径50μの鋼球を浮き
上げるのに充分な大きさである0粒子は浮き上がる時に
電極から真電荷を受は取るが、浮き上がった粒子は対向
電極に衝突して電荷を失い、今度は逆極性の電荷を受け
て下降する。このように跳躍運動を繰り返しているうち
に、その一部はついには固体絶縁物内面に到達、該内面
を汚損し、結果として耐電圧の低下を招く。
This electrostatic force increases the average electric field E0 in the electric field space by 10'V/m (
IKV/m), for example, a zero particle that is large enough to lift a steel ball with a diameter of 50μ receives and takes away a true charge from the electrode when it floats, but the lifted particle collides with the counter electrode. It loses its charge and now receives a charge of the opposite polarity and descends. As the jumping motion is repeated in this way, a part of it finally reaches the inner surface of the solid insulator and stains the inner surface, resulting in a decrease in withstand voltage.

この発明の目的は、汚損粒子の発生とその跳躍運動とは
不可避であることから、跳躍運動が繰り返されても汚損
粒子が固体絶縁物内面に近づくことのできない電極系を
構成することである。
Since the generation of contamination particles and their jumping motion are unavoidable, an object of the present invention is to construct an electrode system in which contamination particles cannot approach the inner surface of a solid insulator even if the jumping motion is repeated.

〔課題を解決するための手段〕[Means to solve the problem]

この課題を解決するために、この発明においては、電極
系を構成する各電極を、隣り合う電極相互の対向間隔が
それぞれ固体絶縁物側からイオンの走行路側へ広がる部
分をイオン走行路まわり周方向に形成するように形成し
、この部分に固体絶縁物側からイオン走行路側へ凸に湾
曲する電気力線の壁を形成せしめるものとする。
In order to solve this problem, in the present invention, each electrode constituting the electrode system is arranged so that the opposing distance between adjacent electrodes widens from the solid insulator side to the ion traveling path side in the circumferential direction around the ion traveling path. A wall of electric lines of force curved convexly from the solid insulator side to the ion travel path side is formed in this portion.

〔作用〕[Effect]

電極系を構成する各電極をこのように形成し、電極相互
の対向間隔内に固体絶縁物側からイオン走行路側へ凸に
湾曲する電気力線の壁を形成すると、汚損粒子が電極の
対向間隔内で電気力線に沿って跳躍運動を行おうとする
際に汚損粒子に遠心力が作用し、汚損粒子は跳躍を繰り
返すたびに固体絶縁物から遠ざかり、湾曲した電界の壁
より内側へ入り込むことができない、これにより固体絶
縁物側へ向かおうとする汚損粒子は固体1!I緑物内面
に近付くことができず、固体絶縁物内面は清浄に保たれ
る。
If each of the electrodes constituting the electrode system is formed in this way and a wall of electric lines of force curves convexly from the solid insulator side toward the ion travel path within the opposing spacing between the electrodes, contamination particles will Centrifugal force acts on the contamination particles as they try to make a jumping motion along the lines of electric field inside the solid insulation material, and each time the contamination particles jump, they move away from the solid insulator and can enter inside the curved wall of the electric field. This is not possible, and as a result, the contamination particles that try to move towards the solid insulator are solid 1! I The inner surface of the green material cannot be approached, and the inner surface of the solid insulator is kept clean.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す概要図である。 FIG. 1 is a schematic diagram showing an embodiment of the present invention.

図中、第4図と同一の部材には同一符号を付し、説明を
省略する。高圧電極10.中圧電極11.低圧電極12
はいずれも断面形状が、軸方向に順次傾斜角が太き(な
る、多段の折れ線形状にしである。
In the figure, the same members as in FIG. 4 are designated by the same reference numerals, and their explanations will be omitted. High voltage electrode 10. Medium voltage electrode 11. Low voltage electrode 12
In each case, the cross-sectional shape is a multi-step polygonal line shape with a gradually increasing inclination angle in the axial direction.

スパッタ粒子が付着しうるのは各電極の先端付近である
が、その部分から固体絶縁物に向かう途中の電界強度が
固体絶縁物に近づくにつれて大きくなり、これにより隣
り合う電極相互間の電界空間の電気力線が固体絶縁物側
からイオンの走行路側へ凸に湾曲する電気力線の壁を、
各電極断面の折れ線中のいずれかの線の傾斜を変えるこ
とにより、本実施例では各電極の対向間隔中の部位A、
Bに形成している。すなわち、このような電極構成にす
ると、第2図に示すように、電気力1(図中の破線)は
弱い電界の方へ凸に湾曲するので、スパッタ粒子はその
発生時のスパッタ速度で電気力線の壁を貫いて固体絶縁
物方向へ進もうとしても、−旦電極面に衝突した後は、
凸に湾曲した電気力線に沿って力を受けつつ運動し、か
つこの運動により同時に遠心力を受けるから、跳躍運動
をしながら順次弱電界方向へとシフトする (図中の実
線矢印)、第1図の場合、スパッタ粒子は各電極の先端
方向へと向かい、ついには無電界である高圧電極10の
内側あるいは低圧ハウジング2内に捕集される。
Sputtered particles can attach near the tip of each electrode, but the electric field strength on the way from that part to the solid insulator increases as it approaches the solid insulator, and this causes the electric field space between adjacent electrodes to increase. The wall of the electric line of force curves convexly from the solid insulator side to the ion travel path side.
By changing the slope of any one of the polygonal lines in the cross section of each electrode, in this example, the portion A in the opposing interval of each electrode,
It is formed in B. In other words, with such an electrode configuration, as shown in Figure 2, the electric force 1 (dashed line in the figure) is curved convexly toward a weaker electric field, so the sputtered particles are not affected by electricity at the sputtering speed at which they are generated. Even if the lines of force try to penetrate the wall and move toward the solid insulator, after colliding with the electrode surface,
It moves while receiving a force along the convexly curved lines of electric force, and simultaneously receives a centrifugal force due to this movement, so it sequentially shifts toward the weak electric field while performing a jumping motion (solid line arrow in the figure). In the case of FIG. 1, the sputtered particles move toward the tip of each electrode and are finally collected inside the high-voltage electrode 10 or in the low-voltage housing 2 where there is no electric field.

なお、発明の実施例としてここでは一例のみ記載したが
、本発明の内容は第1図の形状に限定されるものではな
く、スパッタ粒子発生源と固体絶縁物との間に、スパッ
タ粒子発生源の方向へ電気力線が凸になるような電極形
状、例えば互いに勾配した平板電極を設けることによっ
ても発明の目的は達成される。また、説明は3枚電極構
成を例にして行ったが、電極枚数は限定されない。
Although only one example has been described here as an embodiment of the invention, the content of the present invention is not limited to the shape shown in FIG. The object of the invention can also be achieved by providing an electrode shape such that the lines of electric force are convex in the direction, for example, by providing mutually sloped flat plate electrodes. Further, although the explanation has been given using a three-electrode configuration as an example, the number of electrodes is not limited.

(発明の効果〕 以上に述べたように、この発明では、電極系を構成する
各電極を、隣り合う電極相互の対向間隔がそれぞれ固体
絶縁物側からイオンの走行路側へ広がる部分をイオン走
行路まわり周方向に形成するように形成し、この部分に
固体絶縁物側からイオン走行路側へ凸に湾曲する電気力
線の壁が形成されるようにしたので、各電極の先端近傍
に発生したスバフタ粒子は、その発生時のスパッタ速度
で電気力線の壁を貫いて固体絶縁物方向へ進もうとして
も、−旦電極面に衝突した後は、凸に湾曲した電気力線
に沿って力を受けつつ運動し、かつこの運動により同時
に遠心力を受けるから、跳躍運動をしながら順次弱電界
方向へとシフトされ、固体絶縁物に近づくことができな
い、これにより固体絶縁物の内面は常に清浄に保たれ、
装置の大形化やコスト上昇をもたらすことなく、耐電圧
の低下を防ぐことができる。
(Effects of the Invention) As described above, in the present invention, each electrode constituting the electrode system is connected to a portion where the opposing distance between adjacent electrodes widens from the solid insulator side to the ion travel path side. By forming the wall in the circumferential direction, a wall of electric lines of force that curves convexly from the solid insulator side to the ion travel path side is formed in this part, so that the stubble that occurs near the tip of each electrode is eliminated. Even if the particles try to penetrate the wall of the electric field lines and move towards the solid insulator at the sputtering speed at which they are generated, once they collide with the electrode surface, they will exert force along the convexly curved electric field lines. As it moves while receiving centrifugal force and is simultaneously subjected to centrifugal force due to this movement, it is sequentially shifted towards a weaker electric field while making a jumping motion, and cannot approach the solid insulator.As a result, the inner surface of the solid insulator is always clean. kept,
A decrease in withstand voltage can be prevented without increasing the size of the device or increasing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す概要図、第2図は本発明
における微粒子の挙動を示す概念図、第3図は電極に接
触している微粒子の状態図、第4図は従来の加速管の概
要図である。 3:固体絶縁物、4,5.6,8,10.11,12.
20,21 :電極、7:イオンビーム、22:電気力
線。 4111フ 11?1 第2図 第3図 第4 圀
Figure 1 is a schematic diagram showing an embodiment of the present invention, Figure 2 is a conceptual diagram showing the behavior of fine particles in the present invention, Figure 3 is a state diagram of fine particles in contact with an electrode, and Figure 4 is a diagram of the conventional It is a schematic diagram of an acceleration tube. 3: Solid insulator, 4, 5.6, 8, 10.11, 12.
20, 21: Electrode, 7: Ion beam, 22: Electric force line. 4111fu 11?1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)真空雰囲気中でイオンを引き出しあるいは加減速す
るための電極をイオンの引出し方向あるいは加減速の方
向に固体絶縁物を介して多段に配してなる電極系を有す
るイオンビーム装置において、該電極系を構成する各電
極を、隣り合う電極相互の対向間隔がそれぞれ固体絶縁
物側からイオンの走行路側へ広がる部分をイオン走行路
まわり周方向に形成するように形成し、この部分に固体
絶縁物側からイオン走行路側へ凸に湾曲する電気力線の
壁が形成されることを特徴とするイオンビーム装置。
1) In an ion beam device having an electrode system in which electrodes for extracting or accelerating or decelerating ions in a vacuum atmosphere are arranged in multiple stages via solid insulators in the direction of extracting or accelerating or decelerating ions, the electrodes Each of the electrodes constituting the system is formed in such a way that a portion where the opposing distance between adjacent electrodes widens from the solid insulator side to the ion travel path side is formed in the circumferential direction around the ion travel path, and the solid insulator is applied to this portion. An ion beam device characterized in that a wall of electric lines of force is formed that curves convexly from the side toward the ion travel path.
JP1028103A 1989-02-07 1989-02-07 Ion beam device Pending JPH02207443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028103A JPH02207443A (en) 1989-02-07 1989-02-07 Ion beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028103A JPH02207443A (en) 1989-02-07 1989-02-07 Ion beam device

Publications (1)

Publication Number Publication Date
JPH02207443A true JPH02207443A (en) 1990-08-17

Family

ID=12239470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028103A Pending JPH02207443A (en) 1989-02-07 1989-02-07 Ion beam device

Country Status (1)

Country Link
JP (1) JPH02207443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066170A1 (en) * 2016-10-03 2018-04-12 東芝電子管デバイス株式会社 X-ray tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066170A1 (en) * 2016-10-03 2018-04-12 東芝電子管デバイス株式会社 X-ray tube
US11037751B2 (en) 2016-10-03 2021-06-15 Canon Electron Tubes & Devices Co., Ltd. X-ray tube

Similar Documents

Publication Publication Date Title
US3898408A (en) Circuit interrupter with improved trap for removing particles from fluid insulating material
JP5242937B2 (en) Ion implantation apparatus and ion implantation method
EP1314181B1 (en) Electrostatic trap for particles entrained in an ion beam
GB2030356A (en) Cold cathode ion source
GB2250858A (en) Charged particle extraction arrangement
CN102400107A (en) Magnetron sputtering source and magnetron sputtering device
EP1314182A2 (en) System and method for removing particles entrained in an ion beam
JPH02207443A (en) Ion beam device
CN107400869A (en) A kind of method of flat target utilization rate during raising magnetron sputtering plating
CN109256319B (en) Ionization source and secondary ion mass spectrometer comprising same
JPS5923432A (en) Plasma ion source
JP3433004B2 (en) DC gas insulated busbar
CA1054726A (en) Method and apparatus for electrostatic deflection of high current ion beams in scanning apparatus
JP2001176444A (en) Orthogonal-acceleration time of-flight mass spectrometer
JPS627855A (en) Sputtering device
JP2012172204A (en) Magnetron type sputtering device
CN212412000U (en) Mass analyser for mass spectrometer
JPH076608Y2 (en) Vacuum exhaust device
WO2023128438A1 (en) Ion pump
US1231587A (en) Shielding system for vapor-converters.
RU94042655A (en) Method is isotope separation and device for its realization
JP2879662B2 (en) Charged particle beam generator
US2845539A (en) Mass spectrometry
JPS62112777A (en) Apparatus for forming thin film
Bartosik Chosen phenomena in vacuum chamber at heavy direct current switching off in transverse magnetic field