JPH02207407A - Bending-and-oscillation-resistant flexible conductor - Google Patents

Bending-and-oscillation-resistant flexible conductor

Info

Publication number
JPH02207407A
JPH02207407A JP2839389A JP2839389A JPH02207407A JP H02207407 A JPH02207407 A JP H02207407A JP 2839389 A JP2839389 A JP 2839389A JP 2839389 A JP2839389 A JP 2839389A JP H02207407 A JPH02207407 A JP H02207407A
Authority
JP
Japan
Prior art keywords
wires
stranded
wire
child
strands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2839389A
Other languages
Japanese (ja)
Other versions
JPH0580083B2 (en
Inventor
Sajiro Shimizu
清水 佐次郎
Kenzo Ide
兼造 井手
Keizo Asao
浅尾 敬三
Toru Matsui
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP2839389A priority Critical patent/JPH02207407A/en
Publication of JPH02207407A publication Critical patent/JPH02207407A/en
Publication of JPH0580083B2 publication Critical patent/JPH0580083B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To improve wear resistance by having stranded element wires constituting the outermost layer formed into pure soft copper wires and stranded element wire constituting the lower layer in contact therewith formed into softened wires of preset copper alloy. CONSTITUTION:A flexible conductor 3 comprises collective stranded wires 1 for which element wires are collectively stranded and complex stranded wires 2 for which the collective stranded wires are stranded in a concentric manner. The complex-stranded flexible conductor 3 is stranded in a concentric manner by arranging one complex stranded wire 2 as a stranded wire 2a for a center layer, six complex wires 2 as stranded wires 2b for the first layer of the next outside and 12 complex stranded wires 2 as stranded wires 2c for the second layer of the next outside. For the element wires constituting the stranded wires 2c for the outermost layer, pure soft copper is used, and for the element wires constituting the stranded wires 2b for the lower layer in contact therewith, copper alloy is used which contains Zr and Sn, with the content by wt. of 0.05-0.2% and 0.05-0.5% respectively, and copper for the rest.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電流容量が大きくかつ耐屈曲性、耐塩動性に
優れる可撓導体に間する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides a flexible conductor having a large current capacity and excellent bending resistance and salt movement resistance.

[従来の技術と解決しようとする課題]例えば、工業用
ロボットを利用したスポット溶接機の電力供給用リード
線は、溶接の度に極めて大きい電流が流され、併せて衝
撃的(電気力学的)振動が生ずる。またロボットが作動
する毎にリード線は擺り廻され、繰返し屈曲される。し
たがってこのように使用されるリード線は可撓導体であ
る。
[Conventional technology and problems to be solved] For example, in the power supply lead wire of a spot welding machine using an industrial robot, an extremely large current is passed through each time welding, and an impact (electrodynamic) Vibration occurs. Furthermore, each time the robot operates, the lead wire is twisted and bent repeatedly. The leads used in this manner are therefore flexible conductors.

この可撓導体は、通常、軟鋼線よりなる素線を集合撚り
し、この集合撚線を同心撚りして複合撚線(子撚)とし
、この複合撚線をさらに同心撚りして複複合撚線とした
ものからなり、例えば第4図のごとき断面構造をなして
いる。
This flexible conductor is usually made by twisting together strands of mild steel wire, concentrically twisting the assembled strands to make a compound strand (child twist), and further concentrically twisting the compound strand to make a compound strand. It consists of a wire, and has a cross-sectional structure as shown in FIG. 4, for example.

上記可撓導体の使用状況を観察すると、繰返し屈曲や?
#J撃を受けている閏に複複合撚線の素線は互いに接す
る部分で擦られて摩耗断線が生じる。
When observing the use of the above flexible conductor, do you notice repeated bending?
#J The strands of the compound stranded wire are rubbed at the parts where they touch each other on the jumper, causing wear and breakage.

一部の素線が断線すると、導体の抵抗が大きくなり、そ
の部分が過熱して更に断線し易くなって悪循環を繰返し
、断線が進行して行く。
When a part of the strands breaks, the resistance of the conductor increases, and that part overheats, making it even more likely to break, and the vicious cycle repeats, causing the wire to break.

この断線は、複複合撚りされた最外層の子撚(2C′)
とその下層の子撚(2b’)とが接する部分で最も顕著
に現われ、特に最外層の子撚(2c’)よりもその下層
の子撚(2b’)における素線断線が顕著である。各子
撚(2a’)(2b’)(2c’)の素線に純軟銅線を
用いた第4図の複複合撚線の耐用テストによると、最外
層の子撚(2c’)と接する下層の子撚(2b’)の中
でも外層部分の集合撚線(ld’)の素線の断線が特に
顕著であった。
This disconnection is caused by the outermost child twist (2C') of the compound twist.
This is most noticeable at the part where the outermost child twist (2b') and the child twist (2b') in the lower layer are in contact with each other, and the wire breakage is particularly noticeable in the child twist (2b') in the lower layer than in the child twist (2c') in the outermost layer. According to the durability test of the composite stranded wire shown in Fig. 4, in which pure annealed copper wire was used as the wire of each child twist (2a') (2b') (2c'), it was found that the wires in contact with the outermost layer child twist (2c') Among the child twists (2b') in the lower layer, the breakage of the strands of the collective strands (ld') in the outer layer portion was particularly remarkable.

したがって、この種の可撓導体としては、その使用上、
加熱下での耐屈曲性および耐振動性を向上させて前記の
素線断線を防止することが望まれる。
Therefore, when using this type of flexible conductor,
It is desired to improve the bending resistance and vibration resistance under heating to prevent the above-mentioned wire breakage.

そのため、上記の観察結果等から、最外層の子撚とその
下層の子撚の撚方向を同一にして互いに接する素線がク
ロスしないようにしたものが提案(実願昭63−879
06号)されたが、この場合素線がクロスする従来品に
比して断線が生じ難くなるものの、充分に満足できる効
果は得られないものであった。
Therefore, based on the above observation results, it was proposed that the twisting directions of the outermost layer and the lower layer are the same so that the wires touching each other do not cross.
No. 06), although in this case wire breakage was less likely to occur compared to conventional products in which the strands crossed, a fully satisfactory effect could not be obtained.

そこで本発明者等は、上記の摩耗断線の防止について、
さらに種種の研究、検討を重ねている過程において、同
一金属線同士、特に純軟銅線同士が接している場合より
も、異種金属線同士が接している場合のほうが、摩擦係
数が小さくて素線の擦れ等による摩耗断線が著しく少な
くなることを知見するに至った。
Therefore, the present inventors aimed to prevent the above-mentioned wear-out and disconnection.
Furthermore, in the process of researching and examining various types of wires, we found that the friction coefficient is smaller when wires of different metals are in contact with each other than when wires of the same metal, especially pure annealed copper wires, are in contact with each other. It has been found that the occurrence of wear and disconnection due to rubbing etc. is significantly reduced.

これに基づいて、純銅素線を用いた子撚と、別記銅合金
の素線な用いた子撚とを接触させるようにして、屈曲、
振動を与えて摩耗テストを行ったところ、耐摩耗性が大
きく向上することが判った。
Based on this, by bringing the child twist using pure copper wire into contact with the child twist using separately mentioned copper alloy wire, bending,
When a wear test was conducted by applying vibrations, it was found that the wear resistance was greatly improved.

[課題を解決するための手段] 本発明は、上記知見に基いてなしたものであって、複複
合撚線における最も断線が生じ易い第1層の子撚、つま
り最外層の子撚と接する下層の子撚の素線に、導電性が
良くてしかも耐熱性および耐屈曲性等の機械的特性に優
れる下記銅合金の軟化線を用いることとし、これにより
導電性を損うことなく耐屈曲、耐振動性を向上させ、素
線の摩耗断線防止にきわめて効果のある可撓導体を提供
するものである。
[Means for Solving the Problems] The present invention has been made based on the above findings, and the present invention is based on the above-mentioned findings. We decided to use a softened wire made of the following copper alloy, which has good electrical conductivity and excellent mechanical properties such as heat resistance and bending resistance, for the lower layer child-twisted wires. The present invention provides a flexible conductor that has improved vibration resistance and is extremely effective in preventing wire breakage due to wear and tear.

すなわち、本発明の第1は、特に集合撚線を同心撚りし
た複合撚線を子撚とし、この子撚を更に同心撚りして複
複合撚線とした可撓導体において、その最外層を構成す
る子撚の素線を純軟銅線とし、最外層の子撚と接する下
層の子撚の素線に、Zr及びSnを含有し、その含有量
がそれぞれZr:  0.005  〜0.2重量%S
n:  0.05  〜0.5重量%で、残部が銅から
なる銅合金の軟化線を用いて構成したものである。
That is, the first aspect of the present invention is, in particular, in a flexible conductor in which a composite stranded wire obtained by concentrically twisting agglomerated stranded wires is used as a child twist, and the child twist is further concentrically twisted to form a compound compound strand, the outermost layer thereof is configured. The strands of the child twist are made of pure annealed copper wire, and the strands of the child twist of the lower layer in contact with the child twist of the outermost layer contain Zr and Sn, and the content thereof is Zr: 0.005 to 0.2 weight, respectively. %S
n: 0.05 to 0.5% by weight, and the remainder is copper, which is constructed using a softened copper alloy wire.

また本発明の第2は、最外層の子撚と接する下層の子撚
の中でも外層部分の集合撚線の素線断線が顕著であるこ
と、また前記銅合金のコスト等を考慮してなしたもので
あって、前記同様の複複合撚線による可撓導体において
、その最外層を構成する子撚の素線を純軟銅線とし、最
外層の子撚と接する下層の子撚の外層部分の集合撚線の
素線を上記した銅合金の軟化線とし、他の集合撚線の素
線を純軟銅線としたことを特徴とするものである。
The second aspect of the present invention is that the wire breakage of the collective stranded wires in the outer layer is remarkable among the lower layer child twists in contact with the outermost layer child twists, and the cost of the copper alloy is taken into consideration. In a flexible conductor made of the same compound twisted wire as described above, the wires of the child twist constituting the outermost layer are pure annealed copper wire, and the outer layer portion of the child twist of the lower layer in contact with the child twist of the outermost layer is made of pure annealed copper wire. It is characterized in that the strands of the assembled stranded wires are made of the above-mentioned softened copper alloy wires, and the other strands of the assembled stranded wires are made of pure annealed copper wires.

上記の発明で用いる銅合金において、Zr含量を0.0
05〜0.2重量%としたのは、o、oos重量%未溝
では繰返し曲げ強度、引張り強度および耐熱性等の効果
が少なくなり、他方0.2重量%を越えると導電性(熱
伝導性)の低下が大きくなるからである。またSn含量
を0.05〜0.5重量%としたのは、0.05i1量
%未満では繰返し曲げ強度、引張り強度および耐熱性等
の効果が少なくなり、他方0.5重量%を越えると導電
率が低下し、鋳造性も低下するからである。
In the copper alloy used in the above invention, the Zr content is 0.0
05 to 0.2% by weight is because o, oos without grooves will have less effect on cyclic bending strength, tensile strength, heat resistance, etc., whereas if it exceeds 0.2% by weight, the electrical conductivity (thermal conductivity) will decrease. The reason for this is that the decline in performance (sexuality) increases. The reason why the Sn content is set to 0.05 to 0.5% by weight is that if it is less than 0.05i1% by weight, the effects of cyclic bending strength, tensile strength, heat resistance, etc. will decrease, while if it exceeds 0.5% by weight, This is because conductivity decreases and castability also decreases.

[作 用] 上記の本発明の第1の可撓導体によれば、複複合懲線の
最外層の子撚の素線を純軟銅線とし、これと接する下層
の子撚の素線を上述した銅合金としたことにより、素線
の摩耗断線が顕著な最外層の子撚とその下層の子撚との
接触部分においては異種金属線同士の接触となり、その
ため同一の金属線同士の場合よりも摩擦係数が小さくな
って、耐摩耗性が大幅に向上し、摩耗断線がきわめて生
じ難いものであ、しかしてこれが、断線の生じ易い下層
(第1層)の子撚の素線に、導電性が良くてかつ耐熱性
および繰返し屈曲や引張り強度等の機械的特性に優れる
銅合金の軟化線を用いたことと相俟って、緊線の摩耗断
線防止の効果を高め、断線発生率を大幅に減少できる。
[Function] According to the first flexible conductor of the present invention described above, the outermost layer of the twisted wires of the composite wire is made of pure annealed copper wire, and the lower layer of the twisted wires in contact therewith are made of the above-mentioned wires. By using a copper alloy made of copper alloy, dissimilar metal wires come into contact with each other in the contact area between the outermost layer of child twist and the child twist of the lower layer, where wear and breakage of the strands is noticeable. The coefficient of friction is reduced, the wear resistance is greatly improved, and wear-out breaks are extremely difficult to occur. Coupled with the use of copper alloy softened wire, which has good mechanical properties such as heat resistance, repeated bending, and tensile strength, it increases the effect of preventing wire breakage due to wear and tear, and reduces the incidence of wire breakage. can be significantly reduced.

また上記の第2の発明によるときは、最外層の子撚と接
する下層の子撚のうち、最も摩耗断線の生じ易い外層部
分の集合撚線の素線を前記銅合金の軟化線とし、他の集
合撚線の素線を純軟銅線としているので、この子撚と最
外層の子撚との接触部分が異種金属線同士の接触となり
、前記と同様にこの部分での摩擦断線が生じ難くなるこ
とに加え、前記外層部分の集合撚線と中心部の集合撚線
との接触部分でも異種金属線同士の接触となって、この
接触部分での摩耗および断線も生じ難くなる。
Further, according to the second invention, among the child twists in the lower layer that are in contact with the child twists in the outermost layer, the strands of the collective stranded wire in the outer layer portion where wear and breakage is most likely to occur are the softened wires of the copper alloy, and Since the strands of the assembled stranded wire are made of pure annealed copper wire, the contact area between this child twist and the child twist in the outermost layer is a contact between different metal wires, and as mentioned above, frictional disconnection is unlikely to occur at this part. In addition, dissimilar metal wires come into contact with each other at the contact portion between the stranded wires in the outer layer portion and the stranded wires in the central portion, making it difficult for wear and wire breakage to occur at this contact portion.

しかも前記外層部分以外の集合撚線の素線を純軟銅線と
したことで、可撓導体全体としての可撓性も問題がない
Moreover, since the strands of the stranded wires other than the outer layer portion are made of pure annealed copper wire, there is no problem with the flexibility of the entire flexible conductor.

[実施例コ 次に本発明の1実施例を図面に基き説明する。[Example code] Next, one embodiment of the present invention will be described based on the drawings.

第1図は第1の本発明に係る複複合撚線よりなる可撓導
体の断面構造を示している0図において、(1)は直径
0.26m−の素線26本を集合撚りした集合撚線、(
2)は前記集合撚線(り7本を同心撚りした複合撚線で
ある。複複合撚りの可撓導体(3)は、1本の複合撚線
(2)を中心層の子1!(2a)とし、その外側の第1
層の子撚(2b)として6本の複合撚線(2)を、さら
にその外側の第2層の子撚(2c)として12本の複合
撚線(2)をそれぞれ配して同心撚りしている。
Figure 1 shows the cross-sectional structure of a flexible conductor made of composite stranded wires according to the first invention. Stranded wire, (
2) is a composite stranded wire in which seven of the above-mentioned aggregated strands are concentrically twisted.The flexible conductor (3) with multiple composite strands has one composite stranded wire (2) connected to the child 1!( of the center layer). 2a), and the first outside
Six composite strands (2) are arranged as child twists (2b) of the layer, and 12 composite strands (2) are arranged as child twists (2c) of the second layer on the outside, respectively, and twisted concentrically. ing.

前記第1層の子撚(2C)と最外層の子撚(2b)とは
従来同様に互いに反対方向に同心撚りする場合のほか、
両層の子撚(2c)(2b)を共に同じ方向に同心撚り
する場合がある。後者の場合、子撚(2c)(2b)の
素線同士が撚り方向に沿って接触することとなり、従来
の素線が互いにクロスして接触する可撓導体のように局
部的に強く接触せず、そのため後述の異種金属線同士の
接触による摩耗断線防止の効果が一層大きくなる。
In addition to the case where the child twist (2C) of the first layer and the child twist (2b) of the outermost layer are concentrically twisted in opposite directions as in the conventional case,
The child twists (2c) and (2b) of both layers may be concentrically twisted in the same direction. In the latter case, the strands of the child twists (2c) and (2b) come into contact with each other along the twisting direction, and the strands do not make strong local contact like in a conventional flexible conductor where the strands cross and touch each other. Therefore, the effect of preventing wire breakage due to wear and tear due to contact between dissimilar metal wires, which will be described later, becomes even greater.

そして、前記構造の可撓導体において、最外層の子撚(
2C)を構成する素線に純軟銅線を用い、この子!(2
c)と接する下層の子iM (2b)を構成する素線に
、Zr及びSnをそれぞれ上述した配合比率で含有する
銅合金、すなわち、各元素の配合比率がそれぞれZr:
O,1重量%、S n : 0.1重量%である銅合金
を用いて構成している。そのため、最外層とその下層の
子撚(2cX2b)同士の接触部分が異種金属線同士の
接触となり、この部分の摩擦係数が小さくて摩耗断線が
生じ難いものとなっている。なお、図面においては、銅
合金の軟化線を用いた部分にのみハツチングを入れて示
す。
In the flexible conductor having the above structure, the outermost layer child twist (
This child! (2
The copper alloy containing Zr and Sn in the above-mentioned mixing ratios, that is, the mixing ratios of each element is Zr:
It is constructed using a copper alloy containing O: 1% by weight and Sn: 0.1% by weight. Therefore, the contact portion between the outermost layer and the child twists (2cX2b) of the lower layer is the contact between different metal wires, and the coefficient of friction at this portion is small, making it difficult for wire breakage to occur due to wear. Note that in the drawings, only the portions using the softened wire of the copper alloy are shown with hatching.

中心層の子撚(2λ)を構成する緊線な、第1層の子1
11(2b)と同様に前記銅合金とすることもできるが
、耐用試験の結果、中心層の子撚(2a)の素線に純軟
銅線を用いるほうが、中心層と第1層の子撚(2a)(
2b)の接触部分が異種金属線同士の接触となって、か
えって素線の摩耗断線が少なくなり、かつ可撓性が低下
することもなく、また軟銅線に比して高価な銅合金の使
用量が少なくなるため、実施上より好適である。
Child 1 of the first layer, which is a tight wire that constitutes the child twist (2λ) of the center layer
Although it is possible to use the above-mentioned copper alloy as in 11(2b), as a result of the durability test, it is better to use pure annealed copper wire for the strands of the child twist (2a) in the center layer and the child twist in the first layer. (2a) (
The contact part in 2b) is a contact between dissimilar metal wires, which reduces wear and breakage of the strands, does not reduce flexibility, and uses copper alloy, which is more expensive than annealed copper wires. Since the amount is smaller, it is more suitable in practice.

第2図は本発明の第2の可撓導体の断面構造を示してお
り、上記と同様の複複合撚線による可撓導体において、
最外層の子撚り2C)と接する下層(第1層)の複合撚
線(2)による子撚(2b)のうち、摩耗断線の生じ易
い外層部分の集合撚線(1d)の素線を上記した銅合金
の軟化線とし、これ以外の集合撚線、図の場合中心部分
の集合撚線(le)の素線を最外層の子撚(2C)と同
様の純軟銅線としている。
FIG. 2 shows a cross-sectional structure of a second flexible conductor of the present invention, and in a flexible conductor made of a compound twisted wire similar to the above,
Of the child twists (2b) of the composite strands (2) of the lower layer (first layer) that are in contact with the child twists 2C) of the outermost layer, the strands of the collective strands (1d) in the outer layer portion where wear and breakage easily occur are as described above. The other clustered stranded wires, in the case of the figure, the strands of the clustered stranded wires (le) in the center part are pure annealed copper wires similar to the child twisted wires (2C) in the outermost layer.

図面においては、銅合金の軟化線を用いた集合撚線の部
分にのみハツチングを入れて示している。
In the drawings, only the part of the stranded wire using the softened copper alloy wire is shown with hatching.

この場合も、最外層の子! (2C)とその下層の子撚
(2b)との接触部分においては異種金属線同士の接触
となるために、この部分での摩耗断線が生じ難くなって
おり、また銅合金の使用量も少ない。
Again, the outermost child! In the contact area between (2C) and the child twist (2b) in the lower layer, dissimilar metal wires come into contact with each other, so wear and breakage is less likely to occur in this area, and the amount of copper alloy used is also small. .

中心層の子撚(2a)については、上記と同様に前記銅
合金の軟化線とする場合と、純軟銅線にする場合とがあ
る。
Regarding the child twist (2a) in the center layer, there are cases where the wire is made of the above-mentioned softened copper alloy as described above, and cases where it is made of pure annealed copper wire.

上記の可撓導体(3)は、従来と同様に、例えば第3図
に示すように両端部に接続端子(4)が固着されるとと
もに、両端子間に絶縁外t1M (5)が被せられて冷
却水を流通可能に水密に保持され、溶接ロボットの電力
供給用のリード線等に使用される。
The above flexible conductor (3) has connection terminals (4) fixed to both ends as shown in the conventional example, and an insulating outer t1M (5) is placed between both terminals. It is held watertight to allow cooling water to flow through it, and is used as lead wires for power supply to welding robots.

(効果の確認の試験) 上記第1図に示す実施例の可撓導体、および第2図に示
す実施例の可撓導体と、第4図に示す可撓導体(素線全
てが純軟銅線よりなるもの)について、それぞれ最外層
(第2111)の子撚とその下層(第1図)の子撚との
撚り方向を交叉方向にして同心撚りしたもの(A)と、
同じ方向にして同心撚りしてもの(B)とについて、そ
れぞれ同じ条件で、溶接ロボットに試用し、スポット溶
接の耐用回数の比較を行ない、摩耗断線状況を観察した
ところ、次のような結果となった。
(Test to confirm effectiveness) The flexible conductor of the example shown in Fig. 1 above, the flexible conductor of the example shown in Fig. 2, and the flexible conductor shown in Fig. 4 (all strands are pure annealed copper wire) (A) which is concentrically twisted with the twist direction of the outermost layer (No. 2111) and the child twist of the lower layer (Fig. 1) in the intersecting direction.
(B), which was concentrically twisted in the same direction, was tested on a welding robot under the same conditions, compared with the number of spot welding cycles, and observed the state of wear and breakage.The following results were obtained. became.

試供品  撚方向 スポット回数 第1図の実施例 A   35〜45万回同    8
  55万回以上 第2図の実施例 A   25〜35万回同    8
  45万回以上 第4図(従来品)A  約10万回 第4図(比較例)B  26〜35万回前記表のように
、従来品は約10万スポツトで摩耗断線が生じ、その断
線率は接続端子に近い両端部分で26%〜35%にもな
ったが、本発明の場合、いずれも従来品に比して3〜6
倍、あるいはそれ以上ものスポット回数の使用に耐え、
しかもその断線率は両端部分でも10%以下となり、特
に最外層とその下層の子撚の撚り方向を同方向にした場
合、摩耗断線が一層生じ難くなった。
Sample Twisting direction Spot count Example of Figure 1 A 350,000 to 450,000 times 8
550,000 times or more Example of Figure 2 A 250,000 to 350,000 times Same 8
450,000 times or more Fig. 4 (Conventional product) A Approximately 100,000 times Fig. 4 (Comparative example) B 260,000 to 350,000 times As shown in the table above, the conventional product wears and breaks at about 100,000 spots. The rate was 26% to 35% at both ends near the connection terminal, but in the case of the present invention, it was 3 to 6% lower than the conventional product.
Can withstand twice or more spot use,
Moreover, the wire breakage rate was 10% or less even at both ends, and especially when the outermost layer and the child twists in the lower layer were twisted in the same direction, wear breakage became even less likely to occur.

[発明の効果] 上記したように、本発明によれば、導電性を損うことな
く耐屈曲、耐振動特性を従来品に比して著しく向上でき
、溶接ロボットの電力供給用のリード線等に使用される
この種の可撓導体として、長期に渡って摩耗断線を防止
し得てその耐久性を非常に高めることができる。しかも
最外層と接する下層の子撚の素線にのみ銅合金を用いる
ため、比較的高価な銅合金の使用量も少なくて済む。特
に最外層の子撚と接する下層の子撚のうち、最も摩耗断
線の生じ易い外層部分の集合撚線の素線を銅合金の軟化
線とし、池の集合撚線の素線を純軟銅線とした場合には
、前記銅合金の使用量がさらに少なく、コスト安価に製
造、提供できる。
[Effects of the Invention] As described above, according to the present invention, the bending resistance and vibration resistance characteristics can be significantly improved compared to conventional products without impairing conductivity, and lead wires for power supply of welding robots, etc. As this type of flexible conductor used in , it is possible to prevent wear and disconnection over a long period of time, greatly increasing its durability. Moreover, since the copper alloy is used only for the child twisted wires in the lower layer that are in contact with the outermost layer, the amount of relatively expensive copper alloy used can be reduced. In particular, among the lower layer child twists that are in contact with the child twists in the outermost layer, the strands of the collective stranded wire in the outer layer part where wear and breakage are most likely to occur are made of softened copper alloy wire, and the strands of the collective strand wire of the pond are made of pure annealed copper wire. In this case, the amount of the copper alloy used can be further reduced, and it can be manufactured and provided at low cost.

撓導体の断面構造の略示図である。FIG. 2 is a schematic diagram of a cross-sectional structure of a flexible conductor.

(1)・・・集合撚線、(ld)・・・外層部分の集合
撚線(1e)・・・中心部分の集合撚線、(2)・・・
複合撚線、(2a)(2b)(2c)・・・各層の子撚
、(3)・・・可撓導体。
(1)...Collected strands, (ld)...Collected strands in the outer layer (1e)...Collected strands in the center, (2)...
Composite twisted wire, (2a) (2b) (2c)... child twist of each layer, (3)... flexible conductor.

Claims (2)

【特許請求の範囲】[Claims] (1)集合撚線を同心撚りした複合撚線を子撚とし、こ
の子撚を更に同心撚りして複複合撚線とした可撓導体に
おいて、最外層を構成する子撚の素線を純軟銅線とし、
最外層の子撚と接する下層の子撚の素線を下記(a)の
銅合金の軟化線としたことを特徴とする耐屈曲、耐振動
可撓導体。 (a)Zr及びSnを含有し、その含有量がそれぞれ Zr:0.005〜0.2重量% Sn:0.05〜0.5重量% で、残部が銅からなる銅合金。
(1) In a flexible conductor in which a composite stranded wire is made by concentrically twisting a set of stranded wires, and this child strand is further concentrically twisted to form a composite stranded wire, the strands of the child strands constituting the outermost layer are pure. Made of soft copper wire,
A bend-resistant and vibration-resistant flexible conductor characterized in that the strands of the lower layer of child twists in contact with the child twists of the outermost layer are softened copper alloy wires as described in (a) below. (a) A copper alloy containing Zr and Sn, the contents of which are Zr: 0.005-0.2% by weight, Sn: 0.05-0.5% by weight, and the balance is copper.
(2)集合撚線を同心撚りした複合撚線を子撚とし、こ
の子撚を更に同心撚りして複複合撚線とした可撓導体に
おいて、最外層を構成する子撚の素線を純軟銅線とし、
最外層の子撚と接する下層の子撚の外層部分の集合撚線
の素線を下記(a)の銅合金の軟化線とし、他の集合撚
線の素線を純軟銅線としたことを特徴とする耐屈曲、耐
振動可撓導体。 (a)Zr及びSnを含有し、その含有量がそれぞれ Zr:0.005〜0.2重量% Sn:0.05〜0.5重量% で、残部が銅からなる銅合金。
(2) In a flexible conductor in which a composite stranded wire is made by concentrically twisting a set of stranded wires, and this child strand is further concentrically twisted to form a composite stranded wire, the strands of the child strands constituting the outermost layer are pure. Made of soft copper wire,
The strands of the aggregated stranded wire in the outer layer portion of the lower layer of child twists that are in contact with the outermost layer of child twists are made of the softened copper alloy wire shown in (a) below, and the strands of the other aggregated stranded wires are made of pure annealed copper wire. Features a flexible conductor that is resistant to bending and vibration. (a) A copper alloy containing Zr and Sn, the contents of which are Zr: 0.005-0.2% by weight, Sn: 0.05-0.5% by weight, and the balance is copper.
JP2839389A 1989-02-06 1989-02-06 Bending-and-oscillation-resistant flexible conductor Granted JPH02207407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2839389A JPH02207407A (en) 1989-02-06 1989-02-06 Bending-and-oscillation-resistant flexible conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2839389A JPH02207407A (en) 1989-02-06 1989-02-06 Bending-and-oscillation-resistant flexible conductor

Publications (2)

Publication Number Publication Date
JPH02207407A true JPH02207407A (en) 1990-08-17
JPH0580083B2 JPH0580083B2 (en) 1993-11-05

Family

ID=12247415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2839389A Granted JPH02207407A (en) 1989-02-06 1989-02-06 Bending-and-oscillation-resistant flexible conductor

Country Status (1)

Country Link
JP (1) JPH02207407A (en)

Also Published As

Publication number Publication date
JPH0580083B2 (en) 1993-11-05

Similar Documents

Publication Publication Date Title
WO2010147018A1 (en) Electrical wire conductor and electrical wire for automobile
KR950005852B1 (en) Cable conductor for auto-mobil
JP6080336B2 (en) Electric wire / cable
JP4762701B2 (en) Electric wire conductor for wiring and electric wire for wiring using the same
JPH0298012A (en) Elastic, vibration-proof flexible conductor
JPH02207407A (en) Bending-and-oscillation-resistant flexible conductor
JPH0298009A (en) Elastic, vibration-proof flexible conductor
JPH02207408A (en) Bending-and-oscillation-resistant flexible conductor
JPH0580085B2 (en)
JPH02142017A (en) Bending-and vibration-resistant flexible conductor
JPH02148513A (en) Flexible, vibration resistant bendable conductor
JPH0298010A (en) Flexure failure-resistant, vibration-proof flexible conductor
JPH02142016A (en) Bending-and vibration-resistant flexible conductor
JPH0298011A (en) Bending failure-resisting, vibration-proof flexible conductor
JP2004063290A (en) Aluminum alloy stranded wire conductor cable
JPH02117014A (en) Anti-bending and anti-vibration flexible conductor
JP4182850B2 (en) Automotive wire
JPH02123617A (en) Bending-proof, oscillation proof flexible conductor
JPH02148514A (en) Flexible, vibration resistant bendable conductor
JP3376672B2 (en) Conductors for electrical and electronic equipment with excellent flex resistance
JPH0729524Y2 (en) Cable with air gap between conductor and jacket
JP2001210153A (en) Water-cooled cable
JP2000251529A (en) Ultra-fine conductor for wiring material in movable portion
JPH0696618A (en) Conductor for movable cable and manufacture thereof
RU204344U1 (en) ONBOARD AIRCRAFT ELECTRIC WIRE