JPH0220679A - Focal position detecting device and focus follow-up mechanism for laser device - Google Patents

Focal position detecting device and focus follow-up mechanism for laser device

Info

Publication number
JPH0220679A
JPH0220679A JP63168423A JP16842388A JPH0220679A JP H0220679 A JPH0220679 A JP H0220679A JP 63168423 A JP63168423 A JP 63168423A JP 16842388 A JP16842388 A JP 16842388A JP H0220679 A JPH0220679 A JP H0220679A
Authority
JP
Japan
Prior art keywords
detection
condensing lens
laser beam
focal position
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63168423A
Other languages
Japanese (ja)
Inventor
Masao Izumo
正雄 出雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63168423A priority Critical patent/JPH0220679A/en
Publication of JPH0220679A publication Critical patent/JPH0220679A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect a focal position without bringing a working table to movement control by providing a means for receiving the reflected light of an optical image by a detection use laser light on an object to be irradiated in each position by moving a condensing lens, and deriving a variation characteristic of a light receiving output. CONSTITUTION:A condensing lens 3 is set to an initial position, a detection use laser light 8 is brought to image formation on a working surface 5, and its optical image 10 is obtained. A reflected light from the working surface 5 is allowed to transmit through the condensing lens 3 and a half mirror 4 and received by a photoelectric converting means 11, and the maximum width of a binarized image in said initial position is detected by a focal position arithmetic means 15. By driving a Z table 17 by this output, the condensing lens 3 is moved by a prescribed distance. Subsequently, the maximum width of the binarized image is derived again by the photoelectric converting means 11 and the focal position arithmetic means 15. By repeating this operation, a relation of a position of the condensing lens 3 and the maximum width of the binarized image is derived, the minimum value of the maximum width is detected therefrom, and the position of the condensing lens 3 at that time is outputted as a focal position.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、レーザ加工装置等においてそのレーザ光の
焦点位置を検出する装置および焦点追!Lを行う機構に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a device for detecting the focal position of a laser beam in a laser processing device, etc., and a focus tracking system. This relates to a mechanism for performing L.

[従来の技術] 第4図は例えば特開昭59−159290号公報に開示
された従来のレーザ加光装置の焦点位置検出装置を示す
構成図である。図において、(1)は加工用レーザ光、
(2)はハーフミラー−(3)は集光レンズ、(4)は
ハーフミラ−1(5)はハーフミラ−(2)、集光レン
ズ(3)を透過し、ハーフミラ−(4)で反射した加工
用レーザ光(1)がほぼ直角に入射する加工面で、加工
用レーザ光(1)の入射軸(Z軸)の方向に移動可能な
加工テーブル(6)の上面をなす。(7)は加工面(5
)に形成されたXY平面である。(8)は加工用レーザ
光(1)と同軸、同焦点となるようハーフミラ−(2)
で反射した後、集光レンズ(3)を透過し、更にハーフ
ミラ−(4)で反射して加工面(5)に照射される検出
用レーザ光、(9)はこの検出用レーザ光(8)を出射
する検出用レーザ発生手段としての検出用レーザ発振器
、(101はXY平面(7)上に結像された検出用レー
ザ光(8)の光像−0υはXY平面(7)を走査して光
像f1Gを受光し電気信号として出力する光像検出手段
としての光電変換手段−(15は光電変換手段αDから
の光像(I■の出力を2値化像に変換する2値化回路、
tizは2値化像の最大幅を検出する最大幅検出回路、
0滲は加工テーブル(6)をZ軸方向に移動させたとき
の2値化像の最大幅の変化から検出用レーザ光(8)の
焦点位置を検出する焦点位置検出回路で、2値化回路(
12、最大幅検出回路f131および焦点位置検出回路
041により焦点位置演算手段(1ωを構成する。
[Prior Art] FIG. 4 is a configuration diagram showing a focal position detection device of a conventional laser beam illumination device disclosed in, for example, Japanese Patent Application Laid-Open No. 59-159290. In the figure, (1) is a processing laser beam;
(2) is a half mirror - (3) is a condenser lens, (4) is a half mirror - 1 (5) is transmitted through a half mirror (2) and a condenser lens (3), and is reflected by a half mirror (4). This is the processing surface onto which the processing laser beam (1) enters at a substantially right angle, and forms the upper surface of a processing table (6) that is movable in the direction of the incident axis (Z-axis) of the processing laser beam (1). (7) is the machined surface (5
). (8) is a half mirror (2) so that it is coaxial and confocal with the processing laser beam (1).
The detection laser beam (9) passes through the condenser lens (3), is reflected by the half mirror (4), and is irradiated onto the processing surface (5). ), (101 is the optical image of the detection laser beam (8) focused on the XY plane (7) -0υ scans the XY plane (7) A photoelectric conversion means as a light image detection means which receives the light image f1G and outputs it as an electric signal (15 is a light image from the photoelectric conversion means αD (binarization which converts the output of I) into a binary image circuit,
tiz is a maximum width detection circuit that detects the maximum width of a binarized image;
0 is a focus position detection circuit that detects the focal position of the detection laser beam (8) from the change in the maximum width of the binarized image when the processing table (6) is moved in the Z-axis direction. circuit(
12. The maximum width detection circuit f131 and the focus position detection circuit 041 constitute a focus position calculation means (1ω).

次に動作について説明する。先ず、加工テーブル(6)
が所定の初期位置にセットされ、この状態で一加工面(
5)のXY平面(7)上に検出用レーザ光(8)を結像
させその光像Q[)を得る。光電変換手段+111がx
Y平面(7)を走査し、2値化回路(櫻が更に各走査線
毎の光像QGの座標値としての2値化像に変換する。
Next, the operation will be explained. First, the processing table (6)
is set at a predetermined initial position, and in this state one machining surface (
The detection laser beam (8) is imaged on the XY plane (7) of 5) to obtain the optical image Q[). Photoelectric conversion means +111 is x
The Y plane (7) is scanned, and the binarization circuit (Sakura) further converts the optical image QG for each scanning line into a binarized image as coordinate values.

最大幅検出回路03は以上の2値化像から上記初期位置
における最大幅を検出する。焦点位置検出回路(141
は、以上の操作を加工テーブル(6)をZ軸方向に順次
移動させて行うことにより求まる2値化像の最大幅と加
工テーブル(6)の位置との関係特性からこの最大幅の
最小値を検出し、そのときの加工面(5)の位置を焦点
位置として出力する。
The maximum width detection circuit 03 detects the maximum width at the initial position from the above binarized image. Focus position detection circuit (141
is the minimum value of this maximum width based on the relationship between the maximum width of the binarized image found by sequentially moving the processing table (6) in the Z-axis direction and the position of the processing table (6). is detected, and the position of the processed surface (5) at that time is output as the focal position.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の焦点位置検出装置は、以上のように構成されてい
るので、本検出装置を動作させようとすると、加工テー
ブル(6)をZ軸方向部ち上下方向に移動制御する必要
がある。ところで、加工テーブル(6)は被加工物を載
せるものであるから一被加工物が大形もしくは重量物で
あると、加工テーブル(6)としてはそれより更に大き
なものが必要となる。
Since the conventional focus position detection device is configured as described above, in order to operate this detection device, it is necessary to control the movement of the processing table (6) in the Z-axis direction, that is, in the vertical direction. By the way, since the processing table (6) is used to place the workpiece, if the workpiece is large or heavy, an even larger processing table (6) is required.

従って、被加工物を上記のように想定すると、加工テー
ブル(6)が大型化し、それに伴いその移動制御のため
の機構が大形、高価になるという問題点があった。
Therefore, if the workpiece is assumed to be as described above, there is a problem that the processing table (6) becomes large and the mechanism for controlling its movement becomes large and expensive.

この発明は以上のような問題点を解消するためになされ
たもので、加工テーブルを移動制御することなく検出が
可能となるレーザ装置用焦点位置検出装置および焦点追
随機構を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a focus position detection device and a focus tracking mechanism for a laser device that enable detection without controlling the movement of a processing table. .

〔課題を解決するための手段1 この発明に係る焦点位置検出装置は、所定の検出用レー
ザ発生手段および光像検出手段と、更に、集光レンズを
その光軸の方向に移動させたときの上記光像検出手段の
出力変化から焦点位置を演算する焦点位置演算手段を備
えたものである。
[Means for Solving the Problems 1] A focal position detecting device according to the present invention includes a predetermined detection laser generating means, a light image detecting means, and a condenser lens that is moved in the direction of its optical axis. The apparatus is equipped with a focus position calculation means for calculating a focus position from a change in the output of the optical image detection means.

また、他のものは、上記光像検出手段の出力から焦点位
置に相当する値とのズレ量を検出しこのズレ量に応じて
集光レンズをその光軸の方向に移動制御する集光レンズ
移動制御手段を備えたものである。
Another type of condensing lens detects the amount of deviation from the output of the optical image detection means and a value corresponding to the focal point position, and controls the movement of the condensing lens in the direction of its optical axis in accordance with this amount of deviation. It is equipped with movement control means.

〔作用〕[Effect]

この発明においては、集光レンズをその初期位置から順
次移動させ、各位置における被照射物上の検出用レーザ
光による光像の反射光を受光し、上記集光レンズ位置に
対する受光出力の変化特性を求め、この特性から焦点位
置を演算する。
In this invention, the condensing lens is sequentially moved from its initial position, and the reflected light of the optical image by the detection laser beam on the object to be irradiated at each position is received, and the change characteristics of the received light output with respect to the condensing lens position. The focal position is calculated from this characteristic.

また、他のものでは、焦点位置からのズレ量を検出し、
そのズレ量が零になるよう、集光レンズがその光軸方向
に移動制御される。
In addition, other methods detect the amount of deviation from the focal position,
The condenser lens is controlled to move in the direction of its optical axis so that the amount of deviation becomes zero.

〔実施例〕〔Example〕

第1図はこの発明の一実施例におけるレーザ加工装置の
焦点位置検出装置を示す構成図である。
FIG. 1 is a configuration diagram showing a focal position detection device of a laser processing apparatus in an embodiment of the present invention.

図において、(1)〜(5) (8j〜(1りは従来の
場合と同一である。但し、集光レンズ(3)はその光軸
が加工面(5)と直角のZ軸の方向となるように、ハー
フミラ−(4)と加工面(5)との間に位置している。
In the figure, (1)-(5) It is located between the half mirror (4) and the processing surface (5) so that.

そして、この集光レンズ(3)は治具fleを介してZ
テーブル(1ηに取付けられZ軸の方向に移動可能とな
っている。
Then, this condensing lens (3) is
It is attached to the table (1η) and is movable in the Z-axis direction.

0秒は加工面(5)を有する被照射物としてのxY子テ
ーブル、被加工物をその上に載せるためのものである。
0 seconds is an xY child table as an object to be irradiated having a processing surface (5), on which the object to be processed is placed.

次に動作について説明する。先ず、集光レンズf31が
所定の初期位置にセットされ、この状態で。
Next, the operation will be explained. First, the condenser lens f31 is set at a predetermined initial position, and in this state.

加工面(5)上に検出用レーザ光(8)を結像させその
光像fillを得る。そして、加工面(5)からの反射
光は再び集光レンズ(3)を透過し、更に、ハーフミラ
−(4)を透過して光電変換手段Uυに受光される。焦
点位置演算手段四の動作は従来と同様で光電変換手段(
11Jの出力から上記初期位置における2値化像の最大
幅を検出する。この出力によりZテーブル(1旧こ信号
が送られ、Zテーブル(171は駆動されて集光レンズ
(3)を所定の距離だけ移動させる。この状態で、再び
一光電変換手段(111および焦点位置演算手段15)
(気より、2値化像の最大幅を求める。以上の操作を順
次繰り返すことにより、集光レンズ(3)の位置と2値
化像の最大幅との関係を求め、これから最大幅の最小値
を検出し、そのときの集光レンズ(3)′の位置を焦点
位置として出方する。
A detection laser beam (8) is focused on the processing surface (5) to obtain an optical image fill. Then, the reflected light from the processed surface (5) passes through the condensing lens (3) again, and further passes through the half mirror (4), and is received by the photoelectric conversion means Uυ. The operation of the focal position calculation means 4 is the same as the conventional one, and the photoelectric conversion means (
The maximum width of the binarized image at the initial position is detected from the output of 11J. This output sends a signal to the Z table (171), and the Z table (171) is driven to move the condensing lens (3) by a predetermined distance. In this state, the photoelectric conversion means (111 and focal position Calculation means 15)
(Make sure to find the maximum width of the binarized image. By repeating the above operations sequentially, find the relationship between the position of the condenser lens (3) and the maximum width of the binarized image, and from this, calculate the minimum width of the maximum width. The value is detected and the position of the condenser lens (3)' at that time is taken as the focal position.

従って、上記動作には加工テーブルであるXY子テーブ
ル1印の操作は何ら関与していない。即ち、この検出装
置にあっては、比較的小形軽量の集光レンズ(3)をZ
テーブル(1ηによって移動制御すれば足り、想定され
る被加工物を考慮して大形化仕勝ちな加工テーブル01
Oを移動制御する必要がないので、装置の小形、低廉を
図ることができる。
Therefore, the operation of the XY child table 1 mark, which is the processing table, is not involved in the above operation at all. That is, in this detection device, the relatively small and lightweight condensing lens (3) is
Table (machining table 01 that only needs to be controlled by 1η and is likely to be enlarged in consideration of the expected workpiece)
Since there is no need to control the movement of O, the device can be made smaller and less expensive.

第2図は関連する発明における一実施例を示すもので、
前述の発明による焦点位置検出装置を利用して自動焦点
追Pa1機構を構成するものである。
FIG. 2 shows an embodiment of the related invention.
An automatic focus tracking Pa1 mechanism is constructed using the focus position detection device according to the invention described above.

図において、+1+ +2+ +31 +51 (81
f国は第1図の場合と同一である。但し、加工用レーザ
光(1)は装置の防振ステージ0うに固定された加工用
レーザ発振器差から出射される。また、ハーフミラ−(
2)もアームCDを介して防振ステージOglに固定さ
れている。更に、集光レンズ(3)は筒部器にセットさ
れ回転可能なレボルバ−四を介してm R(24+の下
端に取付けられている。そして、鏡筒?41は、上下ス
ライド機構(至)およびその取付治具(至)を介して垂
直方向に移動可能なように防振ステージ(19に取付け
られている。物は検出用レーザ光(8)を出射し、その
加工面(5)からの反射光を受光しその出力から焦点位
置を検出する焦点検出センサーで、鏡筒(2Φに取付け
られ、その詳細は後述する。例は検出用レーザ光(8)
を加工用レーザ光(1)の光軸と同一の光軸から集光レ
ンズ(3)に入射させるように、鏡筒(241に取付け
られたハーフミラ−1■は焦点検出センサー(初の出力
信号ヲ上下スライド機構器に伝達するためのケーブル、
■はモニター光Gυを出射するモニターランプ、■はモ
ニター光Gl)を加工用レーザ光(1)と同軸で集光レ
ンズ(3)へ入射させるためのハーフミラ−で−モニタ
ーランプ側およびハーフミラ−(2)は共に鏡筒(2)
に取付けられている。詔は鏡筒(241の上端に取付け
られ、加工面(5)から反射したモニター光G11を検
出するモニターヘッド、(財)はケーブル器を介してモ
ニターヘッド(至)に接続されたカラーCRTである。
In the figure, +1+ +2+ +31 +51 (81
Country f is the same as in Figure 1. However, the processing laser beam (1) is emitted from a processing laser oscillator fixed to the vibration isolation stage 0 of the apparatus. Also, half mirror (
2) is also fixed to the vibration isolation stage Ogl via the arm CD. Furthermore, the condensing lens (3) is set in the cylinder and is attached to the lower end of the mR (24+) via a rotatable revolver. The object is attached to the vibration isolation stage (19) so as to be vertically movable via the mounting jig (to).The object emits a detection laser beam (8), and This is a focus detection sensor that receives the reflected light of the lens and detects the focal position from its output.It is attached to the lens barrel (2Φ, and its details will be described later.For example, the detection laser beam (8)
The half mirror 1 attached to the lens barrel (241) is connected to the focus detection sensor (the first output signal Cable for transmitting data to the vertical slide mechanism,
■ is a monitor lamp that emits the monitor light Gυ, ■ is a half mirror for making the monitor light Gl) incident on the condensing lens (3) coaxially with the processing laser beam (1) - on the monitor lamp side and half mirror ( 2) are both lens barrels (2)
installed on. Yoshi is a monitor head that is attached to the upper end of the lens barrel (241) and detects the monitor light G11 reflected from the processed surface (5), and the Foundation is a color CRT that is connected to the monitor head (to) via a cable device. be.

次に、焦点検出センサー罰の詳細を第3図について説明
する。図において、■は検出用レーザ光(8)を出射す
る検出用レーザ発生手段としての検出用レーザ発振器、
(資)はハーフミラ−1■は光像検出手段としての検出
用レーザ検知+7サー、CBlは焦点検出機構で、この
焦点検出機構柵と上下スライド機構□□□とで集光レン
ズ移動制御手段14■を構成する。
Next, details of the focus detection sensor punishment will be explained with reference to FIG. In the figure, ■ is a detection laser oscillator as a detection laser generation means that emits a detection laser beam (8);
The half mirror 1■ is a detection laser detection +7 sensor as a light image detection means, and CBl is a focus detection mechanism, and the focus detection mechanism fence and the vertical slide mechanism □□□ are used to control the movement of the condenser lens ■ Configure.

次に動作について説明する。加工用レーザ発振ラー■を
透過して集光レンズ(3)で集光されて加工面(5)に
照射される。一方、焦点検出センサー□内の検出用レー
ザ発振器(イ)から出射された検出用レーザ光(8)は
、ハーフミラー−を透過した後、ハーフミラ−□□□で
反射して下方へ向きを変え、ハーフミラ−(2)@を透
過し、集光レンズ(3)で集光されて加工面(5)上に
光像を形成する。そして、その反射光は再びハーフミラ
−[有](2)を透過し、ハーフミラ−■および(至)
でそれぞれ反射して検出用レーザ検知センサー■に至る
。この検出用レーザ検知センサー(至)は微小の検知素
子を平面上に多数集積させたもので、各素子の出方分布
から受光した検出用レーザ光を定量的に計量する。検出
用レーザ検知センサー国の出力は焦点検出機構■に出力
され、焦点検出機構■はその出力信号から、加工面(5
)が丁度焦点位置にある場合の光像に対する出力信号に
相当する予め設定された値とのズレ量を検出し、そのズ
レ量に対応する集光レンズ(3)の移動量を演算して当
該移動量に応じた信号を上下スライド機構(5)に送る
。このズレ量が零になった時点で上下スライド機構(至
)への信号も零となり、集光レンズ(3)が加工面(5
)に対してその焦点位置にセットされたことになる。
Next, the operation will be explained. The light passes through the processing laser oscillator (2), is focused by the condenser lens (3), and is irradiated onto the processing surface (5). On the other hand, the detection laser beam (8) emitted from the detection laser oscillator (A) in the focus detection sensor □ passes through the half mirror, is reflected by the half mirror □□□, and changes its direction downward. The light passes through the half mirror (2) and is focused by the condenser lens (3) to form an optical image on the processing surface (5). Then, the reflected light passes through the half mirror [Yes] (2) again, and the half mirror ■ and (To)
The light is reflected by each of them and reaches the detection laser detection sensor ■. This detection laser detection sensor has a large number of microscopic detection elements integrated on a flat surface, and quantitatively measures the detection laser light received from the output distribution of each element. The output of the laser detection sensor for detection is output to the focus detection mechanism ■, and the focus detection mechanism ■ detects the processing surface (5
) is exactly at the focal position, the amount of deviation from a preset value corresponding to the output signal for the optical image is detected, and the amount of movement of the condensing lens (3) corresponding to the amount of deviation is calculated. A signal corresponding to the amount of movement is sent to the vertical slide mechanism (5). When this amount of deviation becomes zero, the signal to the vertical slide mechanism (to) also becomes zero, and the condenser lens (3) moves to the processing surface (5).
) is set at that focal position.

また、モニターランプ■からのモニター光l31)は、
ハーフミラ−■で反射した後、集光レンズ(3)を経て
加工面(5)に照射され、その反射光はハーフミラ−[
有](2)および■を透過してモニターヘッド器に入力
される。従って1以上の焦点追ILの状況はカラーCR
TC341によってモニターすることができる。
In addition, the monitor light l31) from the monitor lamp ■ is
After being reflected by the half mirror ■, it passes through the condensing lens (3) and is irradiated onto the processing surface (5), and the reflected light is reflected by the half mirror [
Yes] (2) and (2) are passed through and input to the monitor head device. Therefore, the situation with focus tracking IL of 1 or more is color CR.
It can be monitored by TC341.

以上のように一一般に大形で重量物となる加工テーブル
OQは移動制御する必要がなく、小形、軽量の集光゛レ
ンズ(3)のみ移動制御すればよく、かつこの集光レン
ズ(3)は検出用レーザ発振器(至)、検出用レーザ検
知センサー啜および集光レンズ制御手段f4(Iと共に
共通の鏡筒QΦに取付けられ一体に構成廉 されているので、装置が小形、軽量、亭価となり、かつ
迅速な焦点追随が実現する。
As described above, there is no need to control the movement of the processing table OQ, which is generally large and heavy, and only the small and lightweight condensing lens (3) needs to be controlled; The detection laser oscillator (to), the detection laser detection sensor, and the condensing lens control means f4 (along with I) are attached to a common lens barrel QΦ and are integrated, so the device is small, lightweight, and inexpensive. Thus, rapid focus tracking is realized.

なお、上記各実施例における光像検出手段0D■は、い
ずれも加工面(5)からの反射光を集光レンズ(3)を
介して受光しているが、例えば、集光レンズ(3)と加
工面(5)との間にハーフミラ−を追加することにより
、上記反射光を集光レンズ(3)を介することなく受光
する構成としてもよい。
Note that the optical image detection means 0D■ in each of the above embodiments receives the reflected light from the processed surface (5) via the condenser lens (3). By adding a half mirror between the processing surface (5) and the processing surface (5), a configuration may be adopted in which the reflected light is received without passing through the condensing lens (3).

また、上記各実施例はいずれもレーザ加工装置に適用し
た場合について説明したが、これら発明はレーザ測定装
置等レーザ光を用いる他のシステムにも適用することが
できる。
Moreover, although each of the above embodiments has been described with reference to the case where it is applied to a laser processing device, these inventions can also be applied to other systems that use laser light, such as a laser measurement device.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明は、集光レンズをその光軸の方
向に移動させたときの光像検出手段の出力変化から焦点
位置を演算するようにしたので一比較的小形、軽量の集
光レンズを移動制御すれば足り、一般に大形、重量物と
なる加工テーブルの移動制御は不要となり、検出装置が
小形、軽量、安価となる。
As described above, the present invention calculates the focal position from the change in the output of the optical image detection means when the condensing lens is moved in the direction of its optical axis, so it is relatively small and lightweight. It is sufficient to control the movement of the lens, and there is no need to control the movement of the processing table, which is generally large and heavy, making the detection device small, lightweight, and inexpensive.

また、光像検出手段の出力から焦点位置とのズレ量を検
出し、そのズレ量が零になるよう、集光レンズをその光
軸の方向に移動制御するようにしたので一機構が小形−
軽量、安価となり、かつ迅速な焦点追随が実現できる。
In addition, the amount of deviation from the focal point position is detected from the output of the optical image detection means, and the movement of the condensing lens is controlled in the direction of its optical axis so that the amount of deviation becomes zero, making the mechanism compact.
It is lightweight, inexpensive, and can achieve rapid focus tracking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例におけるレーザ加工装置用
焦点位置検出装置を示す構成図、第2図は関連する他の
発明の一実施例におけるレーザ加工装置用焦点追随機構
を示す構成図、第3図は第2図の焦点検出センサーの詳
細を示す構成図、第4図は従来のレーザ加工装置用焦点
位置検出装置を示す構成図である。 図において、(1)は加工用レーザ光−(3)は集光レ
ンズ、(5)は被照射物としての加工面、(8)は検出
用レーザ光、(9)(至)は検出用レーザ発生手段とし
ての検出用レーザ発振器、n1lBは光像、(lυは光
像検出手段としての光電変換手段、(19は焦点位置演
算手段、翼は光像検出手段としての検出用レーザ検知セ
ンサー、(4Gは集光レンズ移動制御手段である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a configuration diagram showing a focus position detection device for a laser processing device in an embodiment of the present invention, FIG. 2 is a configuration diagram showing a focus tracking mechanism for a laser processing device in an embodiment of another related invention, FIG. 3 is a block diagram showing details of the focus detection sensor shown in FIG. 2, and FIG. 4 is a block diagram showing a conventional focus position detection device for a laser processing apparatus. In the figure, (1) is the laser beam for processing, (3) is the condenser lens, (5) is the processed surface as the irradiated object, (8) is the laser beam for detection, and (9) (to) is for detection. A detection laser oscillator as a laser generation means, n1lB a light image, (lυ a photoelectric conversion means as a light image detection means, 19 a focal position calculation means, a blade a detection laser detection sensor as a light image detection means, (4G is a condensing lens movement control means. The same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1、レーザ光を集光レンズを介して被照射物に集光させ
るレーザ装置の上記レーザ光の焦点位置を検出するもの
において、上記レーザ光の光軸と同一の光軸から上記集
光レンズを介して上記被照射物に集光させる検出用レー
ザ光を出射する検出用レーザ発生手段と、上記被照射物
上に結像された上記検出用レーザ光による光像の反射光
を受光する光像検出手段と、上記集光レンズをその光軸
の方向に移動させたときの上記光像検出手段の出力変化
から上記焦点位置を演算する焦点位置演算手段とを備え
たことを特徴とするレーザ装置用焦点位置検出装置。 2、レーザ光を集光レンズを介して、被照射物に集光さ
せるレーザ装置の焦点追随機構において、上記レーザ光
の光軸と同一の光軸から上記集光レンズを介して上記被
照射物に集光させる検出用レーザ光を出射する検出用レ
ーザ発生手段と、上記被照射物上に結像された上記検出
用レーザ光による光像の反射光を受光する光像検出手段
と、この光像検出手段の出力値と焦点位置での光像に対
する出力値に相当するものとして予め設定された値との
ズレ量を検出し、このズレ量が零となるように上記集光
レンズをその光軸の方向に移動制御する集光レンズ移動
制御手段とを備えたことを特徴とするレーザ装置用焦点
追随機構。
[Claims] 1. In a device for detecting the focal position of the laser beam of a laser device that focuses the laser beam on an object to be irradiated via a condensing lens, the optical axis is the same as the optical axis of the laser beam. a detection laser generating means for emitting a detection laser beam from which the detection laser beam is focused on the irradiated object via the condensing lens; and reflection of a light image formed on the irradiation object by the detection laser beam. A light image detection means for receiving light; and a focus position calculation means for calculating the focus position from a change in the output of the light image detection means when the condenser lens is moved in the direction of its optical axis. A focal position detection device for a laser device, characterized by: 2. In a focus tracking mechanism of a laser device that focuses a laser beam on an object to be irradiated through a condensing lens, the object to be irradiated is focused from the same optical axis as the optical axis of the laser beam through the condensing lens. a detection laser generating means for emitting a detection laser beam focused on the object; a light image detection means for receiving a reflected light of a light image of the detection laser beam formed on the irradiated object; The amount of deviation between the output value of the image detection means and a preset value corresponding to the output value for the optical image at the focal position is detected, and the condensing lens is adjusted so that the amount of deviation becomes zero. A focus tracking mechanism for a laser device, comprising a condensing lens movement control means for controlling movement in an axial direction.
JP63168423A 1988-07-06 1988-07-06 Focal position detecting device and focus follow-up mechanism for laser device Pending JPH0220679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63168423A JPH0220679A (en) 1988-07-06 1988-07-06 Focal position detecting device and focus follow-up mechanism for laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63168423A JPH0220679A (en) 1988-07-06 1988-07-06 Focal position detecting device and focus follow-up mechanism for laser device

Publications (1)

Publication Number Publication Date
JPH0220679A true JPH0220679A (en) 1990-01-24

Family

ID=15867849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63168423A Pending JPH0220679A (en) 1988-07-06 1988-07-06 Focal position detecting device and focus follow-up mechanism for laser device

Country Status (1)

Country Link
JP (1) JPH0220679A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040044696A (en) * 2002-11-21 2004-05-31 오토윈주식회사 Automated opening/closing device of projection window by remote controllable method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040044696A (en) * 2002-11-21 2004-05-31 오토윈주식회사 Automated opening/closing device of projection window by remote controllable method

Similar Documents

Publication Publication Date Title
US6856381B2 (en) Method for carrying out the non-contact measurement of geometries of objects
CN107765426B (en) Self-focusing laser scanning projection device based on symmetrical out-of-focus double detectors
JP2004519697A (en) Optical ranging device
JPS59164973A (en) Pair type measuring head for robot
JPS6383886A (en) Bar code detector
JP3294985B2 (en) Surface curvature measurement device
JP2857754B2 (en) Auto-focusing device using double reflection
JPH0220679A (en) Focal position detecting device and focus follow-up mechanism for laser device
JP2000334587A (en) Device for detecting welding state of laser beam welding
JPS60117102A (en) Welding-seam profile-detecting apparatus
JP2003035510A (en) Position detector
US6894271B2 (en) Method for operating a positioning apparatus, and scanning microscope
US4831272A (en) Apparatus for aligning a reticle mark and substrate mark
JP2828145B2 (en) Optical section microscope apparatus and method for aligning optical means thereof
JPH08178623A (en) Optical measuring device
JP2019163946A (en) Noncontact surface profile measurement device
CN220178394U (en) Focusing device
JP2001304833A (en) Optical lever type inclination detecting apparatus
JPH08105721A (en) Method and apparatus for measuring distance
KR100190688B1 (en) Camera focus controller by using the laser beam
JPH0823484B2 (en) Device for orienting, inspecting and / or measuring two-dimensional objects
JP2000162307A (en) Laser tracking apparatus for locating position of reactor vessel-inspecting robot
US10656402B2 (en) Three-dimensional infrared imaging of surfaces utilizing laser displacement sensors
JPH04113305A (en) Focusing device
JPH075032A (en) Estimation apparatus for semiconductor laser