JPH02206170A - Hot electron transistor - Google Patents

Hot electron transistor

Info

Publication number
JPH02206170A
JPH02206170A JP2696489A JP2696489A JPH02206170A JP H02206170 A JPH02206170 A JP H02206170A JP 2696489 A JP2696489 A JP 2696489A JP 2696489 A JP2696489 A JP 2696489A JP H02206170 A JPH02206170 A JP H02206170A
Authority
JP
Japan
Prior art keywords
layer
emitter
well
barrier layer
negative resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2696489A
Other languages
Japanese (ja)
Inventor
Akira Uchida
暁 内田
Shinji Kobayashi
信治 小林
Hiromi Kamata
鎌田 浩実
Takeshi Yagihara
剛 八木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2696489A priority Critical patent/JPH02206170A/en
Publication of JPH02206170A publication Critical patent/JPH02206170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain IC-VBE characteristics not presenting negative resistance by providing a resonance tunnel having a well with a specified thickness while forming the interface so as to have a low degree of flatness on the level of atomic layer. CONSTITUTION:An emitter barrier layer 6 is formed between a base layer 5a and an emitter layer 7, and a resonance tunnel is provided in the emitter barrier layer 6. The resonance tunnel has a well with a thickness of 20-35Angstrom . During growth of the well, temperature of a semi-insulative substrate 1 is held low at about 400 deg.C so that flatness of the interface on the level of atomic layer becomes of a low degree. If the well is narrower than 20Angstrom , it will not function as a quantum well. If it is wider than 35Angstrom , negative resistance will be presented. According to this arrangement, IC-VBE characteristics not presenting negative resistance can be obtained while a resonance tunnel structure is used, namely, while a current density is kept high.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ホットエレクトロントランジスタ(Hot 
electron transistor ・・・以下
HETという)の電流密度の向上をはかっなHE ’f
”に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a hot electron transistor (Hot
We aim to improve the current density of electron transistor (hereinafter referred to as HET).
”Regarding.

〈従来の技術〉 第1図は従来のHB Tの構成図を示すものである。<Conventional technology> FIG. 1 shows a configuration diagram of a conventional HBT.

図において1は半絶縁性InP基板であり、2a。In the figure, 1 is a semi-insulating InP substrate, and 2a.

2b、2cはn+−InGaAsからなるコンタクト層
、3aはコレクタ層、3bはコレクタ電極。
2b and 2c are contact layers made of n+-InGaAs, 3a is a collector layer, and 3b is a collector electrode.

4はInAlAsからなるコレクタバリア層、5aはn
−1nGaAsからなるベース層、5bはベース電極、
6はTnA/Asからなるエミッタバリア層、7はn−
InGaAsからなるエミッタ層28はエミッタ電極で
ある。なお、コレクタベース間のコレクタバリア層は1
500八程度。
4 is a collector barrier layer made of InAlAs, and 5a is n
- a base layer made of 1nGaAs; 5b is a base electrode;
6 is an emitter barrier layer made of TnA/As, and 7 is an n-
The emitter layer 28 made of InGaAs is an emitter electrode. Note that the collector barrier layer between the collector base is 1
About 5008.

ベース−エミッタ間のエミッタバリア層は150八程度
、ベース層の厚みは1000八程度に例えば分子線結晶
成長装置<MBE)を用いて積層される。
The emitter barrier layer between the base and the emitter is about 1,508 mm thick, and the base layer is about 1,000 mm thick using, for example, a molecular beam crystal growth apparatus (MBE).

第3図は上記HETのエネルギーバンド構成図を示すも
のである。図においてベース、エミッタ層は共にGaA
sであるが、この間にバリア層として150A程度の極
めて薄いInAlAs層が挿入されている。このため、
エミッタからベース領域に入射される電子は、InGa
AsとInAl A sのエネルギー差0.6eV以上
のエネルギをもって入射する。このことは電子が極めて
高速に走行している事を示し、100OA程度の厚さの
ベース層をO,lps以下で通過することになり1通常
のバイポーラトランジスタに比較して極めて高速で動作
することが可能である。
FIG. 3 shows an energy band configuration diagram of the above-mentioned HET. In the figure, both the base and emitter layers are GaA.
However, an extremely thin InAlAs layer of about 150 Å is inserted between these layers as a barrier layer. For this reason,
Electrons entering the base region from the emitter are formed by InGa
The energy is incident with an energy difference of 0.6 eV or more between As and InAl As. This indicates that electrons are traveling at extremely high speeds, passing through the base layer with a thickness of about 100 OA in less than O,lps.1This means that the electrons operate at extremely high speeds compared to normal bipolar transistors. is possible.

第4図はこの様なHETのICVBE特性を示すもので
ある。
FIG. 4 shows the ICVBE characteristics of such a HET.

しかしながら、トンネル電流は電流密度があまり大きな
ものではない<10’A/cm2以下)のでデバイス化
したときの高速動作は困難である。
However, since the current density of the tunnel current is not very large (<10'A/cm2 or less), high-speed operation is difficult when it is made into a device.

この様な欠点を解決するため第5図に示す様にエミッタ
バリア層内に量子井戸(例えばI nGaAs  Al
As系の場合エミッタバリア層全体の厚さを100〜1
10八程度とすると量子井戸の厚さは40〜50八程度
、GaAs−AlAs系の場合エミッタバリア層全体の
厚さを90〜130八程度とすると量子井戸の厚さは5
0〜80八程度の厚さ)を形成することにより、エミッ
タバリアを共鳴トンネルバリアにして透過確率を向上さ
せ1電流密度を〜105A/cm2程度まで向上出来る
様にした共鳴トンネル型)(ET(以下、RHE Tと
いう)が知られている。なお、量子井戸を形成する際の
GaAs基板1の温度は550〜700℃程度に加熱す
るが、基板の温度管理は界面の平坦性の向上に重要な要
素となる。
In order to solve this problem, quantum wells (for example, InGaAsAl) are formed in the emitter barrier layer as shown in FIG.
In the case of As-based, the total thickness of the emitter barrier layer is 100 to 1
If the thickness of the quantum well is about 108, the thickness of the quantum well is about 40 to 508. In the case of GaAs-AlAs, if the thickness of the entire emitter barrier layer is about 90 to 1308, the thickness of the quantum well is about 5.
By forming the emitter barrier into a resonant tunnel barrier (with a thickness of approximately 0 to 80 mm), the transmission probability is improved and the current density can be increased to approximately 105 A/cm2 (resonant tunnel type) (ET ( (hereinafter referred to as RHET) is known.The temperature of the GaAs substrate 1 when forming the quantum well is heated to approximately 550 to 700°C, and temperature control of the substrate is important for improving the flatness of the interface. It becomes an element.

〈発明が解決しようとする課題〉 しかしながら、RHETは第6図に示す様にICVBE
特性が負性抵抗を示す様になり、−船釣な論理集積IC
を形成するのが難しいという問題があった。
<Problems to be solved by the invention> However, as shown in Figure 6, RHET
The characteristics now show negative resistance, making it a logic integrated IC that is suitable for boat fishing.
The problem was that it was difficult to form.

本発明は上記従来技術の問題を解決するためになされた
もので、電流密度はRHET並でIc−VBE特性の改
善をはかったHETを実現することを目的とする。
The present invention has been made to solve the problems of the prior art described above, and aims to realize a HET that has a current density comparable to that of a RHET and has improved Ic-VBE characteristics.

く課題を解決するための手段〉 上記従来技術の問題を解決する為の本発明の構成は、コ
レクタ層とベース層の間にコレクタバリア層が、ベース
層とエミッタ層の間にエミッタバリア層が形成され、前
記エミッタバリア層に共鳴トンネルを有するHETにお
いて、前記共鳴トンネルの井戸幅を20〜35Aの厚さ
にするとともに界面の原子層レベルでの平坦性を粗く形
成したことを特徴とするものである。
Means for Solving the Problems> In order to solve the problems of the prior art described above, the present invention has a structure in which a collector barrier layer is provided between the collector layer and the base layer, and an emitter barrier layer is provided between the base layer and the emitter layer. HET having a resonant tunnel formed in the emitter barrier layer, characterized in that the well width of the resonant tunnel is set to a thickness of 20 to 35 A, and the interface is formed with rough flatness at the atomic layer level. It is.

〈実施例〉 以下9図面に従い本発明を説明する。第1図は本発明の
HETの一実施例の構成を示すものであり1図面上は従
来例と同様である。
<Example> The present invention will be described below with reference to nine drawings. FIG. 1 shows the configuration of an embodiment of the HET of the present invention, and the drawing is similar to the conventional example.

本発明ではエミッタバリア層6に形成する井戸幅を20
〜35八に形成するとともに、その井戸を成長させる際
の半絶縁性基板1の温度を400°C程度に維持する。
In the present invention, the width of the well formed in the emitter barrier layer 6 is 20 mm.
The temperature of the semi-insulating substrate 1 during growth of the well is maintained at about 400°C.

このように成長温度を従来より低温にする事により界面
の原子層レベルでの平坦度を粗くする事が出来る。
In this way, by lowering the growth temperature to a lower temperature than before, the flatness of the interface at the atomic layer level can be made rougher.

なお、量子井戸は20八より更に狭い場合はもはや量子
井戸として機能しなくなり、また、35ムより広くなる
と負性抵抗特性か現れる。
Note that if the quantum well is narrower than 208 µm, it no longer functions as a quantum well, and if it is wider than 35 µm, a negative resistance characteristic appears.

上記の様に井戸幅を狭くする事により第1共鳴準位が上
昇するとともにP/V比(ピーク/バレー比・・・第5
図に示すイ部と口部の比)が小さく(バレーでの電流値
が上昇する)なる。また、界面の平坦度が荒いと共鳴準
位に“ぶれ″が生じP/■比が低下する。
As mentioned above, by narrowing the well width, the first resonance level increases and the P/V ratio (peak/valley ratio...5
The ratio of the A part to the mouth part shown in the figure) becomes smaller (the current value in the valley increases). Furthermore, if the flatness of the interface is rough, "shaking" occurs in the resonance level, resulting in a decrease in the P/■ ratio.

なお、HBTの材質はI nGaAs−Aj7As系で
もGaAs−AlGaAs系でもよい。
The material of the HBT may be InGaAs-Aj7As or GaAs-AlGaAs.

第2図は本発明を用いて製作したHETのIcVBE特
性を示すもので1図によれば負性抵抗特性が改善されて
いる事が分る。
FIG. 2 shows the IcVBE characteristics of the HET manufactured using the present invention, and FIG. 1 shows that the negative resistance characteristics are improved.

〈発明の効果〉 以上実施例とともに具体的に説明した様に本発明によれ
ば、共鳴トンネルの井戸幅を20〜35への厚さにする
とともに界面の原子層レベルでの平坦性を荒く形成した
ので共鳴トンネリング構造でありながら(即ち、電流密
度を大きくしなまま)そのJ−V特性は負性抵抗を示さ
ないものとなる。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, the well width of the resonant tunnel can be set to a thickness of 20 to 35 mm, and the flatness of the interface at the atomic layer level can be made rough. Therefore, although it has a resonant tunneling structure (that is, the current density remains high), its J-V characteristic does not exhibit negative resistance.

従って高速で、かつ、設計がし易く、制御性のよいHE
Tを実現する事が出来る。。
Therefore, HE is fast, easy to design, and has good controllability.
It is possible to achieve T. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明および従来のNETの構成図。 第2図は本発明を用いて製作したH E TのIc−■
BE特性図、第3図は従来のHE ’I’のエネルギバ
ンド構成図、第4図は従来のHE ’T”の1cvBE
特性図、第5図は従来のRHE Tのエネルギーバンド
構成図第6図は従来のRHETのIcVBE特性図であ
る。 1・・・半絶縁性GaAs基板、2a、2b、2C・・
・コンタクト層、3a・・・コレクタ層、3b・・・コ
レクタ電極、4・・・コレクタバリア層、5a、・・・
ベース層、6・・・エミッタバリア層、7・・・エミッ
タ層。
FIG. 1 is a configuration diagram of the present invention and a conventional NET. Figure 2 shows the HET Ic-■ manufactured using the present invention.
BE characteristic diagram, Figure 3 is the energy band configuration diagram of the conventional HE 'I', Figure 4 is the 1cvBE of the conventional HE 'T'
FIG. 5 is an energy band configuration diagram of a conventional RHET, and FIG. 6 is an IcVBE characteristic diagram of a conventional RHET. 1... Semi-insulating GaAs substrate, 2a, 2b, 2C...
- Contact layer, 3a... Collector layer, 3b... Collector electrode, 4... Collector barrier layer, 5a,...
Base layer, 6... Emitter barrier layer, 7... Emitter layer.

Claims (1)

【特許請求の範囲】[Claims] コレクタ層とベース層の間にコレクタバリア層が、ベー
ス層とエミッタ層の間にエミッタバリア層が形成され、
前記エミッタバリア層に共鳴トンネルを有するホットエ
レクトロントランジスタにおいて、前記共鳴トンネルの
井戸幅を20〜35Åの厚さにするとともに界面の原子
層レベルでの平坦性を粗く形成したことを特徴とするホ
ットエレクトロントランジスタ。
A collector barrier layer is formed between the collector layer and the base layer, an emitter barrier layer is formed between the base layer and the emitter layer,
In the hot electron transistor having a resonant tunnel in the emitter barrier layer, the well width of the resonant tunnel is set to a thickness of 20 to 35 Å, and the flatness of the interface at the atomic layer level is made rough. transistor.
JP2696489A 1989-02-06 1989-02-06 Hot electron transistor Pending JPH02206170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2696489A JPH02206170A (en) 1989-02-06 1989-02-06 Hot electron transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2696489A JPH02206170A (en) 1989-02-06 1989-02-06 Hot electron transistor

Publications (1)

Publication Number Publication Date
JPH02206170A true JPH02206170A (en) 1990-08-15

Family

ID=12207842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2696489A Pending JPH02206170A (en) 1989-02-06 1989-02-06 Hot electron transistor

Country Status (1)

Country Link
JP (1) JPH02206170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825048A (en) * 1995-06-21 1998-10-20 Nippon Telegraph And Telephone Corporation Semiconductor functional device and electronic circuit provided with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825048A (en) * 1995-06-21 1998-10-20 Nippon Telegraph And Telephone Corporation Semiconductor functional device and electronic circuit provided with the same

Similar Documents

Publication Publication Date Title
US5907159A (en) Hot electron device and a resonant tunneling hot electron device
JPH021138A (en) Semiconductor device
JPH02206170A (en) Hot electron transistor
JPH05283673A (en) Resonance tunnel semiconductor device
JPH07273311A (en) Band versus band resonance tunnelling transistor
JP2734260B2 (en) Tunnel transistor
JP3157098B2 (en) Resonant tunneling hot electron transistor
JPH0388369A (en) Heterostructure semiconductor device
JP2808145B2 (en) Semiconductor device
JP3189878B2 (en) Bipolar transistor
JP2535565B2 (en) Semiconductor device
JP2592302B2 (en) Quantum effect semiconductor device
JP3149685B2 (en) Resonant tunneling diode with reduced valley current
JP3263869B2 (en) Resonant tunnel type hot electron transistor
JP2771214B2 (en) Semiconductor device
JPH05275730A (en) Heterojunction-type phototransistor
US5436469A (en) Band minima transistor
JP3083683B2 (en) Semiconductor device
JPH02206168A (en) Hot electron transistor
JPS62299073A (en) Semiconductor device
JP3789566B2 (en) Resonant tunneling diode
JPS61272969A (en) Structure of hot-electron transistor
JPH02284431A (en) Heterojunction bipolar transistor
JPH02206169A (en) Hot electron transistor
JPH0812914B2 (en) Semiconductor device