JPH02205716A - Magnetoelectric transducer device - Google Patents

Magnetoelectric transducer device

Info

Publication number
JPH02205716A
JPH02205716A JP2535589A JP2535589A JPH02205716A JP H02205716 A JPH02205716 A JP H02205716A JP 2535589 A JP2535589 A JP 2535589A JP 2535589 A JP2535589 A JP 2535589A JP H02205716 A JPH02205716 A JP H02205716A
Authority
JP
Japan
Prior art keywords
sensor
magnetic
output signal
period
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2535589A
Other languages
Japanese (ja)
Inventor
Katsuto Nagano
克人 長野
Mitsuru Kinouchi
充 木ノ内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2535589A priority Critical patent/JPH02205716A/en
Publication of JPH02205716A publication Critical patent/JPH02205716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To make it possible to obtain an output signal without thermal effect by providing a second sensor part which is connected to a first sensor part in series in a parallel pattern at an approximate interval of (1/8).(2n+1)lambda. CONSTITUTION:This device has a first sensor 4a. In the sensor 4a, two magnetoresistance effect elements 3a and 3b are connected in series in a parallel pattern at an approximate interval (1/4).(2n+1)lambda(n=0, + or -1, + or -2,...) with respect to the period l of a repeating magnetic signal which acts on the magnetic elements. The elements have the anisotropic effect of magnetic resistance and have the same magnetism sensitivity direction. A second sensor part 4b is also provided. In the sensor part 4b, two magnetoresistance effect elements 3c and 3d having the same constitution as those of the first sensor part 4a are connected in series in a parallel pattern at an interval of (1/8).(2n+1)lambda with respect to the first sensor 4a. In this constitution, the output signal from the connecting point between the sensor parts 4a and 4b has the period which is 1/4 the period and the frequency of four times. Since the sensor parts 4a and 4b are operated in a thermally differential state, the output which is not affected by heat is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁電変換装置に関し、ざらに詳しくは、繰り返
し磁気信号を精度良く検出する検出手段としての磁電変
換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetoelectric transducer, and more particularly, to a magnetoelectric transducer as a detection means for detecting repeated magnetic signals with high accuracy.

(従来の技術) 例えば、モータやターンテーブルの如き回転体等の回転
制御を行うために用いられる磁電変換装置として第7図
に示すものが知られている(特公昭54−41335号
参照)。
(Prior Art) For example, a magnetoelectric conversion device shown in FIG. 7 is known as a magnetoelectric conversion device used to control the rotation of a rotating body such as a motor or a turntable (see Japanese Patent Publication No. 41335/1983).

同図は、磁電変換装置30及びこの磁電変換装置30に
作用する繰り返し磁気信号源としての磁石帯31を概念
的に示すものである。
This figure conceptually shows a magnetoelectric transducer 30 and a magnet strip 31 as a source of repetitive magnetic signals acting on the magnetoelectric transducer 30.

磁電変換装置30は、磁気抵抗の異方性効果を有する第
1.第2の磁気抵抗効果素子32a。
The magnetoelectric transducer 30 has a first magnetoelectric transducer having an anisotropic effect of magnetoresistance. Second magnetoresistive element 32a.

32bを、両者の感磁方向が同一で、かつ、磁石帯31
のN、S磁極の間隔(周期λ)に対し、λ/4の間隔で
平行配置すると共に第1.第2の磁気抵抗効果素子32
a、32bを直列接続して、その中点から引き出した端
子33を出力端子として、また、各磁気抵抗効果素子3
2a、32bのそれぞれの他方の端子34.35を電源
供給端子、接地端子として用いるようになっている。
32b, the magnetic sensing direction of both is the same, and the magnetic strip 31
The N and S magnetic poles are arranged parallel to each other at an interval of λ/4 (period λ), and the first . Second magnetoresistive element 32
a and 32b are connected in series, and the terminal 33 drawn out from the midpoint is used as an output terminal, and each magnetoresistive element 3
The other terminals 34 and 35 of each of 2a and 32b are used as a power supply terminal and a ground terminal.

この磁電変換装置30において、第1の磁気抵抗効果素
子32aが磁石帯31のN極に対向する状態でN極から
S極に向かう磁束φが作用するとき、第1の磁気抵抗効
果素子32aは感磁してその磁気抵抗の変化は最大とな
り、また、このとき第2の磁気抵抗効果素子32bは磁
束φの水平方向成分により飽和して磁気抵抗の変化は最
小となる。
In this magnetoelectric transducer 30, when the first magnetoresistive element 32a faces the north pole of the magnet strip 31 and a magnetic flux φ from the north pole to the south pole acts on the first magnetoresistive element 32a, the first magnetoresistive element 32a The magnetic field is sensed, and the change in magnetic resistance becomes maximum, and at this time, the second magnetoresistive element 32b is saturated by the horizontal component of the magnetic flux φ, and the change in magnetic resistance becomes minimum.

この結果、両磁気抵抗効果素子32a、32bの中点か
ら引き出された端子33から出力される出力信号(電圧
)voutは、これらにより分圧され第7図に示す如く
最小となる。
As a result, the output signal (voltage) vout output from the terminal 33 drawn out from the midpoint of both magnetoresistive elements 32a, 32b is divided by these and becomes the minimum as shown in FIG.

次に、磁石帯31が矢印方向にλ/4だけ移動したとき
には、第1.第2の磁気抵抗効果素子32a、32bの
状態は上述した場合と逆になり、このとき、端子33か
らの出力電圧youtは最大となる。
Next, when the magnetic band 31 moves by λ/4 in the direction of the arrow, the first . The states of the second magnetoresistive elements 32a and 32b are opposite to those described above, and at this time, the output voltage yout from the terminal 33 becomes maximum.

このような動作の基に、出力信号youtはλ/4毎に
最小、最大値が対称的に反転する正弦波状になり、これ
により、磁石帯31の周期λに対し、1/2の周期、即
ら2倍の周波数を有する出力信号voutを取出し回転
体の回転制御等に用いることができる。
Based on such an operation, the output signal yout becomes a sinusoidal wave whose minimum and maximum values are symmetrically inverted every λ/4, so that with respect to the period λ of the magnetic band 31, the output signal yout has a period of 1/2, That is, the output signal vout having twice the frequency can be extracted and used for controlling the rotation of the rotating body.

しかしながら、この磁電変換装置30の場合には、磁石
帯31の周期λの1/2の周期、即ち、2倍の周波数の
出力信号VoutLか得ることができないため、例えば
、比較的回転数が遅く、かつ、小型のターンテーブルの
如き回転体の外周にvi1石帯31を設けこのriii
電変換装@30でその回転状態の検出を行うような場合
、高精度の位置検出を行うことが困難となり、正確な回
転制御を行うことができないという問題があった。
However, in the case of this magnetoelectric converter 30, it is not possible to obtain an output signal VoutL with a period that is 1/2 of the period λ of the magnet band 31, that is, twice the frequency, and therefore, for example, the rotation speed is relatively low. , and a vi1 stone band 31 is provided on the outer periphery of a rotating body such as a small turntable.
When detecting the rotational state using the electrical conversion device @30, there is a problem in that it is difficult to perform highly accurate position detection and accurate rotation control cannot be performed.

(発明が解決しようとする課題) 本発明は、上記事情に鑑みてなされたものであり、従来
例の場合よりもざらに2倍の周波数を有する出力信号を
得ることができると共に、使用環境の熱的影響を受けな
い磁電変換装置を提供することを目的とするものである
(Problems to be Solved by the Invention) The present invention has been made in view of the above circumstances, and it is possible to obtain an output signal having a frequency roughly twice that of the conventional example, and also to improve the usage environment. The purpose of this invention is to provide a magnetoelectric conversion device that is not affected by heat.

[発明の構成コ (課題を解決す−るための手段) 本発明の磁電変換装置は、磁気抵抗の異方性効果を有し
、かつ、感磁方向が同一の2個の磁気抵抗効果素子をこ
れらに作用する繰り返し磁気信号の周期λに対し、 略(1/4)  (2n+1>λ (rl=O,±1゜
±2・・・)の間隔をもって平行配置に直列接続した第
1のセンサ部と、この第1のセンサ部と同一構成の2個
の磁気抵抗効果素子を有し、これらの第1のセンサ部に
対し、 略(1/8)   (2n+1 )λの間隔をもって平
行配置に直列接続した第2のセンサ部とを具備し、前記
両センサ部の接続点を出力端子として用いるものである
[Configuration of the Invention (Means for Solving the Problems) The magnetoelectric transducer of the present invention has two magnetoresistive effect elements that have an anisotropic effect of magnetoresistive force and have the same magnetic sensing direction. With respect to the period λ of the repetitive magnetic signal acting on these, the first It has a sensor section and two magnetoresistive elements having the same configuration as the first sensor section, and is arranged in parallel with the first sensor section at an interval of approximately (1/8) (2n+1)λ. and a second sensor section connected in series to the sensor section, and the connection point between both the sensor sections is used as an output terminal.

(作 用) 以下に上記構成の装置の作用を説明する。(for production) The operation of the apparatus having the above configuration will be explained below.

この装置によれば、周期λの繰り返し磁気信号が第1.
第2のセンサ部に作用するとき、両センサ部の2個ずつ
の磁気抵抗素子は上述した感磁方向及び間隔設定により
、λ/8毎に、必ずいずれか1個の磁気抵抗効果素子の
磁気抵抗の変化率が最大で、残りの3個の磁気抵抗効果
素子の変化率が最小となり、この結果、両センサ部の接
続点からの出力信号はその周期が前記周期λの1/4と
なり周波数は4倍となる。
According to this device, a repetitive magnetic signal with a period λ is transmitted to the first .
When acting on the second sensor section, the two magnetoresistive elements of both sensor sections are always configured to detect the magnetic field of one of the magnetoresistive elements every λ/8 due to the magnetic sensing direction and spacing settings described above. The rate of change of resistance is the maximum, and the rate of change of the remaining three magnetoresistive elements is the minimum. As a result, the period of the output signal from the connection point of both sensor sections is 1/4 of the period λ, and the frequency is is four times as large.

また、両センサ部は熱的に差動状態に動作するので、出
力信号は熱の影響を受けない。
Further, since both sensor sections operate in a thermally differential state, the output signal is not affected by heat.

(実施例) 以下に本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

第1図の示す磁電変換装@1は、ガラス製等の基板2の
表面に、ニッケルコバルトの如き強磁性体製で磁気抵抗
の異方性効果を有する2個の磁気抵抗効果素子3a、3
bからなる第1のセンサ部4aと、これら両磁気抵抗効
果素子3a、3bと同材質で同様な効果を発揮する2個
の磁気抵抗効果素子3c、3dかうなる第2のセンサ部
4bとを直列接続の状態で設けると共に、第1図におい
て左側に位置する磁気抵抗効果素子3aの端部を直流電
源5用の入力端子6aとして、また、右側に位置する磁
気抵抗効果素子3dの端部を接地端子6bとして、ざら
に、中央部で隣り合う磁気抵抗効果素子3b、3cの接
続点を出力信号を取出す出力端子6Cとして用いるよう
になっている。
The magnetoelectric transducer @1 shown in FIG. 1 includes two magnetoresistive elements 3a, 3 made of a ferromagnetic material such as nickel cobalt and having an anisotropic effect of magnetoresistive force on the surface of a substrate 2 made of glass or the like.
A first sensor section 4a consisting of a magnetoresistive element 4b, and a second sensor section 4b consisting of two magnetoresistive elements 3c and 3d, which are made of the same material and exhibit the same effect as these two magnetoresistive elements 3a and 3b. They are connected in series, and the end of the magnetoresistive element 3a located on the left side in FIG. As the grounding terminal 6b, the connection point between the magnetoresistive elements 3b and 3c that are adjacent to each other in the center is used as an output terminal 6C from which an output signal is taken out.

前記各磁気抵抗効果素子3a乃至3d、入力端子6a、
接地端子6b、出力端子6Cは、ニッケルコバルトの如
き強磁性材料を第1図に示すパターンに蒸着又はエツチ
ングすることにより平行配置に形成されている。
Each of the magnetoresistive elements 3a to 3d, the input terminal 6a,
The ground terminal 6b and the output terminal 6C are formed in a parallel arrangement by depositing or etching a ferromagnetic material such as nickel cobalt in the pattern shown in FIG.

また、両磁気抵抗効果素子3C,3d間の間隔は、いず
れも後述する磁気帯7からの繰り返し磁気信号の周期λ
に対し、λ/4の間隔をもって形成され、また、隣り合
う磁気抵抗効果素子3b。
Further, the interval between both magnetoresistive elements 3C and 3d is the period λ of a repetitive magnetic signal from the magnetic band 7, which will be described later.
On the other hand, adjacent magnetoresistive elements 3b are formed with an interval of λ/4.

30間はλ/8の間隔をもって形成されている。30 are formed with an interval of λ/8.

さらに、各磁気抵抗効果素子3a乃至3dの感磁方向は
、第1図に示す矢印α1.α2方向に設定されている。
Furthermore, the magnetic sensing direction of each magnetoresistive element 3a to 3d is indicated by the arrow α1. It is set in the α2 direction.

前記入力端子6a、接地端子6b間には、第2図にも示
すように所定電圧E (V)の直流電源5が接続される
ようになっている。
As shown in FIG. 2, a DC power source 5 having a predetermined voltage E (V) is connected between the input terminal 6a and the ground terminal 6b.

第2図に前記磁電変換装@1の等価回路を示す。FIG. 2 shows an equivalent circuit of the magnetoelectric converter @1.

ここで、各磁気抵抗効果素子3a乃至3dに磁束φが作
用しないときの磁気抵抗をそれぞれRoとして以下の説
明を行°う。
Here, the following explanation will be given assuming that Ro is the magnetic resistance when no magnetic flux φ acts on each of the magnetoresistive elements 3a to 3d.

まず、第5図を参照して、磁気抵抗効果素子3a(又は
3b、3G、3d)に作用する繰り返し磁気信号(外部
磁界)の強度H(X)と、磁気抵抗効果素子3aの磁気
抵抗の変化率ΔRo/Rとの関係について説明する。
First, with reference to FIG. 5, the strength H(X) of the repetitive magnetic signal (external magnetic field) acting on the magnetoresistive element 3a (or 3b, 3G, 3d) and the magnetic resistance of the magnetoresistive element 3a. The relationship with the rate of change ΔRo/R will be explained.

既述したように、磁気抵抗効果素子3aの感磁方向を矢
印α1.α2方向に設定したので、この磁気抵抗効果素
子3aに矢印α1.α2方向の磁束φ(1界強度H(x
))が作用するとき、磁気抵抗の変化率ΔRo/Roは
最大となりこのときの値は第5図に示す21点となる。
As mentioned above, the magnetic sensing direction of the magnetoresistive element 3a is indicated by the arrow α1. Since it is set in the α2 direction, the arrow α1. α Magnetic flux φ (1 field strength H(x
)), the rate of change of magnetic resistance ΔRo/Ro becomes maximum, and the value at this time is 21 points shown in FIG.

この場合には、磁気抵抗効果素子3aの出力信号は最小
となる。これを定性的に「O」で表す。
In this case, the output signal of the magnetoresistive element 3a becomes minimum. This is qualitatively represented by "O".

一方、磁気抵抗効果素子3aに感磁方向である矢印α1
.α2方向とは直交する方向に磁束φが作用するとき、
変化率ΔR/Roは最小となり、このときの値は第5図
に示す22点゛又は24点(HX=±H3:飽和磁界強
度)となる。この飽和磁界強度±Hsよりも大きい最大
磁界強度±HRのときには、ΔR/Roの値は第5図に
示す23点又は25点となる。
On the other hand, the magnetoresistive element 3a has an arrow α1 indicating the magnetic sensing direction.
.. When magnetic flux φ acts in a direction perpendicular to α2 direction,
The rate of change ΔR/Ro becomes the minimum, and the value at this time is 22 points or 24 points (HX=±H3: saturation magnetic field strength) shown in FIG. When the maximum magnetic field strength ±HR is larger than the saturation magnetic field strength ±Hs, the value of ΔR/Ro becomes 23 points or 25 points as shown in FIG.

即ち、飽和磁界強度±Hsよりも大きい磁界強度のとき
には、磁気抵抗効果素子3aの磁気抵抗の変化率ΔR/
Roは最小となって、その出力信号は最大をとる。これ
を定性的に「1」で表す。
That is, when the magnetic field strength is greater than the saturation magnetic field strength ±Hs, the rate of change in magnetoresistance of the magnetoresistive element 3a is ΔR/
Ro becomes minimum and its output signal takes maximum. This is qualitatively expressed as "1".

尚、変化率ΔR/Roの最大、R小間の変化率は3%位
である。
The maximum rate of change ΔR/Ro for the R booth is approximately 3%.

そして、前記磁電変換装置1の出力信@youtの微小
変化分ΔVは、第2図の等価回路から下記(1)式で表
すことができる。
The minute change ΔV in the output signal @yout of the magnetoelectric transducer 1 can be expressed by the following equation (1) from the equivalent circuit shown in FIG.

ここに、ΔR1乃至ΔR4は、各磁気抵抗効果素子3a
乃至3dの磁気抵抗の変化分をそれぞれ表す。
Here, ΔR1 to ΔR4 are each magnetoresistive element 3a.
3d to 3d, respectively.

換言すれば、出力信号voutは、各磁気抵抗効果素子
3a乃至3dの出力信号の総和と、磁気抵抗効果素子3
c、3dの出力信号の和との比に比例することになる。
In other words, the output signal vout is the sum of the output signals of the respective magnetoresistive elements 3a to 3d, and the sum of the output signals of the magnetoresistive elements 3a to 3d.
It is proportional to the ratio of the sum of the output signals of c and 3d.

次に上記構成の装置1の作用を、第3図、第4図をも参
照して説明する。
Next, the operation of the apparatus 1 having the above structure will be explained with reference to FIGS. 3 and 4.

第3図は、第1.第2のセンサ部4a、4bの磁気帯7
に対する配置状態を、第4図はその動作状態を示すもの
である。
Figure 3 shows the 1. Magnetic band 7 of second sensor section 4a, 4b
FIG. 4 shows its operating state.

初期状態(時刻to )において、磁電変換装置1の磁
気抵抗効果素子3aには、第3図及び第4図に示すよう
に磁気帯7のN極からの磁束φが感磁方向(α2方向)
に作用するので、このとき、変化率ΔR/Roは最大と
なって、その出力信号は定性的にrOJとなる。また、
このとき磁気抵抗効果素子3b、3GにはN極からの磁
束φが感磁方向とは直交する方向に作用するので、これ
らは磁気飽和の状態となってそれぞれの出力信号は定性
的に「]」となる。
In the initial state (time to), the magnetoresistive element 3a of the magnetoelectric transducer 1 receives the magnetic flux φ from the N pole of the magnetic band 7 in the magnetic sensing direction (α2 direction), as shown in FIGS. 3 and 4.
At this time, the rate of change ΔR/Ro becomes maximum, and the output signal qualitatively becomes rOJ. Also,
At this time, the magnetic flux φ from the N pole acts on the magnetoresistive elements 3b and 3G in a direction perpendicular to the magnetic sensing direction, so they are in a state of magnetic saturation and their respective output signals are qualitatively "] ”.

さらに、この状態では、磁気抵抗効果素子3dには前記
N極とは一周期離れた他のN極からの磁束φが感磁方向
とは直交する方向に作゛用するので、その出力信号は定
性2的に「1」となる。
Furthermore, in this state, the magnetic flux φ from another N-pole that is one period apart from the N-pole acts on the magnetoresistive element 3d in a direction perpendicular to the magnetic sensing direction, so the output signal is Qualitatively ``1''.

従って、このときの磁電変換装置1の出力信号は、前記
(1)式に基き類推されるように定性的にr2/3Jで
表すことができる。
Therefore, the output signal of the magnetoelectric transducer 1 at this time can be qualitatively expressed as r2/3J, as deduced based on the above equation (1).

次に、磁気帯7が−X方向にλ/8だけ変位した時刻t
1のときには、上)ホした動作に基き、磁気抵抗効果素
子3a、3b及び3dが「1」、磁気抵抗効果素子3C
がrOJの状態になり、この結果、このときの出力信号
voutは定性的にrl/3Jで表すことができる。
Next, time t when the magnetic band 7 is displaced by λ/8 in the -X direction
When the value is 1, based on the above operation, the magnetoresistive elements 3a, 3b and 3d are "1", and the magnetoresistive element 3C
becomes rOJ, and as a result, the output signal vout at this time can be qualitatively expressed as rl/3J.

さらに、磁気帯7が−X方向にλ/8変位した時刻t2
のときには、磁気抵抗効果素子3a。
Furthermore, time t2 when the magnetic band 7 is displaced by λ/8 in the -X direction
When , the magnetoresistive element 3a.

3c、3dが「1」、磁気抵抗効果素子3bがrOJの
状態になり、このときの出力信号■outは定性的にr
2/3Jで表すことができる。
3c and 3d are "1", the magnetoresistive effect element 3b is in the rOJ state, and the output signal ■out at this time is qualitatively r
It can be expressed as 2/3J.

このようにして、周期λの全範囲に亘って出力信号yo
utはλ/8毎に最大r2/3J 、最小r1/3Jの
値をとりつつ略正弦波状に変化し、この結果、前記周期
λの1/4の周期、即ち4倍の周波数を持つ信号となる
In this way, over the entire range of period λ, the output signal yo
ut changes approximately sinusoidally, taking values of maximum r2/3J and minimum r1/3J every λ/8, and as a result, a signal with a period of 1/4 of the period λ, that is, 4 times the frequency. Become.

この結果、磁気帯7を例えば比較的遅く回転するターン
テーブルの外周に設けて磁電変換装@1によりその回転
制御のための信号を取出す場合でも、従来例に比較しよ
り高精度の回転制御が可能となる。
As a result, even when the magnetic band 7 is provided around the outer periphery of a turntable that rotates relatively slowly, and the signal for controlling the rotation is extracted by the magneto-electric conversion device @1, it is possible to control the rotation with higher precision than in the conventional example. It becomes possible.

また、上述した磁電変換装置1によれば、出力信号vo
utを直列接続された第1.第2のセンサ部4a、4b
の接続点から取出すものであり、両センサ部4a、4b
は使用環境における熱に対し差動的に動作するので、両
センサ部4a、4bの熱による特性変化は打ち消し合い
、この結果、出力信号youtは熱による影響を受ける
ことはない。
Further, according to the magnetoelectric conversion device 1 described above, the output signal vo
ut connected in series. Second sensor section 4a, 4b
It is taken out from the connection point of both sensor parts 4a and 4b.
Since they operate differentially with respect to heat in the usage environment, changes in the characteristics of both sensor sections 4a and 4b due to heat cancel each other out, and as a result, the output signal yout is not affected by heat.

第6図は、本発明の実施例の他側を示すものである。FIG. 6 shows the other side of the embodiment of the invention.

同図に示す磁電変換装置1Aは、前記磁気抵抗効果素子
3c、3dからなる第2のセンサ部4bを磁気抵抗効果
素子3a側にλ/4シフトした配置としたことが磁電変
換装置1と相違する点である。即ち、このrtt電変換
I@lAの磁気抵抗効果素子3Cは、磁気抵抗効果素子
3bよ゛りもλ/8だけ磁気抵抗効果素、、−i!−3
a側にシフトした位置となっている。
The magnetoelectric transducer 1A shown in the figure differs from the magnetoelectric transducer 1 in that the second sensor section 4b, which is composed of the magnetoresistive elements 3c and 3d, is shifted by λ/4 toward the magnetoresistive element 3a. This is the point. That is, the magnetoresistive element 3C of this rtt electric conversion I@lA is smaller than the magnetoresistive element 3b by λ/8, -i! -3
The position is shifted to the a side.

この磁電変換装置1Aによっても、上述した磁電変換装
置1と同様の作用を発揮させることができる。
This magnetoelectric transducer 1A can also exhibit the same effect as the magnetoelectric transducer 1 described above.

本発明は上述した実施例に限定されるものではなく、そ
の要旨の範囲内で種々の変形が可能である。
The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the invention.

[発明の効果コ 以上詳述した本発明によれば、第1.第2のセンサ部を
上述した感磁方向で、かつ、上述した間隔をもって直列
接続の状態で配置し、両者の接続点から出力信号を取出
すようにしたものであるから、繰り返し磁気信号の4倍
の周波数を持ち、かつ、熱的な特性劣化のない出力信号
を得ることができ、従来例よりもより高精度の回転制御
等を行う場合に用いることが可能な磁電変換装置を提供
することができる。
[Effects of the Invention] According to the present invention detailed above, first. The second sensor section is arranged in series connection in the above-mentioned magnetic sensing direction and at the above-mentioned interval, and the output signal is taken out from the connection point between the two, so the repeating magnetic signal is four times as large. It is an object of the present invention to provide a magnetoelectric transducer that can obtain an output signal having a frequency of can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例装置を示す平面図、第2図は同
装置の等価回路図、第3図は同装置の配置を示す説明図
、第4図は同装置の動作説明図、第5図は磁気抵抗効果
素子の外部磁界強度と磁気抵抗の変化率との関係を示す
特性図、第6図は本発明の他の実施例装置の配置を示す
説明図、第7図は従来例の配置及び出力信号の波形を示
す説明図である。 1・・・磁電変換装置、 3a、3b、3c、3d−1ifi気抵抗効果素子、4
a・・・第1のセンサ部、 4b・・・第2のセンサ部。 第 図
FIG. 1 is a plan view showing an embodiment of the device of the present invention, FIG. 2 is an equivalent circuit diagram of the device, FIG. 3 is an explanatory diagram showing the arrangement of the device, and FIG. 4 is an explanatory diagram of the operation of the device. FIG. 5 is a characteristic diagram showing the relationship between the external magnetic field strength and the rate of change of magnetoresistance of a magnetoresistive element, FIG. 6 is an explanatory diagram showing the arrangement of another embodiment of the device of the present invention, and FIG. 7 is a conventional diagram. It is an explanatory diagram showing an example arrangement and a waveform of an output signal. 1... Magnetoelectric conversion device, 3a, 3b, 3c, 3d-1ifi resistance effect element, 4
a...first sensor section, 4b...second sensor section. Diagram

Claims (1)

【特許請求の範囲】  磁気抵抗の異方性効果を有し、かつ、感磁方向が同一
の2個の磁気抵抗効果素子をこれらに作用する繰り返し
磁気信号の周期λに対し、 略(1/4)・(2n+1)λ(n=O,±1,±2・
・・)の間隔をもって平行配置に直列接続した第1のセ
ンサ部と、この第1のセンサ部と同一構成の2個の磁気
抵抗効果素子を有し、これらの第1のセンサ部に対し、 略(1/8)・(2n+1)λの間隔をもつて平行配置
に直列接続した第2のセンサ部とを具備し、前記両セン
サ部の接続点を出力端子として用いることを特徴とする
磁電変換装置。
[Claims] Two magnetoresistive elements having an anisotropic magnetoresistive effect and having the same magnetic sensing direction have a period λ of a repetitive magnetic signal acting on them, approximately (1/ 4)・(2n+1)λ(n=O,±1,±2・
A first sensor section connected in series in a parallel arrangement with an interval of ...), and two magnetoresistive elements having the same configuration as the first sensor section, and a second sensor section connected in series in a parallel arrangement with an interval of approximately (1/8).(2n+1)λ, and a connection point between the two sensor sections is used as an output terminal. conversion device.
JP2535589A 1989-02-03 1989-02-03 Magnetoelectric transducer device Pending JPH02205716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2535589A JPH02205716A (en) 1989-02-03 1989-02-03 Magnetoelectric transducer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2535589A JPH02205716A (en) 1989-02-03 1989-02-03 Magnetoelectric transducer device

Publications (1)

Publication Number Publication Date
JPH02205716A true JPH02205716A (en) 1990-08-15

Family

ID=12163545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2535589A Pending JPH02205716A (en) 1989-02-03 1989-02-03 Magnetoelectric transducer device

Country Status (1)

Country Link
JP (1) JPH02205716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4208154A1 (en) * 1991-03-14 1992-09-17 Sony Magnescale Inc MAGNETIC SENSOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4208154A1 (en) * 1991-03-14 1992-09-17 Sony Magnescale Inc MAGNETIC SENSOR
DE4208154C2 (en) * 1991-03-14 1994-03-10 Sony Magnescale Inc Magnetic sensor

Similar Documents

Publication Publication Date Title
US5019776A (en) Magnetic position detection apparatus having two magnetic recording medium tracks with magnetoresistors arranged in a bridge circuit so as to eliminate even order harmonic distortion
JP3560821B2 (en) Encoder with giant magnetoresistive element
JP2529960B2 (en) Magnetic position detector
JPH02205716A (en) Magnetoelectric transducer device
JPH02189484A (en) Magnetic sensor
JP2021177164A (en) Magnetic encoder
JPS59142417A (en) Magnetism detecting device
JP4211278B2 (en) Encoder
JPH11311543A (en) Magnetoresistive element and magnetic detector
JPS63311117A (en) Magnetic sensor for detecting position
JPH01301113A (en) Signal processing circuit for magneto-resistance element
JPH06147816A (en) Angle sensor
JPH02205715A (en) Magnetoelectric transducer device
JPH10227807A (en) Rotation sensor
JPH03221814A (en) Magnetoelectric converter
JPH03226625A (en) Rotation positioner
JPS5919810A (en) Detecting device of rotation angle
JPH0430756B2 (en)
JPS6329837B2 (en)
JPH0141226B2 (en)
JPH0723691Y2 (en) Magnetic rotary encoder
JPS6318937Y2 (en)
JPS6111982Y2 (en)
JPH01233318A (en) Position detector
JPS62137514A (en) Magnetic sensor