JPH0220563B2 - - Google Patents

Info

Publication number
JPH0220563B2
JPH0220563B2 JP16508582A JP16508582A JPH0220563B2 JP H0220563 B2 JPH0220563 B2 JP H0220563B2 JP 16508582 A JP16508582 A JP 16508582A JP 16508582 A JP16508582 A JP 16508582A JP H0220563 B2 JPH0220563 B2 JP H0220563B2
Authority
JP
Japan
Prior art keywords
silicate
fatty acid
liquid medium
surfactant
droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16508582A
Other languages
Japanese (ja)
Other versions
JPS5954619A (en
Inventor
Hitoshi Kijimuta
Susumu Hachiuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP16508582A priority Critical patent/JPS5954619A/en
Publication of JPS5954619A publication Critical patent/JPS5954619A/en
Publication of JPH0220563B2 publication Critical patent/JPH0220563B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】 本発明は珪酸塩粒状体の製造方法、特に粒径の
揃つた微細な珪酸塩粒状体の製造方法に係るもの
である。 微細な珪酸塩粒状体は、これが比較的軽量且安
価であり、又化学的にも種々の物に対し安定なる
が故に、各種合成樹脂材料の充填材として、又塗
料等のつや消し剤、粘度の調整剤、特殊加工紙の
性能改良剤等種々の用途に用いられることが提案
され、又一部は実用に供されている。 この種の粒状体は、粒径が小さいこと(10μ以
下、望ましくは5μ以下)また何れの場合におい
ても粒度が可能な限り揃つている程その用途は広
くなる。 又、粒径を揃える手段については、やはり従来
からいくつかの手段が提案されてはいるが、費用
のかかる極く特殊な方法を除いては今だ十分工業
的に満足し得る手段は存在しない。 本発明者はかかる点に鑑み、特に粒径の揃つた
珪酸塩粒状体を工業的に容易に得る手段を見出す
ことを目的として種々研究、検討した結果、粒状
体となる珪酸塩粒子を非極性液状媒体中において
特定条件下に予め形成せしめておき、これをゲル
化せしめることにより、前記目的を達成し得るこ
とを見出した。 かくして本発明は、界面活性剤を含む非極性液
状媒体中において、珪酸塩を撹拌して前記珪酸塩
の微粒子状の液滴を形成せしめ、次いで該液滴を
炭酸ガスによりゲル化せしめることを特徴とする
珪酸塩粒状体の製造方法を提供するにある。 本発明において用いられる界面活性剤として
は、例えばポリエチレングリコール脂肪酸エステ
ル、ポリオキシエチレンアルキルフエニルエーテ
ル、ポリオキシエチレンアルキルエーテル、ソル
ビタン脂肪酸エステル、ポリオキシエチレンソル
ビタン脂肪酸モノエステル等の非イオン系界面活
性剤を適宜用いることが出来る。 用いられる界面活性剤の使用量は、一般に100
〜50000ppm程度を採用するのが適当である。 使用量が前記範囲に満たない場合には、液滴が
安定に微粒化せず、逆に前記範囲を越える場合に
は、生成する粒子が凝集して二次粒子を生成し易
くなる虞れがあるので何れも好ましくない。 そしてこれら範囲のうち、200〜10000ppmを採
用する場合には、液滴が安定に微粒化し、生成し
た粒子も凝集する虞れがないので特に好ましい。 又、本発明に用いられる液状媒体としては、例
えばベンゼン、トルエン、キシレン、灯油、トリ
クロルエチレン、パークロルエチレン等の非極性
な有機液状媒体を適宜単独若しくは混合して用い
ることが出来る。 これら液状媒体の使用量は、珪酸塩水溶液に対
して2〜20程度用いるのが適当である。使用量が
前記範囲に満たない場合には、安定なエマルジヨ
ンが得られず、逆に前記範囲を超える場合には、
単位容積当りの粒状体の生成量が不十分となり、
生産性が悪くなるので何れも好ましくない。 そして、これら液状媒体のうちトルエン、パー
クロルエチレン、灯油を採用する場合には、少量
の使用で界面活性剤の使用量も少なくて高い液滴
分散安定性が得られるので特に好ましい。 本発明に用いられる珪酸塩としては、例えば水
ガラス、珪酸ソーダ、シリカゾル等を適宜用い得
る。 かくして界面活性剤が添加された非極性液状媒
体中に珪酸塩水溶液が加えられ、撹拌してゾルを
形成せしめる。 ここでなされる撹拌は、最終的に得られる粒状
体の粒径を決定する程に大きな影響がある。撹拌
をあまりゆつくり行なつたり、又あまり長時間行
なうと、液滴の分散性が悪くなり、粒径も不揃い
となる虞れがあるので好ましくない。この種粒状
体は、その用途によつて粒径は異なるが、一般に
1〜10μ程度の平均粒径を有する粒状体が用いら
れる場合が多く、かかる平均粒径を有する粒状体
を得る場合、前記撹拌の条件として、珪酸塩水溶
液が非極性媒体中に分散乳化された液1m3当り撹
拌動力0.2〜5KWを採用するのが適当である。 又、撹拌に際し、非極性液状媒体の液温はこれ
があまり高すぎたり低すぎると、液の粘度等が変
化し、液滴の分散安定性が損なわれるので好まし
くなく、一般に10〜80℃を採用するのが適当であ
る。又、この場合において、酸性であると珪酸塩
が好ましい微粒状とならず、一部が塊状となりゲ
ル化を起すので好ましくなく、この為PH9以上で
実施するのが適当である。 かくして得られた小滴状ゲルは次いで炭酸ガス
によりゲル化せしめられる。 本発明において、ゲル化を塩酸等の液状体を用
いて行なうと、好ましい粒状となつたゾル小滴を
壊すことになると共に、逆に部分的に塊状体が生
成するので不適当である。 ゲル化に炭酸ガスを用いると、好ましい形態で
生成した小滴状ゾルをそのままの形でゲル化出来
ると共に、非極性媒体に溶解した炭酸ガスがエマ
ルジヨンの膜を通して確実に珪酸塩のゲル化を起
させることが可能となる。 ゲル化の際用いられる炭酸ガスの量は、水硝子
中のナトリウムの全てを炭酸ナトリウムに転化せ
しめるのに必要な理論量の1.5倍以上を採用する
のが適当である。 かくしてゲル化された粒状体はこれを過等に
より液状媒体と分離後、付着する液状媒体を水蒸
気蒸留またはアルコールなどで除去した後で乾燥
される。 かかる乾燥の具体的手段としては、例えば燃焼
炎による直接加熱方式や、スプレードライヤー方
式、流動乾燥方式等を採用し得る。 次に本発明を実施例により説明する。 実施例 1 3号水ガラス250gを水500gで希釈した液組成
SiO2 9.7wt%,Na2O 3.2wt%である水溶液を調
整し反応液とした。次に、撹拌機とガス吹込みノ
ズルとを備えた容量5のセパラブルフラスコ
に、非イオン系界面活性剤Tween80とSpan60(重
量比3:1)を5000ppm添加したトルエン3を
入れ、撹拌強度2000rpmで撹拌しつつ、上記の反
応液を滴下し、乳化液を形成させた。ここで得ら
れたゾルの粒径は約2μの真球に近く、次いで、
炭酸ガスを、ガス吹込みノズルから、0.2/分
の速度で10分間吹込み、さらに60分間撹拌を続け
た。この間液温を30℃に保持した。次にフラスコ
内のスラリーをとり出し、固形分を別した固形
分に付着したトルエンは水蒸気処理して除去し
た。次いで、固形分は粒子内に炭酸ナトリウムを
含んでいるので、それを20の水で水洗し除去
し、水洗後の固形分を乾燥して、シリカゲル微粉
末を得た。粉末のSiO2純度は99.5%であり、走査
型電子顕微鏡(SEM)による観察の結果、平均
粒子径は2μであり、ゾル状態時の粒径を保持し
ていることが認められた。BET法による比表面
積は140m2/gであつた。 実施例 2〜4 実施例1と同一の反応器を用いて、これに、所
定の液状媒体を入れ、撹拌しつつ、反応液を滴下
した後、炭酸ガスを吹込みゲル化させた。以下、
実施例1と同様の処理を行なつた結果、シリカゲ
ル微粉末を得た。合成条件及び得られたものの物
性を表1に示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing silicate granules, particularly a method for producing fine silicate granules with uniform particle size. Fine silicate particles are relatively lightweight and inexpensive, and are chemically stable against various substances, so they are used as fillers in various synthetic resin materials, as matting agents in paints, and as viscosity control agents. It has been proposed to be used for various purposes, such as as a conditioning agent and a performance improver for specially processed paper, and some of them have been put into practical use. This type of granular material has a wider range of uses as the particle size is smaller (10 μm or less, preferably 5 μm or less) and in any case, the particle size is as uniform as possible. In addition, although several methods have been proposed in the past for making the particle sizes uniform, there is still no method that is industrially satisfactory, except for very special methods that are expensive. . In view of this point, the present inventor conducted various research and examinations with the aim of finding a means to industrially easily obtain silicate granules having a uniform particle size. It has been found that the above object can be achieved by forming the gel in advance under specific conditions in a liquid medium and gelling it. Thus, the present invention is characterized in that a silicate is stirred in a non-polar liquid medium containing a surfactant to form fine droplets of the silicate, and then the droplets are gelled with carbon dioxide gas. The present invention provides a method for producing silicate granules. Examples of the surfactant used in the present invention include nonionic surfactants such as polyethylene glycol fatty acid ester, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ether, sorbitan fatty acid ester, and polyoxyethylene sorbitan fatty acid monoester. can be used as appropriate. The amount of surfactant used is generally 100
It is appropriate to adopt approximately 50,000 ppm. If the amount used is less than the above range, the droplets will not be stably atomized, and if it exceeds the above range, there is a risk that the particles produced will agglomerate and become more likely to produce secondary particles. I don't like either of them because of that. Among these ranges, it is particularly preferable to use 200 to 10,000 ppm because the droplets are stably atomized and there is no risk of the generated particles agglomerating. Further, as the liquid medium used in the present invention, for example, non-polar organic liquid media such as benzene, toluene, xylene, kerosene, trichlorethylene, perchlorethylene, etc. can be appropriately used alone or in combination. The appropriate amount of these liquid media to be used is about 2 to 20 per silicate aqueous solution. If the amount used is less than the above range, a stable emulsion cannot be obtained, and conversely, if it exceeds the above range,
The amount of granules produced per unit volume becomes insufficient,
Both are unfavorable as they result in poor productivity. Among these liquid media, toluene, perchloroethylene, and kerosene are particularly preferred since they can be used in small amounts and high droplet dispersion stability can be obtained with a small amount of surfactant. As the silicate used in the present invention, for example, water glass, sodium silicate, silica sol, etc. can be used as appropriate. An aqueous silicate solution is then added to the non-polar liquid medium to which a surfactant has been added and stirred to form a sol. The stirring performed here has such a large effect that it determines the particle size of the granules finally obtained. It is not preferable to stir too slowly or for too long because the dispersibility of the droplets may deteriorate and the particle size may become uneven. The particle size of this kind of granular material varies depending on its use, but in general, granular material having an average particle size of about 1 to 10 μm is often used. As the stirring conditions, it is appropriate to adopt a stirring power of 0.2 to 5 KW per 1 m 3 of a silicate aqueous solution dispersed and emulsified in a nonpolar medium. In addition, when stirring, the liquid temperature of the non-polar liquid medium is not desirable because if it is too high or too low, the viscosity of the liquid will change and the dispersion stability of the droplets will be impaired, so a temperature of 10 to 80°C is generally adopted. It is appropriate to do so. In addition, in this case, if the silicate is acidic, the silicate will not form the desired fine particles, and some of the silicate will become lumpy and gel, which is undesirable. The droplet-like gel thus obtained is then gelled with carbon dioxide gas. In the present invention, if gelation is carried out using a liquid such as hydrochloric acid, the desired granular sol droplets will be broken, and conversely, lumps will be formed in some areas, which is unsuitable. When carbon dioxide gas is used for gelation, the droplet-like sol produced in a preferred form can be gelled as is, and the carbon dioxide gas dissolved in the nonpolar medium can surely cause gelation of the silicate through the emulsion film. It becomes possible to do so. It is appropriate that the amount of carbon dioxide gas used during gelation be at least 1.5 times the theoretical amount required to convert all of the sodium in the water vitreous into sodium carbonate. The thus gelled granules are separated from the liquid medium by sieving, and the adhering liquid medium is removed by steam distillation or alcohol, followed by drying. As specific means for such drying, for example, a direct heating method using a combustion flame, a spray dryer method, a fluidized drying method, etc. can be adopted. Next, the present invention will be explained by examples. Example 1 Liquid composition obtained by diluting 250g of No. 3 water glass with 500g of water
An aqueous solution containing 9.7 wt% SiO 2 and 3.2 wt% Na 2 O was prepared and used as a reaction solution. Next, toluene 3 containing 5000 ppm of nonionic surfactants Tween 80 and Span 60 (weight ratio 3:1) was added to a separable flask with a capacity of 5 and equipped with a stirrer and a gas injection nozzle, and the stirring intensity was 2000 rpm. While stirring, the above reaction solution was added dropwise to form an emulsion. The particle size of the sol obtained here is close to a true sphere of about 2μ, and then
Carbon dioxide gas was blown in from a gas blowing nozzle at a rate of 0.2/min for 10 minutes, and stirring was continued for an additional 60 minutes. During this time, the liquid temperature was maintained at 30°C. Next, the slurry in the flask was taken out and the solid content was separated, and the toluene adhering to the solid content was removed by steam treatment. Next, since the solid content contained sodium carbonate in the particles, it was removed by washing with 20 g of water, and the solid content after washing was dried to obtain a fine silica gel powder. The SiO 2 purity of the powder was 99.5%, and as a result of scanning electron microscopy (SEM) observation, it was found that the average particle size was 2 μ, maintaining the particle size in the sol state. The specific surface area determined by the BET method was 140 m 2 /g. Examples 2 to 4 Using the same reactor as in Example 1, a predetermined liquid medium was put therein, and the reaction solution was added dropwise while stirring, and then carbon dioxide gas was blown into the reactor to form a gel. below,
As a result of performing the same treatment as in Example 1, fine silica gel powder was obtained. Table 1 shows the synthesis conditions and the physical properties of the obtained product. 【table】

Claims (1)

【特許請求の範囲】 1 界面活性剤を含む非極性液状媒体中におい
て、珪酸塩を撹拌して微粒子状の液滴を形成せし
め、次いで該液滴を炭酸ガスによりゲル化せしめ
ることを特徴とする珪酸塩粒状体の製造方法。 2 界面活性剤は、ポリエチレングリコール脂肪
酸エステル、ポリオキシエチレンアルキルフエニ
ルエーテル、ポリオキシエチレンアルキルエーテ
ル、ソルビタン脂肪酸エステル、ポリオキシエチ
レンソルビタン脂肪酸モノエステルである請求の
範囲1の方法。 3 液状媒体は、トルエン、灯油、ベンゼン、キ
シレン、トリクロルエチレン、パークロルエチレ
ンである請求の範囲1の方法。 4 珪酸塩は、水ガラス、珪酸ソーダ、シリカゾ
ルである請求の範囲1の方法。
[Claims] 1. A method characterized by stirring a silicate in a non-polar liquid medium containing a surfactant to form fine droplets, and then gelling the droplets with carbon dioxide gas. Method for producing silicate granules. 2. The method according to claim 1, wherein the surfactant is polyethylene glycol fatty acid ester, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ether, sorbitan fatty acid ester, or polyoxyethylene sorbitan fatty acid monoester. 3. The method according to claim 1, wherein the liquid medium is toluene, kerosene, benzene, xylene, trichlorethylene, perchlorethylene. 4. The method according to claim 1, wherein the silicate is water glass, sodium silicate, or silica sol.
JP16508582A 1982-09-24 1982-09-24 Preparation of granular silicate Granted JPS5954619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16508582A JPS5954619A (en) 1982-09-24 1982-09-24 Preparation of granular silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16508582A JPS5954619A (en) 1982-09-24 1982-09-24 Preparation of granular silicate

Publications (2)

Publication Number Publication Date
JPS5954619A JPS5954619A (en) 1984-03-29
JPH0220563B2 true JPH0220563B2 (en) 1990-05-09

Family

ID=15805588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16508582A Granted JPS5954619A (en) 1982-09-24 1982-09-24 Preparation of granular silicate

Country Status (1)

Country Link
JP (1) JPS5954619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087262A1 (en) 2009-01-30 2010-08-05 旭化成ケミカルズ株式会社 Method for producing silica-supported catalyst, and method for producing unsaturated carboxylic acid or unsaturated nitrile

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528315B2 (en) * 1987-05-22 1996-08-28 扶桑化学工業株式会社 Method for producing high-purity spherical silica
EP0704502B1 (en) * 1994-09-30 1998-06-03 Asahi Glass Company Ltd. Zink-oxide containing spherical silica and process for its production
ATE464118T1 (en) * 1999-02-05 2010-04-15 Waters Technologies Corp POROUS HYBRID PARTICLES FOR CHROMATOGRAPHIC SEPARATION
US6686035B2 (en) 1999-02-05 2004-02-03 Waters Investments Limited Porous inorganic/organic hybrid particles for chromatographic separations and process for their preparation
EP1417366A4 (en) 2001-08-09 2010-10-27 Waters Technologies Corp Porous inorganic/organic hybrid monolith materials for chromatographic separations and process for their preparation
DE10393599B4 (en) 2002-10-30 2022-01-05 Waters Technologies Corp. (N.D.Ges.D. Staates Delaware) Porous inorganic / organic homogeneous copolymeric hybrid materials for chromatographic separations and methods for their preparation
US10773186B2 (en) 2004-07-30 2020-09-15 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
US8658277B2 (en) 2004-07-30 2014-02-25 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
JP2010515804A (en) 2007-01-12 2010-05-13 ウオーターズ・テクノロジーズ・コーポレイシヨン Porous carbon-heteroatom-silicon hybrid inorganic / organic material for chromatographic separation and method for its preparation
EP3964287A1 (en) 2009-06-01 2022-03-09 Waters Technologies Corporation Hybrid material for chromatographic separations
US11439977B2 (en) 2009-06-01 2022-09-13 Waters Technologies Corporation Hybrid material for chromatographic separations comprising a superficially porous core and a surrounding material
US10092893B2 (en) 2010-07-26 2018-10-09 Waters Technologies Corporation Superficially porous materials comprising a substantially nonporous hybrid core having narrow particle size distribution; process for the preparation thereof; and use thereof for chromatographic separations
EP3426390A1 (en) 2016-03-06 2019-01-16 Waters Technologies Corporation Porous materials with controlled porosity; process for the preparation thereof; and use thereof for chromatographic separations

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087262A1 (en) 2009-01-30 2010-08-05 旭化成ケミカルズ株式会社 Method for producing silica-supported catalyst, and method for producing unsaturated carboxylic acid or unsaturated nitrile
EP3466533A1 (en) 2009-01-30 2019-04-10 Asahi Kasei Kabushiki Kaisha Methods for the oxidation or ammoxydation of propane characterized by the catalyst

Also Published As

Publication number Publication date
JPS5954619A (en) 1984-03-29

Similar Documents

Publication Publication Date Title
JPH0220563B2 (en)
US4420442A (en) Manufacturing process for hollow microspheres
US4421562A (en) Manufacturing process for hollow microspheres
US5738801A (en) Hydrophobic silica aerogels
JP2000516269A (en) Colloidal particles of solid flame retardant and smoke suppressant and methods for their production
JPH0151455B2 (en)
JP2000169132A (en) Pyrolytic silicon dioxide doped with aluminum oxide by using aerosol, its production, its use and its compounded material
WO2007122930A1 (en) Core-shell silica and method for producing same
IE44307B1 (en) Vesiculated silica microspheres
PL185969B1 (en) Gelatinous composition containing a carbonaceous chemical compound
CN113056512B (en) Cellulose-based thermally expandable microspheres
KR20010034188A (en) Powder Coating Composition
US3738957A (en) Coacervates of polyvinyl alcohol and colloidal silica
TW200307006A (en) Method for the production of coated, fine-particle, inorganic solids and use thereof
KR101089897B1 (en) Pelletized silica
US3161468A (en) Process for producing hollow spheres of silica
US4036663A (en) Inorganic pigments and methods for producing the pigments and aqueous slurries thereof
US2167674A (en) Manufacture of carbon black
TW500779B (en) Matting agents based on silicon dioxide
US2736669A (en) Method of activating and esterifying the surface of finely divided particles of silica having surface silanol groups
JPS63146966A (en) Production of dioxazine violet pigment
JP3525677B2 (en) Filler for IC substrate and resin composition for IC encapsulation
JPH06279589A (en) Production of fine spherical silicone particles
JP2007176738A (en) Stabilized surface-treated foliaceous silica secondary particulate powder and production method
JP2557403B2 (en) Silica gel manufacturing method