JPH02205322A - Method of forming thin-film - Google Patents

Method of forming thin-film

Info

Publication number
JPH02205322A
JPH02205322A JP2534189A JP2534189A JPH02205322A JP H02205322 A JPH02205322 A JP H02205322A JP 2534189 A JP2534189 A JP 2534189A JP 2534189 A JP2534189 A JP 2534189A JP H02205322 A JPH02205322 A JP H02205322A
Authority
JP
Japan
Prior art keywords
film
silicon
boron
nitrogen
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2534189A
Other languages
Japanese (ja)
Inventor
Masahiko Maeda
前田 正彦
Mutsunobu Arita
有田 睦信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2534189A priority Critical patent/JPH02205322A/en
Publication of JPH02205322A publication Critical patent/JPH02205322A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable plasma-cleaning by forming an insulating thin-film mainly comprising silicon, boron and nitrogen through a bias ECR method, CONSTITUTION:An insulating thin-film mainly comprising silicon, boron and nitrogen is shaped through a bias ECR(electronic cyclotron resonance) method. The thin-film can be thickened on the insulating film constituted of Si-N and B-N bonds and using silicon, boron and nitrogen as main components. The ranges of 0<x<0.15, 0.30<y<0.5 and 0.5<z<0.55 (where x+y+z=1.00) to SixByNz are employed as desirable numeric values as the ratios of atomic concentration of each atom of the insulating thin-film using silicon, boron and nitrogen as principal ingredients concretely. Accordingly, the insulating thin-film can be plasma-cleaned.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低誘電率の絶縁薄膜の厚膜化のため〔従来の
技術〕 超高速、高密度集積回路の実現には、金属材料に低抵抗
なアルミニウムを用いる多層配線技術が必要不可欠であ
る。このため、層間絶縁膜の形成は450℃以下の低温
で行われる必要がある。かかる層間絶縁膜としては、常
圧あるいはプラズマCVD (Chemical  V
apor  Deposition:CVD)法による
シリコン酸化膜やリンをドープしたシリコン酸化膜(以
下PSG(Phospho−3ij!1cate  G
lass)膜という)、あるいはプラズマCVD法によ
るシリコン窒化膜などが用いられてきた。しかし、デバ
イスの微細化の進展と共に、層間絶縁膜にも高いアスペ
クト比(溝の縦と横幅の比率、溝が深くなればなるほど
アスペクト比は増加する)の微細溝への充填が要求され
てきており、従来の薄膜形成方法では対処が困難になっ
てきている。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention aims to increase the thickness of an insulating thin film with a low dielectric constant [Prior Art] In order to realize ultra-high speed, high-density integrated circuits, metal materials Multilayer wiring technology using low-resistance aluminum is essential. Therefore, the interlayer insulating film needs to be formed at a low temperature of 450° C. or lower. Such an interlayer insulating film can be formed using normal pressure or plasma CVD (Chemical V
Silicon oxide film or phosphorus-doped silicon oxide film (hereinafter referred to as PSG (Phospho-3ij!1cate G)) by apor deposition (CVD) method
A silicon nitride film formed by a plasma CVD method or the like has been used. However, with the progress of miniaturization of devices, interlayer insulating films are required to fill fine grooves with a high aspect ratio (the ratio of the length and width of the groove; the deeper the groove, the higher the aspect ratio). Therefore, it is becoming difficult to deal with this problem using conventional thin film forming methods.

高アスペクト比の微細溝への絶縁膜の充填方法としでは
、有機あるいは無機塗布膜を用いる方法、有機シランを
用いる方法、バイアススパッタ法などが提案されている
。有機あるいは無機塗布膜を用いる方法としては、ポリ
イミド系の樹脂(商品名例えばPIQ)あるい・はスピ
ンオンガラス(SOG)が代表的である。これら塗布膜
は微細溝への充填特性という点からは充分な特性を有し
ているが、塗布後数百℃でのアニールが必要であること
、膜の付着力は下地の材料および表面状態に非常に敏感
であること、リーク電流が他の無機絶縁膜に比べて大き
いこと、さらに、SOG膜は厚膜化が困難でフン酸系溶
液に対するエツチングレートが極めて大きい、等の欠点
を有している。有機シランを反応ソースに用いる方法は
、下地の段差形状に忠実な被覆特性が得られるため、従
来の薄膜形成方法に比べて溝への充填特性は大幅に改善
されるものの、アスペクト比が2を越える場合には溝内
部にボイドが形成されるようになる。バイアススパッタ
法は膜形成と同時にエツチングを行うことにより平坦化
薄膜形成を行う方法であるが、アスペクト比が1付近に
限界があること、エツチングに伴い下地にダメージを及
ぼすこと、および膜形成とエツチングを同時に行うため
スループットが極めて小さい等の欠点を有している。
As methods for filling insulating films into fine grooves with high aspect ratios, methods using organic or inorganic coatings, methods using organic silane, bias sputtering, etc. have been proposed. Typical methods using organic or inorganic coating films include polyimide resins (product names such as PIQ) and spin-on glass (SOG). Although these coated films have sufficient properties in terms of filling characteristics into fine grooves, they require annealing at several hundred degrees Celsius after application, and the adhesion of the film depends on the underlying material and surface condition. SOG films have drawbacks such as being extremely sensitive, having a large leakage current compared to other inorganic insulating films, and being difficult to thicken and having an extremely high etching rate with hydrofluoric acid solutions. There is. The method of using organic silane as a reaction source provides coating characteristics that are faithful to the step shape of the base, so the filling characteristics of grooves are greatly improved compared to conventional thin film formation methods, but the aspect ratio is 2. If it exceeds the groove, voids will be formed inside the groove. Bias sputtering is a method of forming a flattened thin film by performing etching at the same time as film formation, but there are limitations when the aspect ratio is around 1, damage to the underlying layer is caused by etching, and problems with film formation and etching. It has drawbacks such as extremely low throughput because it performs both at the same time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上の方法に代わる技術として、最近バイアスECR電
子サイクロトロン共鳴(Electr。
As an alternative technique to the above methods, bias ECR electron cyclotron resonance (Electr) has recently been proposed.

n  Cyclotron  Re5onance)法
による絶縁膜形成技術が注目されている。本方法はEC
Rイオン源により高効率な励起が可能なため、薄膜形成
温度の低温化が可能なこと、高アスペクト比の微細溝へ
の絶縁膜の充填が可能なこと等の特徴を有し、さらに、
最近では実用的なスループットが得られる装置の開発も
行われてきている。しかし、バイアスECR法では低温
で緻密な膜形成が行える反面、シリコン窒化膜のような
引っ張り応力の大きな膜の厚膜形成はできず、もっばら
シリコン酸化膜を対象として薄膜形成が行われている。
2. Description of the Related Art An insulating film forming technique using the Cyclotron Re5onance method is attracting attention. This method is EC
Since highly efficient excitation is possible using the R ion source, it has features such as the ability to lower the thin film formation temperature and the ability to fill fine grooves with a high aspect ratio with an insulating film.
Recently, devices that can provide practical throughput have been developed. However, although the bias ECR method allows the formation of dense films at low temperatures, it is not possible to form thick films with large tensile stress such as silicon nitride films, and thin film formation is mainly performed on silicon oxide films. .

層間絶縁膜材料としてのシリコン酸化膜を考えた場合、
比誘電率が4と小さく、良好な絶縁特性および密着性が
得られる等の利点がある。しかし、スルーホールが微細
になるに伴いスルーホール加工時のドライエツチングの
過程で、酸化膜中の酸素が配線材料のアルミニウムと反
応しコンタクト特性を不安定化したり、シリコン酸化膜
はフレオン系ガスによるプラズマクリーニングができな
いため、装置保守が煩雑になることおよび装置内のパー
ティクルが歩留まり低下の原因になる等の欠点があった
When considering silicon oxide film as an interlayer dielectric material,
It has advantages such as having a low dielectric constant of 4 and good insulation properties and adhesion. However, as through-holes become finer, oxygen in the oxide film reacts with the aluminum wiring material during the dry etching process during through-hole processing, destabilizing the contact characteristics, and the silicon oxide film is damaged by freon-based gas. Since plasma cleaning cannot be performed, there are drawbacks such as complicated equipment maintenance and particles inside the equipment that cause a decrease in yield.

〔課題の解決するための手段〕[Means for solving problems]

本発明の目的は、バイアスECR法による薄膜形成にお
いて低応力でプラズマクリーニングが容易な絶縁薄膜の
形成方法を提供するものである。
An object of the present invention is to provide a method for forming an insulating thin film using a bias ECR method, with low stress and easy plasma cleaning.

本発明はバイアスECR法によりシリコン、ボロン、窒
素を主成分とする絶縁薄膜を形成することを最も主要な
特徴とする。従来バイアスECR法では不可能だったプ
ラズマクリーニングが容易な厚い絶縁薄膜の形成が可能
となる。
The main feature of the present invention is that an insulating thin film containing silicon, boron, and nitrogen as main components is formed by a bias ECR method. It becomes possible to form a thick insulating thin film that is easy to plasma clean, which was impossible with the conventional bias ECR method.

〔実施例〕〔Example〕

緻密なシリコン窒化膜は大きな引っ張り応力を有するた
め、たとえばCVD法で薄膜形成を行う場合には0.2
μm程度以上の膜形成を行うとクランクの発生が生ずる
。一方、600’C以上の高温CVD法により形成した
窒化ホウ素薄膜は圧縮応力を有することが知られており
、したがって、5t−NおよびB−N結合を有する薄膜
においては引っ張りおよび圧縮応力が相殺されて低い応
力値が実現でき、その結果厚い膜の形成が可能になる。
Since a dense silicon nitride film has a large tensile stress, for example, when forming a thin film using the CVD method, the
If a film with a thickness of about μm or more is formed, cranks will occur. On the other hand, boron nitride thin films formed by high-temperature CVD at temperatures above 600'C are known to have compressive stress. Therefore, in thin films with 5t-N and B-N bonds, tensile and compressive stresses are canceled out. Therefore, low stress values can be achieved, resulting in the formation of thick films.

プラズマCVD法で形成したシリコン、ボロン、窒素を
主成分とする薄膜においては、膜中での結合は5i−N
およびl3−N結合がら構成されていること、および膜
中のB−N結合の割合が増加するにともない、薄膜の応
力はより圧縮応力になることが知られている。したがっ
て、バイアスECR法のように緻密な膜形成が行える方
法では、厚いシリコン窒化膜を形成することは不可能で
あるが、5i−NおよびB−N結合がら構成されるシリ
コン、ボロン、窒素を主成分とする絶縁膜の場合には厚
膜化が可能になる。さらに具体的には、シリコン、ボロ
ン、窒素を主成分とする絶縁薄膜のそ・れぞれの原子の
原子濃度比として、St、 B。
In a thin film mainly composed of silicon, boron, and nitrogen formed by plasma CVD, the bond in the film is 5i-N.
It is known that the stress in the thin film becomes more compressive stress as the proportion of B-N bonds in the film increases. Therefore, it is impossible to form a thick silicon nitride film using a method that can form a dense film such as the bias ECR method, but silicon, boron, and nitrogen composed of 5i-N and B-N bonds In the case of an insulating film as the main component, it becomes possible to increase the thickness of the film. More specifically, St and B are the atomic concentration ratios of the respective atoms of an insulating thin film whose main components are silicon, boron, and nitrogen.

N2に対して0 < x <0.15,0−30 <y
 <o、51及び0、5 < z <0.55(ここで
x + y + z =1.OO)の範囲にあることが
望ましい数値である。
0 < x < 0.15, 0-30 < y for N2
Desirable values are in the ranges <o, 51 and 0, 5 < z < 0.55 (here x + y + z = 1.OO).

例えば、モノシラン、ジボラン、および窒素ガス流量を
それぞれ15. 15. 75 s e cm (sL
andard  cubic  cm/min、)。
For example, the monosilane, diborane, and nitrogen gas flow rates are each 15. 15. 75 s e cm (sL
andard cubic cm/min,).

反応ガス5X10−’Torr、マイクロ波パワー90
0Wの条件で形成したシリコン、ボロン、および窒素を
主成分とする薄膜の応力は7X10’dyne/cm”
の圧縮応力となり、たとえばシリコンウェハ上に約2μ
m堆積してもクランクの発生は認められない。またこの
膜はフレオン系ガスのプラズマクリーニングによって容
易にエツチングできる。さらに、この膜の比誘電率は3
.6とシリコン酸化膜よりも低い値である。
Reaction gas 5X10-'Torr, microwave power 90
The stress of a thin film mainly composed of silicon, boron, and nitrogen formed under 0W conditions is 7X10'dyne/cm"
For example, about 2μ on a silicon wafer.
Even if m is deposited, no cranking is observed. Moreover, this film can be easily etched by plasma cleaning with Freon gas. Furthermore, the dielectric constant of this film is 3
.. 6, which is lower than that of silicon oxide film.

〔発明の効果〕〔Effect of the invention〕

バイアスECR法によりシリコン、ボロン、窒素を主成
分とする絶縁薄膜を形成することにより、以下に述べる
ような効果が得られる。すなわち、フレオン系ガスを装
置内に導入し、プラズマを発生することにより容易かつ
短時間でクリーニングが可能なため、装置内にダストの
発生を抑制できると共に、装置の保守・メインテナンス
が容易になる。さらに、バイアスECR法による薄膜形
成を行うため、低誘電率の絶縁材料を微細スペースに空
隙無しに充填することが可能になる。
By forming an insulating thin film containing silicon, boron, and nitrogen as main components by the bias ECR method, the following effects can be obtained. That is, by introducing Freon-based gas into the device and generating plasma, cleaning can be performed easily and in a short time, so that dust generation within the device can be suppressed and maintenance of the device can be facilitated. Furthermore, since the thin film is formed by the bias ECR method, it becomes possible to fill minute spaces with an insulating material having a low dielectric constant without voids.

特許出願人  日本電信電話株式会社 代理人 弁理士 玉 蟲 久五部 (外1名)Patent applicant: Nippon Telegraph and Telephone Corporation Agent Patent Attorney Tama Mushi Kugobe (1 other person)

Claims (1)

【特許請求の範囲】 1、シリコン、ボロン、および窒素を主成分とする絶縁
薄膜をECRイオン源を用いる薄膜形成装置を用いて形
成することを特徴とする薄膜形成方法。 2、シリコン、ボロン、および窒素を主成分とする絶縁
薄膜が、それぞれの原子の原子濃度比として、Si_x
B_yN_zに対して0<x<0.15、0.30<y
<0.5、及び0.5<z<0.55(ここでx+y+
z=1.00)の範囲にあることを特徴とする請求項1
記載の薄膜形成方法。
[Scope of Claims] 1. A thin film forming method, characterized in that an insulating thin film containing silicon, boron, and nitrogen as main components is formed using a thin film forming apparatus using an ECR ion source. 2. An insulating thin film mainly composed of silicon, boron, and nitrogen has an atomic concentration ratio of Si_x
0<x<0.15, 0.30<y for B_yN_z
<0.5, and 0.5<z<0.55 (where x+y+
Claim 1 characterized in that it is in the range of z=1.00).
The thin film forming method described.
JP2534189A 1989-02-03 1989-02-03 Method of forming thin-film Pending JPH02205322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2534189A JPH02205322A (en) 1989-02-03 1989-02-03 Method of forming thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2534189A JPH02205322A (en) 1989-02-03 1989-02-03 Method of forming thin-film

Publications (1)

Publication Number Publication Date
JPH02205322A true JPH02205322A (en) 1990-08-15

Family

ID=12163203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2534189A Pending JPH02205322A (en) 1989-02-03 1989-02-03 Method of forming thin-film

Country Status (1)

Country Link
JP (1) JPH02205322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277203B1 (en) 1998-09-29 2001-08-21 Lam Research Corporation Method and apparatus for cleaning low K dielectric and metal wafer surfaces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277203B1 (en) 1998-09-29 2001-08-21 Lam Research Corporation Method and apparatus for cleaning low K dielectric and metal wafer surfaces
US6319330B1 (en) 1998-09-29 2001-11-20 Lam Research Corporation Method and apparatus for cleaning low K dielectric and metal wafer surfaces

Similar Documents

Publication Publication Date Title
JP3402972B2 (en) Method for manufacturing semiconductor device
JP4881422B2 (en) Method for producing hydrogenated silicon oxycarbide film having low dielectric constant
JP3178375B2 (en) Method of forming insulating film
JPH03173130A (en) Adhesion of high quality silicon dioxide by means of plasma reinforced chemical vapor adhesion method
US7718084B2 (en) Etchants for selectively removing dielectric materials
US5217567A (en) Selective etching process for boron nitride films
US4254161A (en) Prevention of low pressure chemical vapor deposition silicon dioxide undercutting and flaking
JPH0577327B2 (en)
EP1130639A1 (en) Semiconductor device and manufacture thereof
US4546016A (en) Deposition of borophosphosilicate glass
JPH11219950A (en) Manufacture of semiconductor integrated circuit and manufacturing device thereof
JP3112880B2 (en) Cleaning method for CVD equipment
JP3003607B2 (en) Barrier film forming method and semiconductor device
JPH02205322A (en) Method of forming thin-film
JPS63147347A (en) Semiconductor device
JPH11220024A (en) Method and device for manufacturing semiconductor integrated circuit
JP2000223485A (en) Formation of composite insulation film and fabrication of semiconductor device employing the same
JPH05291415A (en) Production of semiconductor device
JPH03159124A (en) Manufacture of semiconductor device
JPH08335579A (en) Silicon-based oxide film containing fluorine and its preparation
Kroll et al. Formation of silica films on silicon using silane and carbon dioxide
JPH07307382A (en) Trench element isolation structure and formation thereof
JP3214146B2 (en) Pretreatment method for forming titanium nitride film and method for forming titanium nitride film
TW202242179A (en) Single precursor low-k film deposition and uv cure for advanced technology node
JP2629587B2 (en) Method for manufacturing semiconductor device