JPH02205236A - Method for continuously casting molten metal - Google Patents

Method for continuously casting molten metal

Info

Publication number
JPH02205236A
JPH02205236A JP2440489A JP2440489A JPH02205236A JP H02205236 A JPH02205236 A JP H02205236A JP 2440489 A JP2440489 A JP 2440489A JP 2440489 A JP2440489 A JP 2440489A JP H02205236 A JPH02205236 A JP H02205236A
Authority
JP
Japan
Prior art keywords
powder
molten
mold
molten steel
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2440489A
Other languages
Japanese (ja)
Inventor
Koji Takatani
幸司 高谷
Takeshi Nakai
中井 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2440489A priority Critical patent/JPH02205236A/en
Publication of JPH02205236A publication Critical patent/JPH02205236A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable high speed casting and improvement of a cast slab quality by supplying molten powder on molten steel surface in a mold and further, supplying powdery or granular powder on this. CONSTITUTION:Molten steel 5 is poured into the mold 2 through a submerged nozzle 1 from a tundish. Shell 6 developed in the mold 2 is drawn downward and cooled with cooling spray 4 to form a cast slab 7. Then, the molten powder 8a is supplied onto the molten steel surface 5 in the mold 2 from a molten powder supplying nozzle 3. The powdery or granular powder 9a is supplied on this and casting is executed. By this method, lubricating function and heat holding function, which the powder has, can be sufficiently displayed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、溶融金属の連続鋳造方法、詳しくは鋳造時
の鋳型潤滑と鋳型的溶融金属の保温を効果的に行う溶融
金属の連続鋳造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) This invention relates to a method for continuous casting of molten metal, specifically a method for continuous casting of molten metal that effectively lubricates the mold during casting and keeps the temperature of the molten metal in the mold. Regarding.

(従来の技WI) 連続鋳造法においては、鋳造時の鋳型潤滑と鋳型的溶融
金属(以下、鋼の場合は溶鋼と記す)の保温が極めて重
要である。
(Conventional Technique WI) In the continuous casting method, mold lubrication during casting and heat retention of the molten metal (hereinafter referred to as molten steel in the case of steel) in the mold are extremely important.

初期の連続鋳造法においてはオイルキャスティング法に
よる鋳型潤滑が行われていた。この方法は第1図に示す
ように、浸漬ノズル1を介して鋳型内に注入された溶鋼
5が鋳型2によって冷却され、凝固シェル6を生じて収
縮する際にできる鋳型2との隙間に鋳型上部に設けたオ
イル供給管10からレプシードオイル11を供給し、鋳
型内面にオイル膜を形成させて潤滑を行うものであった
In early continuous casting methods, mold lubrication was performed by oil casting. In this method, as shown in Fig. 1, the molten steel 5 injected into the mold through the immersion nozzle 1 is cooled by the mold 2, and a solidified shell 6 is formed and the gap between the mold and the mold 2 is filled with the mold. Lepseed oil 11 was supplied from an oil supply pipe 10 provided at the top to form an oil film on the inner surface of the mold for lubrication.

しかしながら、この方法においては、図中矢印で示すよ
うに溶115が鋳型内を循環する間に、溶鋼中に含まれ
ている非金属介在物が比重差により溶鋼表面に浮上した
とき、鋳型内面で生成する凝固シェル6に捕捉されて鋳
片表面性状を悪化するという問題があった。またこの方
法では、鋳型内の溶鋼表面が直接大気に曝され、溶鋼温
度の低下やその酸化が著しいという欠点があった。
However, in this method, when the nonmetallic inclusions contained in the molten steel float to the surface of the molten steel due to the difference in specific gravity while the molten steel 115 circulates within the mold, as shown by the arrow in the figure, There was a problem in that it was trapped in the solidified shell 6 that was generated and deteriorated the surface quality of the slab. Furthermore, this method has the disadvantage that the surface of the molten steel in the mold is directly exposed to the atmosphere, resulting in a significant drop in the temperature of the molten steel and its oxidation.

そこで最近ではパウダーキャスティング法が行われてい
る。この方法は第2図に示すように、酸化カルシュラム
、酸化珪素、酸化アルミニウム、アルカリ物質などを成
分とする粉末または顆粒状のパウダー9aを溶鋼5の表
面に層状に供給し、その下部を溶鋼保有熱で溶解して溶
融層8bを形成させ、上部を粉状のままの粉体層9bを
形成させるようにしたものである、そして下部の溶融層
8bで溶鋼中から分離浮上する非金属介在物を捕捉する
と共に、溶融層8bの溶融パウダーを鋳型2と凝固シェ
ル6の間に侵入させ、この溶融パウダーと鋳型内面に固
着したパウダー凝固層8cとで潤滑を行い、上部の粉体
層9bで溶鋼の保温と酸化防止を行わせる。その結果、
潤滑性が向上して高速鋳造が可能となり、溶鋼の保温と
酸化防止ができるうえ、鋳片表面性状も著しく改善され
た。
Therefore, recently, a powder casting method has been used. In this method, as shown in Fig. 2, a powder or granular powder 9a containing calcium oxide, silicon oxide, aluminum oxide, alkaline substances, etc. is supplied in a layer on the surface of molten steel 5, and the lower part is filled with molten steel. The nonmetallic inclusions are melted by heat to form a molten layer 8b, and a powder layer 9b whose upper part remains powdery is formed, and nonmetallic inclusions that separate and float from the molten steel in the lower molten layer 8b. At the same time, the molten powder in the molten layer 8b is allowed to enter between the mold 2 and the solidified shell 6, and the molten powder and the powder solidified layer 8c fixed to the inner surface of the mold perform lubrication, and the upper powder layer 9b Insulates molten steel and prevents oxidation. the result,
Improved lubricity enables high-speed casting, keeps the molten steel warm and prevents oxidation, and significantly improves the surface quality of the slab.

このように、連続鋳造法におけるパウダーの使用は種々
の優れた効果をもたらしたが、その中でも高速鋳造を可
能にした意義は極めて大きい。
As described above, the use of powder in the continuous casting method has brought about various excellent effects, among which the significance of making high-speed casting possible is extremely significant.

しかし前記粉体状または顆粒状のパウダーを溶鋼熱で溶
解して潤滑する方法では、鋳造速度を更に高速化するこ
とは困難である。それは、鋳造速度を高めると鋳型と凝
固シェルの間に侵入する熔融パウダー量が減少して膜厚
が薄くなり、ブレークアウト(凝固シェルが破壊してシ
ェル内部の溶鋼が流出すること)を起こす恐れがあるか
らである。
However, in the method of melting the powder or granular powder with the heat of molten steel for lubrication, it is difficult to further increase the casting speed. The problem is that when the casting speed is increased, the amount of molten powder that enters between the mold and the solidified shell decreases, resulting in a thinner film and the risk of breakout (the solidified shell breaks and the molten steel inside the shell flows out). This is because there is.

このブレークアウトを防止するために、溶融パウダーの
粘性低下、融点の低下、溶融速度の向上など、その物性
を調整して溶融量を増大し、パウダー侵入量の増加を図
ることが行われている。しかしその場合には、粉体層(
第2図に示す9a)のパウダーまで溶解してしまい、そ
の適正な層厚さが保てなくなって溶鋼保温の作用が犠牲
になるという問題がある。
In order to prevent this breakout, attempts are being made to increase the amount of powder infiltrated by adjusting the physical properties of the molten powder, such as lowering its viscosity, lowering its melting point, and increasing its melting speed. . However, in that case, the powder layer (
There is a problem in that even the powder 9a) shown in FIG. 2 is dissolved, making it impossible to maintain an appropriate layer thickness and sacrificing the heat-insulating effect of the molten steel.

(発明が解決しようとする課題) この発明の目的は、パウダーの有する2つ機能、すなわ
ち鋳型潤滑および溶鋼保温の機能を充分に発揮できる溶
融金属の連続鋳造方法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a continuous casting method for molten metal that can fully exhibit the two functions of powder, namely, mold lubrication and molten steel heat retention.

(課題を解決するための手段) 前述したように、粉体状または顆粒状のパウダーを溶鋼
熱で溶融する連続鋳造方法では、鋳造条件により潤滑作
用か、保温作用のいずれか一方を犠牲にしなければなら
ないことが生じる。
(Means for solving the problem) As mentioned above, in the continuous casting method in which powder or granular powder is melted with the heat of molten steel, either the lubrication effect or the heat retention effect must be sacrificed depending on the casting conditions. Something must happen.

そこで本発明者らは、パウダーの有する2つの機能を損
なうことな(鋳造条件に最も適したパウダーを供給でき
る連続鋳造方法について種々検討を重ねた結果、パウダ
ーを上下2層に分けて供給し、下層へは溶融状態で低粘
度化するパウダーを予め溶融して供給し、鋳型とシェル
間への侵入量を増加させて円滑な潤滑を行わせ、上層へ
は粉体又は顆粒状のパウダーを供給して溶鋼保温を行わ
せれば、パウダーが有する潤滑機能と保温機能を充分に
発揮させることができることを知った。
Therefore, the inventors of the present invention have conducted various studies on continuous casting methods that can supply powder that is most suitable for the casting conditions without impairing the two functions of the powder. The lower layer is supplied with pre-melted powder that reduces viscosity in a molten state to increase the amount of penetration between the mold and the shell for smooth lubrication, and the upper layer is supplied with powder or granular powder. I learned that if the molten steel is kept warm by using powder, the lubricating and heat retaining functions of the powder can be fully utilized.

この発明は、上記知見に基づきなされたものであって、
その要旨は「鋳型内の溶鋼表面にあらかじめ溶融したパ
ウダーを供給し、その上に粉状または顆粒状のパウダー
を供給して鋳造する溶融金属の連続鋳造方法」にある。
This invention was made based on the above findings, and
Its gist is ``a continuous casting method for molten metal in which pre-molten powder is supplied to the surface of the molten steel in the mold, and then powdered or granular powder is supplied on top of that for casting.''

(作用) 以下、本発明の連続鋳造方法を図面にもとづいて説明す
る。第3図は本発明の方法を実施する鋳造装置の概略断
面図である0図において、lは浸漬ノズル、2は鋳型、
3は溶融パウダー供給ノズル、4は冷却ノズルである。
(Function) Hereinafter, the continuous casting method of the present invention will be explained based on the drawings. FIG. 3 is a schematic sectional view of a casting apparatus for carrying out the method of the present invention. In FIG. 0, l is an immersion nozzle, 2 is a mold,
3 is a molten powder supply nozzle, and 4 is a cooling nozzle.

このような装置により本発明の鋳造方法を実施する場合
を説明する。タンデイシュ(図示せず)から浸漬ノズル
1を介して鋳型2に注入された溶鋼5は、鋳型2により
冷却されて凝固シェル6を生成する。この凝固シヱル6
はピンチロール(図示省略)により下方に引き抜かれつ
つ鋳型2の下に設けられた冷却スプレー4によって冷却
されて凝固を続は鋳片7となる。
A case in which the casting method of the present invention is carried out using such an apparatus will be described. Molten steel 5 injected from a tundish (not shown) into a mold 2 through a submerged nozzle 1 is cooled by the mold 2 to produce a solidified shell 6. This coagulation seal 6
is pulled downward by pinch rolls (not shown) and cooled by a cooling spray 4 provided under the mold 2, solidifying into a slab 7.

このような鋳造過程において、本発明の方法では、溶鋼
5の表面に溶融パウダー供給ノズル3からあらかじめ溶
融したパウダー8aを供給して溶融層8bを形成する。
In such a casting process, in the method of the present invention, pre-molten powder 8a is supplied from the molten powder supply nozzle 3 to the surface of the molten steel 5 to form a molten layer 8b.

そしてその上に粉体状または顆粒状のパウダー9aを供
給して粉体層9bを形成する。
Powder-like or granular powder 9a is then supplied thereon to form a powder layer 9b.

前記溶融層8bのパウダー8aは鋳型2と凝固シェル6
の隙間に速やかに侵入して潤滑作用をする。また侵入し
たパウダー8aの一部は第3図(b)(第3図(a)の
A部拡大図)に示す鋳型内面に固着してパウダー凝固層
8cを形成する。粉体層9bのパウダーの一部は溶融し
て溶融層8bに入るが、残りの大部分は粉体層9bのま
ま残って所定の層厚を保ち、溶鋼の保温と酸化防止を行
う。
The powder 8a of the molten layer 8b is mixed with the mold 2 and the solidified shell 6.
It quickly penetrates into the gaps and acts as a lubricant. Further, a part of the powder 8a that has entered is fixed to the inner surface of the mold shown in FIG. 3(b) (an enlarged view of section A in FIG. 3(a)) to form a powder solidified layer 8c. A part of the powder in the powder layer 9b melts and enters the molten layer 8b, but most of the remaining powder remains in the powder layer 9b to maintain a predetermined layer thickness and to keep the molten steel warm and prevent oxidation.

このように本発明においては、潤滑用と保温用パウダー
の供給を別系統から行うので、それぞれの機能を充分に
発揮させることができる。したがって高速鋳造の場合で
も鋳造速度に合ったパウダーを選定できるうえ、事前に
溶融するので粘性などの物性を調整して潤滑特性を向上
させることができる。しかも溶融層厚を自由に制御する
こ七ができるからブレークアウトの発生を完全に防止す
ることができる。
In this way, in the present invention, the lubricating powder and the heat-retaining powder are supplied from separate systems, so that the respective functions can be fully exhibited. Therefore, even in the case of high-speed casting, it is possible to select a powder that matches the casting speed, and since it is melted in advance, physical properties such as viscosity can be adjusted to improve lubricating properties. Moreover, since the melt layer thickness can be freely controlled, breakout can be completely prevented from occurring.

(実施例) 第3図に示すような連続鋳造装置(内径9抛Iで2孔を
有する浸漬ノズル、内径5a+mの溶融パウダー供給ノ
ズル、および短辺275■、長辺1600mn+。
(Example) Continuous casting apparatus as shown in FIG. 3 (immersion nozzle with inner diameter 9mm and 2 holes, molten powder supply nozzle with inner diameter 5a+m, short side 275mm, long side 1600mm+).

高さ900−の鋳型から構成され、この鋳型は110サ
イクル/分、 7.5 wr−のストロークでオ・ノシ
レーションされている)に低炭素鋼の溶w4(重量%で
、C:0.05%、Mn:0.20%、St :0.0
10%、P :0.013%、S :0.004%)を
鋳込んだ、同時に熔融パウダー供給ノズルから第1表に
示す融点と粘度を有する溶融パウダーを溶鋼面に供給し
て厚さ8IllIの溶融層を形成させ、その上に同表に
示す融点をもつ粉体状パウダーを投入して厚さ50gm
の粉体層を形成させた。そして2.5m/分の速度で引
き抜き、厚さ265mm、幅1572 mn+の鋳片を
製造した。
It consists of a 900-cm high mold which is injected at 110 cycles/min with a stroke of 7.5 wr- into a low carbon steel melt W4 (in weight percent, C: 0. 05%, Mn: 0.20%, St: 0.0
10%, P: 0.013%, S: 0.004%), and at the same time, molten powder having the melting point and viscosity shown in Table 1 was supplied from the molten powder supply nozzle to the molten steel surface to a thickness of 8IllI. Form a molten layer of
A powder layer was formed. Then, it was drawn at a speed of 2.5 m/min to produce a slab with a thickness of 265 mm and a width of 1572 m+.

この鋳造における溶融パウダーは0.4kg/溶鋼ト。The amount of molten powder in this casting was 0.4 kg/ton of molten steel.

と多く消費され、2.5 m7分に達する高速鋳造にも
かかわらずブレークアウトは発生しなかった。
Despite the high-speed casting of 2.5 m and 7 minutes, no breakout occurred.

また保温用粉体パウダーは殆ど消費されず保温は良好で
あった。
In addition, the thermal insulation powder was hardly consumed and the thermal insulation was good.

上記のように本発明では、潤滑用と保温用のパウダーの
供給系統が別であるから、鋳造条件に合わせてその消費
量を制御することができる0本実施例の場合、溶融パウ
ダーの消費量を0.28〜0.60kg/溶融しの範囲
で制御することができた。
As described above, in the present invention, since the supply systems for the powder for lubricating and the powder for heat insulation are separate, the consumption amount can be controlled according to the casting conditions.In the case of this embodiment, the consumption amount of the molten powder could be controlled within the range of 0.28 to 0.60 kg/melt.

比較例として上記と同じ条件で粉体パウダーを溶鋼熱で
溶融する従来法の鋳造を行った。このときのパウダー消
費量は0.27kg/溶融ト、で、鋳造速度は1.8m
/分が限界であった。なおこの鋳造の場合には、パウダ
ーの保温性と熔融速度の調整のためにパウダーに炭素粉
を混入したので溶鋼中の炭素含有量が増加するという間
朋が生じた。
As a comparative example, casting was carried out using the conventional method of melting powder powder with the heat of molten steel under the same conditions as above. The powder consumption at this time was 0.27 kg/melt, and the casting speed was 1.8 m.
/ minute was the limit. In the case of this casting, carbon powder was mixed into the powder to adjust its heat retention properties and melting rate, which resulted in an increase in the carbon content of the molten steel.

(発明の効果) 以上説明したように、この発明の連続鋳造方法によれば
、パウダーの有する潤滑機能と保温機能を充分に発揮さ
せることができる。したがって高速鋳造が可能になると
共に鋳片品質の向上に大きく寄与できる。
(Effects of the Invention) As explained above, according to the continuous casting method of the present invention, the lubricating function and heat retaining function of the powder can be fully exhibited. Therefore, high-speed casting becomes possible and it can greatly contribute to improving the quality of slabs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、鋳型潤滑にオイルを使用する初期の連続鋳造
方法を説明する図、 第2図は、従来のパウダーを用いる連続鋳造方法を説明
する図、 第3図(a)は、本発明の溶融パウダーと粉体パウダー
を用いる連続鋳造方法を説明する図、第3図(b)は、
第3図(a)のA部分の拡大図、である。 lは浸漬ノズル、2は鋳型、3は溶融パウダー供給ノズ
ル、4は冷却ノズル、5は溶鋼、6は凝固シェル、7は
鋳片、8aは溶融パウダー、8bは溶融層、9aは粉体
パウダー、9bは粉体層、10はオイル供給管、11は
オイル。
Figure 1 is a diagram illustrating an initial continuous casting method that uses oil for mold lubrication, Figure 2 is a diagram illustrating a conventional continuous casting method that uses powder, and Figure 3 (a) is a diagram illustrating the present invention. Figure 3 (b) is a diagram explaining the continuous casting method using the molten powder and powder powder.
This is an enlarged view of part A in FIG. 3(a). l is an immersion nozzle, 2 is a mold, 3 is a molten powder supply nozzle, 4 is a cooling nozzle, 5 is molten steel, 6 is a solidified shell, 7 is a slab, 8a is a molten powder, 8b is a molten layer, 9a is a powder powder , 9b is a powder layer, 10 is an oil supply pipe, and 11 is oil.

Claims (1)

【特許請求の範囲】[Claims] 鋳型内の溶鋼表面に、あらかじめ溶融したパウダーを供
給し、その上に粉状または顆粒状のパウダーを供給して
鋳造することを特徴とする溶融金属の連続鋳造方法。
A continuous casting method for molten metal characterized by supplying pre-molten powder to the surface of the molten steel in a mold, and then supplying powder or granular powder on top of the powder to perform casting.
JP2440489A 1989-02-02 1989-02-02 Method for continuously casting molten metal Pending JPH02205236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2440489A JPH02205236A (en) 1989-02-02 1989-02-02 Method for continuously casting molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2440489A JPH02205236A (en) 1989-02-02 1989-02-02 Method for continuously casting molten metal

Publications (1)

Publication Number Publication Date
JPH02205236A true JPH02205236A (en) 1990-08-15

Family

ID=12137231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2440489A Pending JPH02205236A (en) 1989-02-02 1989-02-02 Method for continuously casting molten metal

Country Status (1)

Country Link
JP (1) JPH02205236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584757B1 (en) * 2001-12-26 2006-05-30 주식회사 포스코 Method for Manufacturing Continuously Cast Strand by Continuous Casting Process
KR100773833B1 (en) * 2006-12-18 2007-11-06 주식회사 포스코 Molten mold flux for submerged nozzl

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584757B1 (en) * 2001-12-26 2006-05-30 주식회사 포스코 Method for Manufacturing Continuously Cast Strand by Continuous Casting Process
KR100773833B1 (en) * 2006-12-18 2007-11-06 주식회사 포스코 Molten mold flux for submerged nozzl

Similar Documents

Publication Publication Date Title
US7588649B2 (en) Casting steel strip
AU2002331433A2 (en) Casting steel strip
CN110819765A (en) Core-spun yarn for reducing superheat degree of molten steel and using method thereof
KR19990008228A (en) Steel strip continuous casting method
JP3226829B2 (en) Hollow granule mold flux for continuous casting
JPH02205236A (en) Method for continuously casting molten metal
JP3141187B2 (en) Powder for continuous casting of steel
JP3317258B2 (en) Mold powder for continuous casting of high Mn round section slabs
US4220191A (en) Method of continuously casting steel
KR100226941B1 (en) Mold flux for continuous casting of ultra low carbon steel
KR100321022B1 (en) MOLD FLUX FOR MIDDLE CARBON CONTENT AND Mn RICH STEEL
KR100749021B1 (en) Mold fiux for continuous casting
KR100349151B1 (en) Mold flux containing Zr02 for continous casting medium carbon steel
JP3256148B2 (en) Continuous casting method of steel with large shrinkage during solidification process
KR101834421B1 (en) Mold flux and casting method using thereof
JP3238073B2 (en) Front powder for continuous casting of steel
JPH03210950A (en) Powder for continuous casting
US4566524A (en) Method of and apparatus for casting a compound metal bar
JPH07314097A (en) Method for continuous casting of metal strip
KR20110109258A (en) Method for estimating mold powder's viscosity
JPH01202349A (en) Continuous casting method
KR20110131356A (en) Continuous casting method using powder
SU961850A1 (en) Method of continuous casting of metal to slabs
JPH10249500A (en) Powder for continuously casting steel and method for continuously casting steel using the powder
JPS63188459A (en) Continuous casting method for round cast billet