JPH02205086A - Semiconductor laser controller - Google Patents

Semiconductor laser controller

Info

Publication number
JPH02205086A
JPH02205086A JP1024925A JP2492589A JPH02205086A JP H02205086 A JPH02205086 A JP H02205086A JP 1024925 A JP1024925 A JP 1024925A JP 2492589 A JP2492589 A JP 2492589A JP H02205086 A JPH02205086 A JP H02205086A
Authority
JP
Japan
Prior art keywords
semiconductor laser
current
level command
command signal
emission level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1024925A
Other languages
Japanese (ja)
Other versions
JP2744043B2 (en
Inventor
Hidetoshi Ema
秀利 江間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1024925A priority Critical patent/JP2744043B2/en
Priority to US07/446,583 priority patent/US5036519A/en
Priority to DE3940205A priority patent/DE3940205B4/en
Publication of JPH02205086A publication Critical patent/JPH02205086A/en
Application granted granted Critical
Publication of JP2744043B2 publication Critical patent/JP2744043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable high speed, high precision, and high resolution by converting luminous level command signal into the photoelectric currents of semiconductor lasers so that the light receiving signals and the luminous level command signals may be equal, and controlling the semiconductor lasers by the sum or difference between the control currents of a high/electric negative return loop and the currents generated by conversion. CONSTITUTION:Luminous level instruction signals are input into a comparative amplifier 1 and a current converter 14, and some of the light output of semiconductor laser to be driven is monitored by a light receiving element 4. The comparative amplifier 1, the semiconductor laser 3, and the light receiving element 4 constitute a light/ electric negative return loop, and the comparative amplifier 1 compares the light receiving signals, which are proportional to the photovoltaic currents induced by the light receiving element 4, with the luminous level command signals, and controls the currents in the forward direction of the semiconductor lasers 3 by the results so that the light receiving signals and the luminous level command signals may be equal. Also the current converter 14 is composed of a differential amplifier 15, a transistor 16 and a resistor R0, and outputs currents which are set in advance according to the luminous level command signals so that the light receiving signals and the luminous level command signals may be equal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザプリンタ、光デイスク装置、光通信装置
等で光源として用いられる半導体レーザの光出力を制御
する半導体レーザ制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser control device for controlling the optical output of a semiconductor laser used as a light source in a laser printer, an optical disk device, an optical communication device, etc.

〔従来の技術〕[Conventional technology]

半導体レーザは極めて小型であって、かつ駆動電流によ
り高速に直接変調を行うことができるので、近年光デイ
スク装置、レーザプリンタ等の光源として広く使用され
ている。
Semiconductor lasers are extremely compact and can be directly modulated at high speed by a drive current, so they have recently been widely used as light sources for optical disk devices, laser printers, and the like.

しかしながら、半導体レーザの駆動電流・光出力特性は
温度により著しく変化し、これは半導体レーザの光強度
を所望の値に設定しようとする場合に問題となる。この
問題を解決して半導体レーザの利点を活かす為にさまざ
まなA P C(A utomatie Power 
Control)回路が提案されている。
However, the drive current and optical output characteristics of a semiconductor laser vary significantly depending on temperature, which poses a problem when trying to set the light intensity of the semiconductor laser to a desired value. In order to solve this problem and take advantage of the advantages of semiconductor lasers, various APC (Automatic Power
A control circuit has been proposed.

このAPC回路は次の3つの方式に分けられる。This APC circuit can be divided into the following three methods.

(1)半導体レーザの光出力を受光素子によりモニター
し、この受光素子に発生する受光電流(半導体レーザの
光出力に比例する)に比例する信号と。
(1) The light output of the semiconductor laser is monitored by a light receiving element, and a signal is proportional to the light receiving current (proportional to the light output of the semiconductor laser) generated in the light receiving element.

発光レベル指令信号とが等しくなるように常時半導体レ
ーザの順方向電流を制御する光・電気負帰還ループを設
け、この光・電気負帰還ループにより半導体レーザの光
出力を所望の値に制御する方式。
A method in which an optical/electrical negative feedback loop is provided to constantly control the forward current of the semiconductor laser so that it is equal to the emission level command signal, and this optical/electrical negative feedback loop controls the optical output of the semiconductor laser to a desired value. .

(2)パワー設定期間には半導体レーザの光出力を一4
= 受光素子によりモニターしてこの受光素子に発生する受
光電流(半導体レーザの光出力に比例する)に比例する
信号と9発光レベル指令信号とが等しくなるように半導
体レーザの順方向電流を制御し、パワー設定期間外には
パワー設定油量で設定した半導体レーザの順方向電流の
値を保持することによって半導体レーザの光出力を所望
の値に制御する。そしてパワー設定期間外にはパワー設
定期間で設定した半導体レーザの順方向電流の値を基準
として半導体レーザの順方向電流を情報で変調すること
により半導体レーザの光出力に情報を載せる方式。
(2) During the power setting period, the optical output of the semiconductor laser is
= The forward current of the semiconductor laser is controlled so that the signal proportional to the light-receiving current (proportional to the optical output of the semiconductor laser) monitored by the light-receiving element and generated in the light-receiving element is equal to the light emission level command signal. Outside the power setting period, the forward current value of the semiconductor laser set by the power setting oil amount is maintained, thereby controlling the optical output of the semiconductor laser to a desired value. Then, outside the power setting period, information is added to the optical output of the semiconductor laser by modulating the forward current of the semiconductor laser with information based on the value of the forward current of the semiconductor laser set during the power setting period.

(3)半導体レーザの温度を測定し、その測定した温度
によって半導体レーザの順方向電流を制御したり、又は
半導体レーザの温度を二定になるように制御したりして
半導体し一ザの光出力を所望の値に制御する方式。
(3) Measuring the temperature of the semiconductor laser and controlling the forward current of the semiconductor laser according to the measured temperature, or controlling the temperature of the semiconductor laser to be constant, A method of controlling output to a desired value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

半導体レーザの光出力を所望の値とするためには(1)
の方式が望ましいが、受光素子の動作速度。
In order to set the optical output of the semiconductor laser to the desired value (1)
The preferred method is the operating speed of the light receiving element.

光・電気負帰還ループを構成している増幅素子の動作速
度等の限界により制御速度に限界が生ずる。
There is a limit to the control speed due to limits such as the operating speed of the amplification elements that constitute the optical/electrical negative feedback loop.

例えばこの制御速度の目安として光・電気負帰還ループ
の開ループでの交叉周波数を考慮した場合この交叉周波
数をfoとしたとき半導体レーザの光出力のステップ応
答特性は次のように近似できる。
For example, when considering the cross-over frequency in the open loop of the optical/electrical negative feedback loop as a measure of this control speed, and when this cross-over frequency is set to fo, the step response characteristic of the optical output of the semiconductor laser can be approximated as follows.

Pout= pH(1−exp(−2n f ot )
)Pout:半導体レーザの光出力 Po=半導体レーザの設定された光強度t:時間 半導体レーザの多くの使用目的では半導体レーザの光出
力を変化させた直後から、設定された時間で。が経過す
るまでの全光量(光出力の積分値fp out)が所定
の値となることが必要とされ、2πf0τ。)]) となる。仮に、τ。=50ns、誤差の許容範囲を0.
4%とした場合f 、 >800MH2としなければな
らず、これは極めて困難である。
Pout=pH(1-exp(-2n fot )
) Pout: Optical output of the semiconductor laser Po = Set optical intensity of the semiconductor laser t: Time In many purposes of use of semiconductor lasers, the optical output of the semiconductor laser is changed for a set time immediately after changing it. It is necessary that the total amount of light (integrated value fp out of optical output) until the elapse of 2πf0τ becomes a predetermined value. )]) becomes. Suppose, τ. = 50ns, error tolerance 0.
In the case of 4%, f must be set to >800MH2, which is extremely difficult.

また(2)の方式では(1)の方式の上記問題は発生せ
ず、半導体レーザを高速に変調することが可能であるの
で、多く使用されている。しかしながらこの(2)の方
式では半導体レーザの光出力を常時制御しているわけで
はないので、外乱等により容易に半導体レーザの光量変
動が生ずる。外乱としては例えば半導体レーザのドウル
ープ特性があり、半導体レーザの光量はこのドウループ
特性により容易に数%程度の誤差が生じてしまう。半導
体レーザのドウループ特性を抑制する試みとして、半導
体レーザの熱時定数に半導体レーザ駆動電流の周波数特
性を合わせ補償する方法などが提案されているが、半導
体レーザの熱時定数は各半導体レーザ毎に個別にバラツ
キがあり、また半導体レーザの周囲環境により異なる等
の問題がある。
In addition, method (2) does not have the above-mentioned problems of method (1), and it is possible to modulate a semiconductor laser at high speed, so it is widely used. However, in this method (2), since the optical output of the semiconductor laser is not always controlled, the light amount of the semiconductor laser easily fluctuates due to disturbances and the like. The disturbance includes, for example, the dow loop characteristic of a semiconductor laser, and this dow loop characteristic easily causes an error of several percent in the amount of light of the semiconductor laser. In an attempt to suppress the draw loop characteristics of semiconductor lasers, methods have been proposed in which the thermal time constant of the semiconductor laser is compensated for by adjusting the frequency characteristics of the semiconductor laser drive current, but the thermal time constant of the semiconductor laser is different for each semiconductor laser. There are problems such as individual variations and differences depending on the surrounding environment of the semiconductor laser.

また光デイスク装置などにおいて問題とされる半導体レ
ーザの戻り光の影響による光量変動などの問題がある。
Further, there are problems such as variations in light amount due to the influence of return light from a semiconductor laser, which is a problem in optical disk devices and the like.

本発明は上記欠点を改善し、高速、高精度、高分解能な
半導体レーザ制御装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks and provide a semiconductor laser control device that is high speed, high accuracy, and high resolution.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、請求項1の発明は被駆動半導
体レーザの光出力を受光部により検知してこの受光部か
ら得られる前記半導体レーザの光出力に比例した受光信
号と発光レベル指令信号とが等しくなるように前記半導
体レーザの順方向電流を制御する光・電気負帰還ループ
と、前記受光信号と前記発光レベル指令信号とが等しく
なるように前記半導体レーザの光出力・順方向電流特性
及び前記受光部と前記半導体レーザとの結合係数。
In order to achieve the above object, the invention of claim 1 detects the optical output of a driven semiconductor laser by a light receiving section, and generates a light receiving signal proportional to the optical output of the semiconductor laser and a light emission level command signal obtained from the light receiving section. an optical/electrical negative feedback loop that controls the forward current of the semiconductor laser so that they are equal to each other; a coupling coefficient between the light receiving section and the semiconductor laser;

前記受光部の光入力・受光信号特性に基づいて前記発光
レベル指令信号を前記半導体レーザの光電流に変換する
変換手段とを有し、前記光・電気負帰還ループの制御電
流と前記変換手段により生成された電流との和または差
の電流によって前記半導体レーザを制御するようにした
ものであり、請求項2の発明は請求項1記載の半導体レ
ーザ制御装置において、前記半導体レーザの光出力を受
光部により検知してこの受光部から得られる前記半導体
レーザの光出力に比例した受光電流と。
conversion means for converting the light emission level command signal into a photocurrent of the semiconductor laser based on the optical input/light reception signal characteristics of the light receiving section, and the control current of the optical/electrical negative feedback loop and the conversion means The semiconductor laser is controlled by a current that is a sum or a difference between the generated current and the semiconductor laser. a light-receiving current proportional to the optical output of the semiconductor laser detected by the light-receiving part and obtained from the light-receiving part;

第1の発光レベル指令信号を電流に変換した発光レベル
指令信号とが等しくなるように前記半導体レーザの順方
向電流を制御する第1の光・電気負帰還ループと、前記
受光電流に比例する電圧と請求項1記載の発光レベル指
令信号とが等しくなるように前記第1の発光レベル指令
信号を制御する第2の光・電気負帰還ループとにより請
求項1記載の光・電気負帰還ループを構成するようにし
たものであり、 請求項3の発明は請求項1記載の半導体レーザ制御装置
において、前記変換手段が前記発光レベル指令信号をア
ナログ信号電圧として前記半導体レーザの光出力−順方
向電流特性を直線に近似して前記発光レベル指令信号に
比例した電流に変換するようにしたものであり、 請求項4の発明は請求項2記載の半導体レーザ制御装置
において、前記変換手段が前記発光レベル指令信号をア
ナログ信号電圧として前記半導体レーザの光出力−順方
向電流特性を直線に近似して前記発光レベル指令信号に
比例した電流に変換するようにしたものであり、 請求項5の発明は請求項1記載の半導体レーザ制御装置
において、前記変換手段が前記発光レベル指令信号をア
ナログ信号電圧として前記半導体レーザの光出力−順方
向電流特性を折れ線に近似して前記発光レベル指令信号
に対応した電流に変換するようにしたものであり、 請求項6の発明は請求項2記載の半導体レーザ制御装置
において、前記変換手段が前記発光レベル指令信号をア
ナログ信号電圧として前記半導体レーザの光出力−順方
向電流特性を折れ線に近似して前記発光レベル指令信号
に対応した電流に変換するようにしたものであり、 請求項7の発明は請求項1記載の半導体レーザ制御装置
において、前記発光レベル指令信号をディジタル信号と
し、前記変換手段が前記発光レベル指令信号を前記半導
体レーザの光出力−順方向電流特性を補正した信号に変
換する変換テーブルと、この変換テーブルにより変換さ
れた信号を前記半導体レーザの順方向電流に変換するデ
ィジタル/アナログ変換器とを有するようにしたもので
あり、 請求項8の発明は請求項2記載の半導体レーザ制御装置
において、前記発光レベル指令信号をディジタル信号と
し、前記変換手段が前記発光レベル指令信号を前記半導
体レーザの光出力−順方向電流特性を補正した信号に変
換する変換テーブルと、この変換テーブルにより変換さ
れた信号を前記半導体レーザの順方向電流に変換するデ
ィジタル/アナログ変換器とを有するようにしたもので
ある。
a first optical/electrical negative feedback loop that controls the forward current of the semiconductor laser so that the first light emission level command signal is equal to the light emission level command signal obtained by converting the first light emission level command signal into a current; and a voltage proportional to the light receiving current. and a second optical/electrical negative feedback loop that controls the first light emission level command signal so that the light emission level command signal and the light emission level command signal according to claim 1 are equal to each other. According to a third aspect of the present invention, in the semiconductor laser control device according to the first aspect, the conversion means converts the light emission level command signal into an analog signal voltage and converts the light output of the semiconductor laser into a forward current. A fourth aspect of the present invention is the semiconductor laser control device according to claim 2, in which the characteristic is approximated to a straight line and converted into a current proportional to the light emission level command signal. The invention of claim 5 is characterized in that the optical output-forward current characteristic of the semiconductor laser is approximated to a straight line by using an analog signal voltage as the command signal, and converted into a current proportional to the light emission level command signal. In the semiconductor laser control device according to Item 1, the conversion means uses the light emission level command signal as an analog signal voltage to approximate the optical output-forward current characteristic of the semiconductor laser to a polygonal line, and converts the light emission level command signal into a current corresponding to the light emission level command signal. According to a sixth aspect of the present invention, in the semiconductor laser control device according to the second aspect, the conversion means converts the light emission level command signal into an analog signal voltage and converts the light output of the semiconductor laser into a forward direction. The current characteristic is approximated to a polygonal line and converted into a current corresponding to the light emission level command signal. a conversion table for converting the light emission level command signal into a signal corrected for the optical output-forward current characteristic of the semiconductor laser; and a digital/analog converter for converting the directional current into a directional current.The invention according to claim 8 is the semiconductor laser control device according to claim 2, wherein the light emission level command signal is a digital signal, and the conversion means a conversion table for converting the light emission level command signal into a signal corrected for the optical output-forward current characteristic of the semiconductor laser; and a digital converter for converting the signal converted by the conversion table into a forward current for the semiconductor laser. The analog converter has an analog converter.

〔作 用〕[For production]

請求項1の発明では光・電気負帰還ループが半導体レー
ザの光出力を受光部により検知してこの受光部から得ら
れる半導体レーザの光出力に比例した受光信号と発光レ
ベル指令信号とが等しくなるように半導体レーザの順方
向電流を制御し、変換手段が前記受光信号と前記発光レ
ベル指令信号とが等しくなるように半導体レーザの光出
力・順方向電流特性及び前記受光部と半導体レーザとの
結合係数、前記受光部の光入力・受光信号特性に基づい
て前記発光レベル指令信号を半導体レーザの光電流に変
換する。半導体レーザは光・電気負帰還ループの制御電
流と変換手段により生成された電流との和または差の電
流によって制御される。
In the invention of claim 1, the optical/electrical negative feedback loop detects the optical output of the semiconductor laser by the light receiving section, and the light reception signal proportional to the optical output of the semiconductor laser obtained from the light receiving section becomes equal to the light emission level command signal. The converter controls the forward current of the semiconductor laser so that the light receiving signal and the light emission level command signal are equal to each other, and determines the optical output/forward current characteristics of the semiconductor laser and the coupling between the light receiving section and the semiconductor laser. The light emission level command signal is converted into a photocurrent of the semiconductor laser based on the coefficient and the light input/light reception signal characteristics of the light receiving section. The semiconductor laser is controlled by the sum or difference current between the control current of the opto-electrical negative feedback loop and the current generated by the conversion means.

請求項2の発明では第1の光・電気負帰還ループが前記
半導体レーザの光出力を受光部により検知してこの受光
部から得られる前記半導体レーザの光出力に比例した受
光電流と、第1の発光レベル指令信号を電流に変換した
発光レベル指令信号とが等しくなるように前記半導体レ
ーザの順方向電流を制御し、第2の光・電気負帰還ルー
プが前記受光電流に比例する電圧と請求項1記載の発光
レベル指令信号とが等しくなるように前記第1の発光レ
ベル指令信号を特徴する 請求項3の発明では変換手段が前記発光レベル指令信号
をアナログ信号電圧として前記半導体レーザの光出力−
順方向電流特性を直線に近似して前記発光レベル指令信
号に比例した電流に変換する。
In the invention of claim 2, a first optical/electrical negative feedback loop detects the optical output of the semiconductor laser by a light receiving section, and generates a light receiving current proportional to the optical output of the semiconductor laser obtained from the light receiving section; The forward current of the semiconductor laser is controlled so that the light emission level command signal obtained by converting the light emission level command signal into a current is equal to the light emission level command signal, and a second optical/electrical negative feedback loop generates a voltage proportional to the light receiving current. In the invention according to claim 3, the first light emission level command signal is characterized in that the first light emission level command signal is equal to the light emission level command signal according to claim 1. −
The forward current characteristic is approximated to a straight line and converted into a current proportional to the light emission level command signal.

請求項4の発明では変換手段が前記発光レベル指令信号
をアナログ信号電圧として前記半導体レーザの光出力−
順方向電流特性を直線に近似して前記発光レベル指令信
号に比例した電流に変換する。
In the invention according to claim 4, the conversion means converts the light emission level command signal into an analog signal voltage to convert the light output of the semiconductor laser into -
The forward current characteristic is approximated to a straight line and converted into a current proportional to the light emission level command signal.

請求項5の発明では変換手段が前記発光レベル指令信号
をアナログ信号電圧として前記半導体レーザの光出力−
順方向電流特性を折れ線に近似して前記発光レベル指令
信号に対応した電流に変換する。
In the invention according to claim 5, the conversion means converts the light emission level command signal into an analog signal voltage to convert the light output of the semiconductor laser into -
The forward current characteristic is approximated to a polygonal line and converted into a current corresponding to the light emission level command signal.

請求項6の発明では変換手段が前記発光レベル指令信号
をアナログ信号電圧として前記半導体レーザの光出力−
順方向電流特性を折れ線に近似して前記発光レベル指令
信号に対応した電流に変換する。
In the invention of claim 6, the conversion means converts the light emission level command signal into an analog signal voltage to convert the light output of the semiconductor laser into -
The forward current characteristic is approximated to a polygonal line and converted into a current corresponding to the light emission level command signal.

請求項7の発明では変換手段において前記発光レベル指
令信号が変換テーブルにより前記半導体レーザの光出力
−順方向電流特性を補正した信号に変換されてディジタ
ル/アナログ変換器により前記半導体レーザの順方向電
流に変換される。
In the seventh aspect of the invention, the light emission level command signal is converted by a conversion table into a signal in which the optical output-forward current characteristic of the semiconductor laser is corrected in the conversion means, and the forward current of the semiconductor laser is converted by a digital/analog converter. is converted to

請求項8の発明でも変換手段において前記発光レベル指
令信号が変換テーブルにより前記半導体レーザの光出力
−順方向電流特性を補正した信号に変換されてディジタ
ル/アナログ変換器により前記半導体レーザの順方向電
流に変換される。
In the invention of claim 8, the light emission level command signal is converted by the conversion table into a signal in which the optical output-forward current characteristic of the semiconductor laser is corrected by the conversion means, and the forward current of the semiconductor laser is converted by the digital/analog converter. is converted to

〔実施例〕〔Example〕

第1図は発明の一実施例を示す。 FIG. 1 shows an embodiment of the invention.

発光レベル指令信号は比較増幅器1及び電流変換器2に
入力され、被駆動半導体レーザ3の光出力の一部が受光
素子4によりモニターされる。比較増幅器1と半導体レ
ーザ3.受光素子4は光・電気負帰還ループを形成し、
比較増幅器1は受光素子4に誘起された光起電流(半導
体レーザ3の光出力に比例する)に比例する受光信号と
発光レベル指令信号とを比較してその結果により半導体
レーザ3の順方向電流を受光信号と発光レベル指令信号
とが等しくなるように制御する。また電流変換器2は前
記受光信号と発光レベル指令信号とが等しくなるように
発光レベル指令信号に従って予め設定された電流(半導
体レーザ3の光出力・順方向電流特性及び受光素子4と
半導体レーザ3との結合係数、受光素子3の光入力・受
光信号特性に基づいて予め設定された電流)を出力量る
The light emission level command signal is input to the comparison amplifier 1 and the current converter 2, and a part of the optical output of the driven semiconductor laser 3 is monitored by the light receiving element 4. Comparison amplifier 1 and semiconductor laser 3. The light receiving element 4 forms an optical/electrical negative feedback loop,
A comparison amplifier 1 compares a light reception signal proportional to the photovoltaic current (proportional to the optical output of the semiconductor laser 3) induced in the light receiving element 4 and a light emission level command signal, and adjusts the forward current of the semiconductor laser 3 based on the result. is controlled so that the light reception signal and the light emission level command signal are equal. Further, the current converter 2 generates a current that is preset according to the light emission level command signal (the light output and forward current characteristics of the semiconductor laser 3 and the light receiving element 4 and the semiconductor laser 3) so that the light reception signal and the light emission level command signal are equal to each other. A current preset based on the coupling coefficient with the light receiving element 3 and the light input/light receiving signal characteristics of the light receiving element 3 is outputted.

この電流変換器2の出力電流と、比較増幅器1より出力
される制御電流との和の電流が半導体レーザ3の順方向
電流となる。
The sum of the output current of the current converter 2 and the control current output from the comparator amplifier 1 becomes the forward current of the semiconductor laser 3.

ここで、前記光・電気負帰還ループの開ループでの交差
周波数をfoとし、DCゲインを10000とした場合
、半導体レーザ3の光出力P outのステップ応答特
性は次のように近似できる。
Here, when the open-loop crossover frequency of the optical/electrical negative feedback loop is fo and the DC gain is 10,000, the step response characteristic of the optical output P out of the semiconductor laser 3 can be approximated as follows.

Pout= PL+ (PS −PL)exp(−2π
f 、 t )PL:t=ωにおける光出力 PS:電流変換器2により設定された光量光・電気負帰
還ループの開ループでのDCゲインを10000として
いるので、設定誤差の許容範囲を0.1%以下とした場
合には、PLは設定した光量に等しいと考えられる。
Pout= PL+ (PS −PL)exp(−2π
f, t) PL: Optical output at t=ω PS: Light amount set by the current converter 2 Since the DC gain in the open loop of the optical/electrical negative feedback loop is set to 10,000, the allowable range of setting error is set to 0. When it is 1% or less, PL is considered to be equal to the set light amount.

したがって、仮に電流変換器2により設定された光量P
SがPLに等しければ、瞬時に半導体レーザ3の光出力
がPLに等しくなる。また、外乱等によりPSが5%変
動したとしてもf 0= 40MH2程度であれば、1
0ns後には半導体レーザ3の光出力は設定値に対する
誤差が0.4%以下になる。
Therefore, if the light amount P set by the current converter 2 is
If S is equal to PL, the optical output of the semiconductor laser 3 instantly becomes equal to PL. Furthermore, even if PS fluctuates by 5% due to disturbance etc., if f 0 = about 40MH2, then 1
After 0 ns, the optical output of the semiconductor laser 3 has an error of 0.4% or less with respect to the set value.

また半導体レーザ3の光出力を変化させた直後から設定
された時間τ。が経過するまでの全光量(光出力の積分
値f Pout)の誤差が0.4%以下になるための光
・電気負帰還ループの交差周波数は、τo= 50ns
とした場合40MH2以上であればよく、この程度の交
叉周波数ならば容易に実現できる。
Also, the time τ is set immediately after changing the optical output of the semiconductor laser 3. The crossing frequency of the optical/electrical negative feedback loop is τo = 50 ns so that the error in the total amount of light (integrated value of optical output f Pout) until the time elapses is 0.4% or less.
In this case, it is sufficient that the frequency is 40 MH2 or more, and a crossover frequency of this level can be easily realized.

さらに、この実施例では電流変換器2の出力電流を光・
電気負帰還ループの制御電流に加算する構成であるが、
半導体レーザ3と並列に電流変換器2を接続する構成と
すれば電流変換器2の出力電流と光・電気負帰還ループ
の制御電流との差の電流により半導体レーザ3を制御す
る構成が実現できる。
Furthermore, in this embodiment, the output current of the current converter 2 is
The configuration is such that it is added to the control current of the electrical negative feedback loop.
By connecting the current converter 2 in parallel with the semiconductor laser 3, it is possible to realize a configuration in which the semiconductor laser 3 is controlled by the current difference between the output current of the current converter 2 and the control current of the optical/electrical negative feedback loop. .

このようにこの実施例によれば高速、高精度。In this way, this embodiment achieves high speed and high precision.

高分解能な半導体レーザ制御装置が実現できる。A high-resolution semiconductor laser control device can be realized.

第2図は発明の他の実施例を示す。FIG. 2 shows another embodiment of the invention.

発光レベル指令信号は比較増幅器5及び電流変換器2に
入力され、被駆動半導体レーザ3の光出力の一部が受光
素子4によりモニターされる。受光素子4に誘起された
光起電流(半導体レーザ3の光出力に比例する)Isの
周波数の高い成分は容量Cに流れてインピーダンス変換
器6に入力され、光起電流Isの周波数の低い成分は抵
抗Rに流れて電圧に変換される。この抵抗Rに発生した
電圧は比較増幅fIt5と電圧−電流変換器7に入力さ
れ、電圧−電流変換器7が抵抗Rに発生した電圧を電流
に変換する。この電圧−電流変換器7の出力電流はイン
ピーダンス変換器6の出力電流と加算器8で加算され、
受光素子4に発生した光起電流工Sと等しい電流■。ど
なる。一方、比較増幅器5は抵抗Rに発生した電圧と発
光レベル指令信号とを比較してその差電圧を増幅し、こ
の比較増幅器5の出力電圧が電圧−電流変換器9により
電流に変換されて第1の発光レベル指令信号電流ILと
なる。減算器lOは電圧−電流変換器9からの第1の発
光レベル指令信号電流ILより加算器8からの電流1.
を減算してその差分電流を出力し、この差分電流が電流
増幅器11により増幅されて半導体レーザ3の制御電流
として出力される。したがって、受光素子4.容量C9
抵抗R,インピーダンス変換器6.電圧−電流変換器7
.加算器8.減算器10.電流増幅器11は半導体レー
ザ3の光出力に比例する受光素子4の光起電流Isと電
圧−電流変換器9からの第1の発光レベル指令信号電流
ILとが等しくなるように半導体レーザ3の順方向電流
を制御する第1の光・電気負帰還ループを構成し、比較
増幅器5.電圧−電流変換器9は受光素子4の光起電流
Isに比例する電圧と外部からの第2の発光レベル指令
信号とが等しくなるように第1の発光レベル指令信号電
流ILを制御する第2の光・電気負帰還ループを構成す
る。
The light emission level command signal is input to the comparison amplifier 5 and the current converter 2, and a part of the optical output of the driven semiconductor laser 3 is monitored by the light receiving element 4. The high frequency component of the photovoltaic current Is (proportional to the optical output of the semiconductor laser 3) induced in the light receiving element 4 flows into the capacitor C and is input to the impedance converter 6, and the low frequency component of the photovoltaic current Is flows through the resistor R and is converted into a voltage. The voltage generated across the resistor R is input to the comparison amplifier fIt5 and the voltage-current converter 7, and the voltage-current converter 7 converts the voltage generated across the resistor R into a current. The output current of this voltage-current converter 7 is added to the output current of the impedance converter 6 by an adder 8,
A current ■ equal to the photovoltaic current S generated in the light receiving element 4. bawl. On the other hand, the comparison amplifier 5 compares the voltage generated across the resistor R with the light emission level command signal and amplifies the difference voltage, and the output voltage of the comparison amplifier 5 is converted into a current by the voltage-current converter 9. The light emission level command signal current IL becomes 1. A subtracter lO converts the current 1.
is subtracted and the difference current is output, and this difference current is amplified by the current amplifier 11 and output as the control current of the semiconductor laser 3. Therefore, the light receiving element 4. Capacity C9
Resistor R, impedance converter6. Voltage-current converter 7
.. Adder 8. Subtractor 10. The current amplifier 11 adjusts the order of the semiconductor lasers 3 so that the photovoltaic current Is of the light receiving element 4, which is proportional to the optical output of the semiconductor laser 3, and the first light emission level command signal current IL from the voltage-current converter 9 are equal. Comparing amplifier 5. constitutes a first optical/electrical negative feedback loop for controlling directional current. The voltage-current converter 9 controls the first light emission level command signal current IL so that the voltage proportional to the photovoltaic current Is of the light receiving element 4 and the second light emission level command signal from the outside are equal. This constitutes an optical/electrical negative feedback loop.

また電流変換器2は第2の発光レベル指令信号の周波数
の高い成分に関しては加算器8からの電流工。と第1の
発光レベル指令信号電流ILとが等しくなるように第2
の発光レベル指令信号に従いあらかじめ設定された電流
(半導体レーザ3の光出力・順方向電流特性及び受光素
子4と半導体レーザ3との結合係数、受光素子3の光入
力・受光信号特性に基づいて予め設定された電流)を出
力し、第2の発光レベル指令信号の周波数の低い成分に
関しては抵抗Rの両端間電圧と第1の発光レベル指令信
号とが等しくなるように第2の発光レベル指令信号に従
いあらかじめ設定された電流(半導体レーザ3の光出力
・順方向電流特性及び受光素子4と半導体レーザ3との
結合係数、受光素子3の光入力・受光信号特性に基づい
て予め設定された電流)を出力する。この電流変換器2
の出力電流と電流増幅器11の出力電流との和の・電流
が半導体レーザ3の順方向電流となる。
Further, the current converter 2 converts the current from the adder 8 with respect to the high frequency component of the second light emission level command signal. and the first light emission level command signal current IL are equal to each other.
A current is set in advance according to the light emission level command signal of For the low frequency component of the second light emission level command signal, the second light emission level command signal is output such that the voltage across the resistor R is equal to the first light emission level command signal. (a current preset based on the optical output and forward current characteristics of the semiconductor laser 3, the coupling coefficient between the light receiving element 4 and the semiconductor laser 3, and the optical input and light receiving signal characteristics of the light receiving element 3) Output. This current converter 2
The sum of the output current of the current amplifier 11 and the output current of the current amplifier 11 becomes the forward current of the semiconductor laser 3.

ここで、前記第1の光・電気負帰還ループの開ループで
の交差周波数をfoとし、DCゲインを30とするとと
もに、前記第2の光・電気負帰還ループのDCゲインを
10000とした場合、半導体レーザ3の光出力P o
utのステップ応答特性は次のように近似できる。
Here, when the open loop crossing frequency of the first optical/electrical negative feedback loop is fo, the DC gain is 30, and the DC gain of the second optical/electrical negative feedback loop is 10000. , the optical output P o of the semiconductor laser 3
The step response characteristic of ut can be approximated as follows.

Pout= PL+ (PS −PL)exp(−2t
c f at )pt、:、t=ψにおける光出力 PS:電流変換器2により設定された光量節2の光・電
気負帰還ループのDCゲインを10000としているの
で、設定誤差の許容範囲を0.1%以下とした場合には
、PLは設定した光量に等しいと考えられる。また、第
1の光・電気負帰還ループのDCゲインを30としてい
るので、第1の光・電気負帰還ループでの定常誤差は(
PS−PL)730程度になる。したがって、仮に電流
変換器2により設定された光量PSがPLに等しければ
、半導体レーザ3の光出力が瞬時にPLに等しくなり、
また、外乱等によりPSが5%変動したとしても第1の
光・電気負帰還ループの定常誤差が0.2%程度となる
ので、 f、 =40MH2程度でかつ第1の光・電気
負帰還ループのDCゲインが30程度であれば、Ion
s後には半導体レーザ3の光出力は設定値に対する誤差
が0.4%以下になる。
Pout= PL+ (PS -PL)exp(-2t
c f at ) pt, :, Optical output PS at t=ψ: Since the DC gain of the optical/electrical negative feedback loop of light node 2 set by current converter 2 is set to 10000, the allowable range of setting error is set to 0. When it is set to .1% or less, PL is considered to be equal to the set light amount. Also, since the DC gain of the first optical/electrical negative feedback loop is set to 30, the steady-state error in the first optical/electrical negative feedback loop is (
PS-PL) It will be about 730. Therefore, if the light intensity PS set by the current converter 2 is equal to PL, the optical output of the semiconductor laser 3 instantly becomes equal to PL,
Furthermore, even if PS fluctuates by 5% due to disturbance etc., the steady-state error of the first optical/electrical negative feedback loop will be about 0.2%, so f, = about 40MH2 and the first optical/electrical negative feedback loop. If the DC gain of the loop is about 30, Ion
After s, the optical output of the semiconductor laser 3 has an error of 0.4% or less with respect to the set value.

また半導体レーザ3の光出力を変化させた直後から設定
された時間で。が経過するまでの全光量(光出力の積分
値f Pout)の誤差が0.4%以下になるための光
・電気負帰還ループの交差周波数は、τ。= 50ns
とした場合40MH2以上であればよく、またDCゲイ
ンは30倍程度あればよく、この程度の交叉周波数及び
DCゲインならば容易に実現できる。
Also, at a set time immediately after changing the optical output of the semiconductor laser 3. The crossing frequency of the optical/electrical negative feedback loop is τ so that the error in the total amount of light (integrated value f Pout of optical output) until lapses is 0.4% or less. = 50ns
In this case, it is sufficient that it is 40 MH2 or more, and the DC gain is only about 30 times, and this level of crossover frequency and DC gain can be easily realized.

さらに、この実施例では電流変換器12の出力電流を光
・電気負帰還ループの制御電流に加算する構成であるが
、半導体レーザ3と並列に電流変換器12を接続する構
成とすれば電流変換器12の出力電流と光・電気負帰還
ループの制御電流との差の電流により半導体レーザ3を
制御する構成が実現できる。
Furthermore, in this embodiment, the output current of the current converter 12 is added to the control current of the optical/electrical negative feedback loop, but if the current converter 12 is connected in parallel with the semiconductor laser 3, the current can be converted. A configuration can be realized in which the semiconductor laser 3 is controlled by a current that is the difference between the output current of the device 12 and the control current of the optical/electrical negative feedback loop.

第3図は本発明の他の実施例を示す。FIG. 3 shows another embodiment of the invention.

この実施例は上記第2図の実施例において、第2の発光
レベル指令信号の代りに比較増幅器5の出力電圧を電流
変換器13に入力するようにしたものであり、電流変換
器13は第2の発光レベル指令信号の周波数の高い成分
に関しては加算器8からの電流工。と第1の発光レベル
指令信号電流ILとが等しくなるように比較増幅器5の
出力電圧に従いあらかじめ設定された電流(半導体レー
ザ3の光出力・順方向電流特性及び受光素子4と半導体
レーザ3との結合係数、受光素子3の光入力・受光信号
特性に基づいて予め設定された電流)を出力し、第2の
発光レベル指令信号の周波数の低い成分に関しては抵抗
Rの両端間電圧と第1の発光レベル指令信号とが等しく
なるように比較増幅器5の出力電圧に従いあらかじめ設
定された電流(半導体レーザ3の光出力・順方向電流特
性及び受光素子4と半導体レーザ3との結合係数、受光
素子3の光入力・受光信号特性に基づいて予め設定され
た電流)を出力する。
In this embodiment, the output voltage of the comparison amplifier 5 is input to the current converter 13 instead of the second light emission level command signal in the embodiment shown in FIG. As for the high frequency component of the light emission level command signal No. 2, the current is inputted from the adder 8. A current is set in advance according to the output voltage of the comparator amplifier 5 (the optical output/forward current characteristics of the semiconductor laser 3 and the relationship between the light receiving element 4 and the semiconductor laser 3) so that A current preset based on the coupling coefficient and the light input and light reception signal characteristics of the light receiving element 3) is output, and for the low frequency component of the second light emission level command signal, the voltage across the resistor R and the first A current is set in advance according to the output voltage of the comparator amplifier 5 so that the light emission level command signal is equal to outputs a preset current (based on the optical input/reception signal characteristics).

第6図は本発明の他の実施例を示す。FIG. 6 shows another embodiment of the invention.

発光レベル指令信号は比較増幅器1及び電流変換器14
に入力され、被駆動半導体レーザ3の光出力の一部が受
光素子4によりモニターされる。比較増幅器1と半導体
レーザ3.受光素子4は光・電気負帰還ループを形成し
、比較増幅器1は受光素子4に誘起された光起電流(半
導体レーザ3の光出力に比例する)に比例する受光信号
と発光レベル指令信号とを比較してその結果により半導
体レーザ3の順方向電流を受光信号と発光レベル指令信
号とが等しくなるように制御する。
The light emission level command signal is sent to the comparison amplifier 1 and the current converter 14.
A part of the optical output of the driven semiconductor laser 3 is monitored by the light receiving element 4. Comparison amplifier 1 and semiconductor laser 3. The light-receiving element 4 forms an optical/electrical negative feedback loop, and the comparison amplifier 1 outputs a light-receiving signal proportional to the photovoltaic current (proportional to the optical output of the semiconductor laser 3) induced in the light-receiving element 4 and a light emission level command signal. are compared, and based on the result, the forward current of the semiconductor laser 3 is controlled so that the light reception signal and the light emission level command signal are equal.

また電流変換器14は差動増幅器15.トランジスタ1
6及び抵抗R0により構成され、前記受光信号と発光レ
ベル指令信号とが等しくなるように発光レベル指令信号
に従って予め設定された電流(半導体レーザ3の光出力
・順方向電流特性及び受光素子4と半導体レーザ3との
結合係数、受光素子3の光入力・受光信号特性に基づい
て予め設定された電流)を出力する。すなわち発光レベ
ル指令信号Vsが差動増幅器15に入力され、トランジ
スタ16及び抵抗R0によりVs/Roの電流に変換さ
れる。このVs/R,の電流と比較増幅器1の出力電流
AΔVとの和の電流V s / Ra +AΔVが半導
体レーザ3の順方向電流となり、半導体レーザ3は順方
向電流Vs/Ro+AΔVにより決まる光出力P。を出
力する。
Further, the current converter 14 is a differential amplifier 15. transistor 1
6 and a resistor R0, and the current is preset according to the light emission level command signal so that the light reception signal and the light emission level command signal are equal (the light output and forward current characteristics of the semiconductor laser 3 and the light receiving element 4 and the semiconductor A current preset based on the coupling coefficient with the laser 3 and the light input/light reception signal characteristics of the light receiving element 3 is output. That is, the light emission level command signal Vs is input to the differential amplifier 15, and is converted into a current of Vs/Ro by the transistor 16 and resistor R0. The current Vs/Ra +AΔV, which is the sum of the current Vs/R and the output current AΔV of the comparison amplifier 1, becomes the forward current of the semiconductor laser 3, and the semiconductor laser 3 has an optical output P determined by the forward current Vs/Ro+AΔV. . Output.

一般的に半導体レーザはしきい値電流Ith以上の順方
向電流に対しては微分量子効率ηの直線で光出力−順方
向電流の関係を近似できる。この場合光出力P。は次の
ように表わすことができる。
Generally, in a semiconductor laser, for a forward current higher than a threshold current Ith, the relationship between optical output and forward current can be approximated by a straight line of differential quantum efficiency η. In this case, the optical output P. can be expressed as follows.

1+α577A α:受光素子3と半導体レーザ4との結合係数S:受光
素子3の放射感度 A:比較増幅器1の増幅率 ΔV = V s / R1−αS P nVsがV、
(V、に対応する半導体レーザ3の光出力は半導体レー
ザの電流がしきい値電流以上の時の光強度)からViへ
変化したときの応答特性は第2図の実施例の場合と同様
に exp(−2πf、t) と近似できる。
1+α577A α: Coupling coefficient between photodetector 3 and semiconductor laser 4 S: Radiation sensitivity of photodetector 3 A: Amplification factor of comparison amplifier 1 ΔV = V s / R1-αS P nVs is V,
(The optical output of the semiconductor laser 3 corresponding to V is the optical intensity when the current of the semiconductor laser is equal to or higher than the threshold current) When the response characteristic changes from Vi to Vi, the response characteristics are the same as in the embodiment shown in FIG. It can be approximated as exp(-2πf, t).

したがってR=αSηR0となるように設定すれば、簡
単な構成により第2図の実施例と同等な効果が得られる
Therefore, by setting R=αSηR0, the same effect as the embodiment shown in FIG. 2 can be obtained with a simple configuration.

この実施例における電流変換器14は第7図乃至第10
図に示すような構成のものを用いてもよい。
The current converter 14 in this embodiment is shown in FIGS.
A configuration as shown in the figure may also be used.

第7図に示す電流変換器はトランジスタ17〜20、電
流源21、電圧源22、抵抗23〜27により構成され
、第8図に示す電流変換器は電界効果トランジスタ28
及び抵抗29により構成されている。第9図に示す電流
変換器はトランジスタ30及び抵抗31により構成され
、第10図に示す電流変換器はトランジスタ32〜35
、電流源36、電圧源37、抵抗38〜4zにより構成
されている。これらの電流変換器は上記電流変換器14
と同様に前記受光信号と発光レベル指令信号とが等しく
なるように発光レベル指令信号に従って予め設定された
電流(半導体レーザ3の光出力・順方向電流特性及び受
光素子4と半導体レーザ3との結合係数、受光素子3の
光入力・受光信号特性に基づいて予め設定された電流)
を出力し、すなわち発光レベル指令信号を半導体レーザ
3の光出力−順方向電流特性を直線に近似して発光レベ
ル指令信号に比例する電流に変換する。
The current converter shown in FIG. 7 is composed of transistors 17 to 20, a current source 21, a voltage source 22, and resistors 23 to 27, and the current converter shown in FIG.
and a resistor 29. The current converter shown in FIG. 9 is composed of a transistor 30 and a resistor 31, and the current converter shown in FIG. 10 is composed of transistors 32 to 35.
, a current source 36, a voltage source 37, and resistors 38 to 4z. These current converters are the current converter 14
Similarly, a current is preset according to the light emission level command signal so that the light reception signal and the light emission level command signal are equal (the optical output and forward current characteristics of the semiconductor laser 3 and the coupling between the light receiving element 4 and the semiconductor laser 3). coefficient, current preset based on the light input and light reception signal characteristics of the light receiving element 3)
That is, the light emission level command signal is converted into a current proportional to the light emission level command signal by approximating the optical output-forward current characteristic of the semiconductor laser 3 to a straight line.

第4図は本発明の他の実施例を示す。FIG. 4 shows another embodiment of the invention.

発光レベル指令信号は比較増幅器5及び電流変換器14
に入力され、被駆動半導体レーザ3の光出力の一部が受
光素子4によりモニターされる。受光素子4に誘起され
た光起電流(半導体レーザ3の光出力に比例する)Is
の周波数の高い成分は容量Cに流れてインピーダンス変
換器6に入力され、光起電流Isの周波数の低い成分は
抵抗Rに流れて電圧に変換される。この抵抗Rに発生し
た電圧は比較増幅器5と電圧−電流変換器7に入力され
、電圧−電流変換器7が抵抗Rに発生した電圧を電流に
変換する。この電圧−電流変換器7の出力電流はインピ
ーダンス変換器6の出力電流と加算器8で加算され、受
光素子4に発生した光起電流工Sと等しい電流工。とな
る。一方、比較増幅器5は抵抗Rに発生した電圧と発光
レベル指令信号とを比較してその差電圧を増幅し、この
比較増幅器5の出力電圧が電圧−電流変換器9により電
流に変換されて第1の発光レベル指令信号電流ILとな
る。減算器lOは電圧−電流変換器9からの第1の発光
レベル指令信号電流ILより加算器8からの電流工。を
減算してその差分電流を出力し、この差分電流が電流増
幅器11により増幅されて半導体レーザ3の制御電流と
して出力される。したがって、受光素子4.容量C1抵
抗R,インピーダンス変換器6.電圧−電流変換器7.
加算器8.減算器10.電流増幅器11は半導体レーザ
3の光出力に比例する受光素子4の光起電流Isと電圧
−電流変換器9からの第1の発光レベル指令信号電流I
Lとが等しくなるように半導体レーザ3の順方向電流を
制御する第1の光・電気負帰還ループを構成し、比較増
幅器5.電圧−電流変換器9は受光素子4の光起電流I
sに比例する電圧と外部からの第2の発光レベル指令信
号とが等しくなるように第1の発光レベル指令信号電流
ILを制御する第2の光・電気負帰還ループを構成する
The light emission level command signal is sent to the comparison amplifier 5 and the current converter 14.
A part of the optical output of the driven semiconductor laser 3 is monitored by the light receiving element 4. Photovoltaic current induced in the light receiving element 4 (proportional to the optical output of the semiconductor laser 3) Is
The high frequency component of the photovoltaic current Is flows through the capacitor C and is input to the impedance converter 6, and the low frequency component of the photovoltaic current Is flows through the resistor R and is converted into a voltage. The voltage generated across the resistor R is input to the comparison amplifier 5 and the voltage-current converter 7, and the voltage-current converter 7 converts the voltage generated across the resistor R into a current. The output current of this voltage-current converter 7 is added to the output current of the impedance converter 6 by an adder 8, and the result is a current equal to the photovoltaic current S generated in the light receiving element 4. becomes. On the other hand, the comparison amplifier 5 compares the voltage generated across the resistor R with the light emission level command signal and amplifies the difference voltage, and the output voltage of the comparison amplifier 5 is converted into a current by the voltage-current converter 9. The light emission level command signal current IL becomes 1. A subtracter IO subtracts the current from the adder 8 from the first light emission level command signal current IL from the voltage-current converter 9. is subtracted and the difference current is output, and this difference current is amplified by the current amplifier 11 and output as the control current of the semiconductor laser 3. Therefore, the light receiving element 4. Capacitance C1 resistance R, impedance converter6. Voltage-current converter7.
Adder 8. Subtractor 10. The current amplifier 11 receives the photovoltaic current Is of the light receiving element 4 which is proportional to the optical output of the semiconductor laser 3 and the first light emission level command signal current I from the voltage-current converter 9.
A first optical/electrical negative feedback loop is configured to control the forward current of the semiconductor laser 3 so that L is equal to the comparator amplifier 5. A voltage-current converter 9 converts the photovoltaic current I of the light receiving element 4
A second optical/electrical negative feedback loop is configured to control the first light emission level command signal current IL so that the voltage proportional to s and the second light emission level command signal from the outside are equal.

また電流変換器14は差動増幅器15.トランジスタ1
6及び抵抗R8により構成され、前記受光信号と発光レ
ベル指令信号とが等しくなるように発光レベル指令信号
に従って予め設定された電流(半導体レーザ3の光出力
・順方向電流特性及び受光素子4と半導体レーザ3との
結合係数、受光素子3の光入力・受光信号特性に基づい
て予め設定された電流)を出力する。すなわち発光レベ
ル指令信号Vsが差動増幅器15に入力され、トランジ
スタ16及び抵抗R0によりVs/R0の電流に変換さ
れる。このV s / Roの電流と比較増幅器1の出
力電流AΔVとの和の電流V s / Ro + AΔ
■が半導体レーザ3の順方向電流となり、半導体レーザ
3は順方向電流Vs/Ro+AΔVにより決まる光出力
P0を出力する。
Further, the current converter 14 is a differential amplifier 15. transistor 1
6 and a resistor R8, the current is preset according to the light emission level command signal so that the light reception signal and the light emission level command signal are equal (the light output and forward current characteristics of the semiconductor laser 3 and the light receiving element 4 and the semiconductor A current preset based on the coupling coefficient with the laser 3 and the light input/light reception signal characteristics of the light receiving element 3 is output. That is, the light emission level command signal Vs is input to the differential amplifier 15, and is converted into a current of Vs/R0 by the transistor 16 and resistor R0. The current of the sum of this V s / Ro current and the output current AΔV of comparison amplifier 1 is V s / Ro + AΔ
(2) is the forward current of the semiconductor laser 3, and the semiconductor laser 3 outputs an optical output P0 determined by the forward current Vs/Ro+AΔV.

一般的に半導体レーザはしきい値電流Ith以上の順方
向電流に対しては微分量子効率ηの直線で光出力−順方
向電流の関係を近似できる。この場合光出力P。は次の
ように表わすことができる。
Generally, in a semiconductor laser, for a forward current higher than a threshold current Ith, the relationship between optical output and forward current can be approximated by a straight line of differential quantum efficiency η. In this case, the optical output P. can be expressed as follows.

1+αS ηA α:受光素子3と半導体レーザ4との結合係数S:受光
素子3の放射感度 R1:電圧−電流変換器9の変換係数 A:比較増幅器1の増幅率 IL=αSP。
1+αS ηA α: Coupling coefficient S between the light receiving element 3 and semiconductor laser 4: Radiation sensitivity R1 of the light receiving element 3: Conversion coefficient A of the voltage-current converter 9: Amplification factor IL of the comparison amplifier 1 = αSP.

VsがV。(V、に対応する半導体レーザ3の光出力は
半導体レーザの電流がしきい値電流以上の時の光強度)
からViへ変化したときの応答特性は第2図の実施例の
場合と同様に exp(−2πf、t) と近似できる。
Vs is V. (The optical output of the semiconductor laser 3 corresponding to V is the optical intensity when the current of the semiconductor laser is higher than the threshold current)
The response characteristic when changing from Vi to Vi can be approximated as exp(-2πf, t) as in the embodiment shown in FIG.

したがってR=αSηR0となるように設定すれば、簡
単な構成により第2図の実施例と同等な効果が得られる
Therefore, by setting R=αSηR0, the same effect as the embodiment shown in FIG. 2 can be obtained with a simple configuration.

第5図は本発明の他の実施例を示す。FIG. 5 shows another embodiment of the invention.

この実施例は上記第4図の実施例において、第2の発光
レベル指令信号の代りに比較増幅器5の出力電圧を電流
変換器14に入力するようにしだものであり、電流変換
器14は差動増幅器15.トランジスタ16及び抵抗R
0により構成され、前記受光信号と発光レベル指令信号
とが等しくなるように比較増幅器5の出力電圧に従って
予め設定された電流(半導体レーザ3の光出力・順方向
電流特性及び受光素子4と半導体レーザ3との結合係数
In this embodiment, the output voltage of the comparison amplifier 5 is input to the current converter 14 instead of the second light emission level command signal in the embodiment shown in FIG. Dynamic amplifier 15. Transistor 16 and resistor R
0, and the current is preset according to the output voltage of the comparator amplifier 5 so that the light receiving signal and the light emission level command signal are equal (the optical output and forward current characteristics of the semiconductor laser 3 and the light receiving element 4 and the semiconductor laser Coupling coefficient with 3.

受光素子3の光入力・受光信号特性に基づいて予め設定
された電流)を出力する。すなわち比較増幅器5の出力
電圧が差動増幅器15に入力され、トランジスタ16及
び抵抗R0によりV s / Roの電流に変換される
A preset current is output based on the light input and light reception signal characteristics of the light receiving element 3. That is, the output voltage of the comparison amplifier 5 is input to the differential amplifier 15, and is converted into a current of V s /Ro by the transistor 16 and the resistor R0.

以上説明した実施例では電流変換器を一般的なものと、
直線に近似したものを用いたが、折れ線に近似するもの
を用いることもできる。第11図乃至第13図は上記実
施例において電流変換器として用いることができる折れ
線近似による電流変換器の各側を示す。
In the embodiments described above, the current converter is a general one,
Although a line approximating a straight line is used, a line approximating a polygonal line may also be used. FIGS. 11 to 13 show each side of a current converter according to a polygonal line approximation that can be used as a current converter in the above embodiment.

第11図に示す電流変換器は差動増幅器43、トランジ
スタ44、ダイオード45、電圧源46、抵抗47〜4
9により構成され、折れ点が電圧源46の電圧により決
まる。第12図に示す電流変換器はトランジスタ50〜
53、電流源54、ダイオード55,56、電圧源57
〜59、抵抗60〜67により構成され、折れ点が電圧
源57.58の電圧により決まる。第13図に示す電流
変換器はトランジスタ68〜73、電流源74〜77、
電圧源78,79、抵抗80〜83により構成され、折
れ点が電圧源78.79の電圧により決まる。
The current converter shown in FIG. 11 includes a differential amplifier 43, a transistor 44, a diode 45, a voltage source 46, and resistors 47 to 4.
9, and the bending point is determined by the voltage of the voltage source 46. The current converter shown in FIG.
53, current source 54, diodes 55, 56, voltage source 57
59 and resistors 60 to 67, and the bending point is determined by the voltage of the voltage source 57.58. The current converter shown in FIG. 13 includes transistors 68 to 73, current sources 74 to 77,
It is composed of voltage sources 78 and 79 and resistors 80 to 83, and the bending point is determined by the voltage of the voltage sources 78 and 79.

また上記電流変換器を最適化するには、発光レベル指令
信号をディジタル信号として変換テーブルにより半導体
レーザの光出力−順方向電流特性を補正するようにする
ことが有効であり、この場合の実施例の一部を第14図
に示す。
In addition, in order to optimize the above-mentioned current converter, it is effective to use the light emission level command signal as a digital signal and correct the optical output-forward current characteristic of the semiconductor laser using a conversion table. A part of it is shown in Fig. 14.

この実施例では上記実施例において、ディジタル信号か
らなる発光レベル指令信号が変換テーブル84により半
導体レーザの光出力−順方向電流特性を補正するように
データ変換されてディジタル/アナログ(D/A)変換
器85によりD/A変換され、トランジスタ86〜89
、電流源90、電圧源91、抵抗92〜96からなる電
流変換部で電流に変換されて半導体レーザ3へ供給され
る。また発光レベル指令信号がデータ遅延回路97によ
り所定の時間遅延され、D/A変換器98によりD/A
変換されて上記比較増幅器5に入力される。
In this embodiment, in the above embodiment, the light emission level command signal consisting of a digital signal is converted into data by the conversion table 84 so as to correct the optical output-forward current characteristic of the semiconductor laser, and is converted into digital/analog (D/A) conversion. D/A conversion is performed by a device 85, and transistors 86 to 89
, a current source 90, a voltage source 91, and resistors 92 to 96, which convert the current into a current and supply it to the semiconductor laser 3. In addition, the light emission level command signal is delayed by a data delay circuit 97 for a predetermined time, and is D/A converted by a D/A converter 98.
It is converted and input to the comparison amplifier 5.

〔発明の効果〕〔Effect of the invention〕

以上のように請求項1の発明によれば被駆動半導体レー
ザの光出力を受光部により検知してこの受光部から得ら
れる前記半導体レーザの光出力に比例した受光信号と発
光レベル指令信号とが等しくなるように前記半導体レー
ザの順方向電流を制御する光・電気負帰還ループと、前
記受光信号と前記発光レベル指令信号とが等しくなるよ
うに前記半導体レーザの光出力・順方向電流特性及び前
記受光部と前記半導体レーザとの結合係数、前記受光部
の光入力・受光信号特性に基づいて前記発光レベル指令
信号を前記半導体レーザの光電流に変換する変換手段と
を有し、前記光・電気負帰還ループの制御電流と前記変
換手段により生成された電流との和または差の電流によ
って前記半導体レーザを制御するので、高速、高精度、
高分解能でかつ外乱等の影響に強い半導体レーザ制御装
置を実現することができる。
As described above, according to the invention of claim 1, the light output of the driven semiconductor laser is detected by the light receiving section, and the light receiving signal proportional to the light output of the semiconductor laser obtained from the light receiving section and the light emission level command signal are generated. an optical/electrical negative feedback loop that controls the forward current of the semiconductor laser so that they are equal; and an optical/electrical negative feedback loop that controls the forward current of the semiconductor laser so that the light reception signal and the light emission level command signal are equal; a conversion means for converting the light emission level command signal into a photocurrent of the semiconductor laser based on a coupling coefficient between a light receiving section and the semiconductor laser and a light input/light receiving signal characteristic of the light receiving section; Since the semiconductor laser is controlled by the current that is the sum or difference between the control current of the negative feedback loop and the current generated by the conversion means, high speed, high precision,
It is possible to realize a semiconductor laser control device that has high resolution and is resistant to the effects of disturbances and the like.

また請求項2の発明によれば請求項1記載の半導体レー
ザ制御装置において、前記半導体レーザの光出力を受光
部により検知してこの受光部から得られる前記半導体レ
ーザの光出力に比例した受光電流と、第1の発光レベル
指令信号を電流に変換した発光レベル指令信号とが等し
くなるように前記半導体レーザの順方向電流を制御する
第1の光・電気負帰還ループと、前記受光電流に比例す
る電圧と請求項1記載の発光レベル指令信号とが等しく
なるように前記第1の発光レベル指令信号を制御する第
2の光・電気負帰還ループとにより請求項1記載の光・
電気負帰還ループを構成したので、高域の光・電気負帰
還ループの開ループゲインを非常に大きくとらなくても
請求項1記載の半導体レーザ制御装置と同等な効果が得
られる。
According to a second aspect of the present invention, in the semiconductor laser control device according to the first aspect, the light output of the semiconductor laser is detected by a light receiving section, and a light receiving current proportional to the light output of the semiconductor laser is obtained from the light receiving section. and a first optical/electrical negative feedback loop that controls the forward current of the semiconductor laser so that the first optical emission level command signal converted into a current becomes equal to the optical emission level command signal; and a second optical/electrical negative feedback loop that controls the first light emission level command signal so that the voltage equal to the light emission level command signal according to claim 1.
Since the electric negative feedback loop is configured, the same effect as the semiconductor laser control device according to the first aspect can be obtained without having to set the open loop gain of the high-frequency optical/electrical negative feedback loop to be very large.

請求項3の発明によれば請求項1記載の半導体レーザ制
御装置において、前記変換手段が前記発光レベル指令信
号をアナログ信号電圧として前記半導体レーザの光出力
−順方向電流特性を直線に近似して前記発光レベル指令
信号に比例した電流に変換するので、簡単な回路構成で
請求項1記載の半導体レーザ制御装置と同等な効果が得
られる。
According to a third aspect of the present invention, in the semiconductor laser control device according to the first aspect, the conversion means approximates the optical output-forward current characteristic of the semiconductor laser to a straight line by using the light emission level command signal as an analog signal voltage. Since the current is converted into a current proportional to the light emission level command signal, the same effect as the semiconductor laser control device according to the first aspect can be obtained with a simple circuit configuration.

請求項4の発明によれば請求項2記載の半導体レーザ制
御装置において、前記変換手段が前記発光レベル指令信
号をアナログ信号電圧として前記半導体レーザの光出力
−順方向電流特性を直線に近似して前記発光レベル指令
信号に対応した電流に変換するので、簡単な回路構成で
請求項2記載の半導体レーザ制御装置と同等な効果が得
られる。
According to a fourth aspect of the present invention, in the semiconductor laser control device according to the second aspect, the conversion means approximates the optical output-forward current characteristic of the semiconductor laser to a straight line by using the light emission level command signal as an analog signal voltage. Since the current is converted into a current corresponding to the light emission level command signal, the same effect as the semiconductor laser control device according to the second aspect can be obtained with a simple circuit configuration.

請求項5の発明によれば請求項1記載の半導体レーザ制
御装置において、前記変換手段が前記発光レベル指令信
号をアナログ信号電圧として前記半導体レーザの光出力
−順方向電流特性を折れ線に近似して前記発光レベル指
令信号に対応した電流に変換するので、簡単な回路構成
で直線近似の場合より精度がよく請求項1記載の半導体
レーザ制御装置と同等な効果が得られる。
According to a fifth aspect of the present invention, in the semiconductor laser control device according to the first aspect, the conversion means approximates the optical output-forward current characteristic of the semiconductor laser to a polygonal line by using the light emission level command signal as an analog signal voltage. Since the light emission level command signal is converted into a current corresponding to the light emission level command signal, it is possible to obtain the same effect as the semiconductor laser control device according to claim 1, which has better accuracy than the case of linear approximation with a simple circuit configuration.

請求項6の発明によれば請求項2記載の半導体レーザ制
御装置において、前記変換手段が前記発光レベル指令信
号をアナログ信号電圧として前記半導体レーザの光出力
−順方向電流特性を折れ線に近似して前記発光レベル指
令信号に対応した電流に変換するので、簡単な回路構成
で直線近似の場合より精度がよく請求項2記載の半導体
レーザ制御装置と同等な効果が得られる。
According to a sixth aspect of the present invention, in the semiconductor laser control device according to the second aspect, the conversion means approximates the optical output-forward current characteristic of the semiconductor laser to a polygonal line by using the light emission level command signal as an analog signal voltage. Since the light emission level command signal is converted into a current corresponding to the light emission level command signal, the accuracy is higher than that of linear approximation with a simple circuit configuration, and the same effect as the semiconductor laser control device according to the second aspect can be obtained.

請求項7の発明によれば請求項1記載の半導体レーザ制
御装置において、前記発光レベル指令信号をディジタル
信号とし、前記変換手段が前記発光レベル指令信号を前
記半導体レーザの光出力−順方向電流特性を補正した信
号に変換する変換テーブルと、この変換テーブルにより
変換された信号を前記半導体レーザの順方向電流に変換
するディジタル/アナログ変換器とを有するので、請求
項1記載の電流変換手段を変換デープルにより非直線性
を保証して行うために精度がよく請求項1記載の半導体
レーザ制御装置と同等な効果が得られる。
According to a seventh aspect of the present invention, in the semiconductor laser control device according to the first aspect, the light emission level command signal is a digital signal, and the conversion means converts the light emission level command signal into an optical output-forward current characteristic of the semiconductor laser. The current converting means according to claim 1 has a conversion table that converts the signal into a corrected signal, and a digital/analog converter that converts the signal converted by the conversion table into a forward current of the semiconductor laser. Since the non-linearity is guaranteed by the dople, the accuracy is high and the same effect as the semiconductor laser control device according to the first aspect can be obtained.

請求項8の発明によれば請求項2記載の半導体レーザ制
御装置において、前記発光レベル指令信号をディジタル
信号とし、前記変換手段が前記発光レベル指令信号を前
記半導体レーザの光出力−順方向電流特性を補正した信
号に変換する変換テーブルと、この変換テーブルにより
変換された信号を前記半導体レーザの順方向電流に変換
するディジタル/アナログ変換器とを有するので、請求
項2記載の電流変換手段を変換デープルにより非直線性
を保証して行うために精度がよく請求項2記載の半導体
レーザ制御装置と同等な効果が得られる。
According to an eighth aspect of the present invention, in the semiconductor laser control device according to the second aspect, the light emission level command signal is a digital signal, and the conversion means converts the light emission level command signal into an optical output-forward current characteristic of the semiconductor laser. The current converting means according to claim 2 has a conversion table that converts the signal into a corrected signal, and a digital/analog converter that converts the signal converted by the conversion table into a forward current of the semiconductor laser. Since the non-linearity is guaranteed by the dople, the accuracy is high and the same effect as the semiconductor laser control device according to the second aspect can be obtained.

【図面の簡単な説明】 第1図乃至第6図は本発明の各実施例を示す回路図、第
7図乃至第13図は本発明の他の実施例における電流変
換器を示す回路図、第14図は本発明の他の実施例の一
部を示す回路図である。 1.5・・・比較増幅器、2.12,13,14・・・
電流変換器、3・・・半導体レーザ、4・・・受光素子
、6・・・インピーダンス変換器、7,9・・・電圧−
電流変換器、8・・・加算器、10・・・減算器、11
・・・電流増幅器、C・・・容量、R・・・抵抗、84
・・・変換テープル、85・・・D/A変換器。 も
[Brief Description of the Drawings] Figs. 1 to 6 are circuit diagrams showing each embodiment of the present invention, Figs. 7 to 13 are circuit diagrams showing current converters in other embodiments of the present invention, FIG. 14 is a circuit diagram showing a part of another embodiment of the present invention. 1.5... Comparison amplifier, 2.12, 13, 14...
Current converter, 3... Semiconductor laser, 4... Light receiving element, 6... Impedance converter, 7, 9... Voltage -
Current converter, 8... Adder, 10... Subtractor, 11
...Current amplifier, C...Capacitance, R...Resistance, 84
...conversion table, 85...D/A converter. too

Claims (1)

【特許請求の範囲】 1、被駆動半導体レーザの光出力を受光部により検知し
てこの受光部から得られる前記半導体レーザの光出力に
比例した受光信号と発光レベル指令信号とが等しくなる
ように前記半導体レーザの順方向電流を制御する光・電
気負帰還ループと、前記受光信号と前記発光レベル指令
信号とが等しくなるように前記半導体レーザの光出力・
順方向電流特性及び前記受光部と前記半導体レーザとの
結合係数、前記受光部の光入力・受光信号特性に基づい
て前記発光レベル指令信号を前記半導体レーザの光電流
に変換する変換手段とを有し、前記光・電気負帰還ルー
プの制御電流と前記変換手段により生成された電流との
和または差の電流によって前記半導体レーザを制御する
ことを特徴とする半導体レーザ制御装置。 2、請求項1記載の半導体レーザ制御装置において、前
記半導体レーザの光出力を受光部により検知してこの受
光部から得られる前記半導体レーザの光出力に比例した
受光電流と、第1の発光レベル指令信号を電流に変換し
た発光レベル指令信号とが等しくなるように前記半導体
レーザの順方向電流を制御する第1の光・電気負帰還ル
ープと、前記受光電流に比例する電圧と請求項1記載の
発光レベル指令信号とが等しくなるように前記第1の発
光レベル指令信号を制御する第2の光・電気負帰還ルー
プとにより請求項1記載の光・電気負帰還ループを構成
したことを特徴とする半導体レーザ制御装置。 3、請求項1記載の半導体レーザ制御装置において、前
記変換手段が前記発光レベル指令信号をアナログ信号電
圧として前記半導体レーザの光出力−順方向電流特性を
直線に近似して前記発光レベル指令信号に比例した電流
に変換することを特徴とする半導体レーザ制御装置。 4、請求項2記載の半導体レーザ制御装置において、前
記変換手段が前記発光レベル指令信号をアナログ信号電
圧として前記半導体レーザの光出力−順方向電流特性を
直線に近似して前記発光レベル指令信号に比例した電流
に変換することを特徴とする半導体レーザ制御装置。 5、請求項1記載の半導体レーザ制御装置において、前
記変換手段が前記発光レベル指令信号をアナログ信号電
圧として前記半導体レーザの光出力−順方向電流特性を
折れ線に近似して前記発光レベル指令信号に対応した電
流に変換することを特徴とする半導体レーザ制御装置。 6、請求項2記載の半導体レーザ制御装置において、前
記変換手段が前記発光レベル指令信号をアナログ信号電
圧として前記半導体レーザの光出力−順方向電流特性を
折れ線に近似して前記発光レベル指令信号に対応した電
流に変換することを特徴とする半導体レーザ制御装置。 7、請求項1記載の半導体レーザ制御装置において、前
記発光レベル指令信号をディジタル信号とし、前記変換
手段が前記発光レベル指令信号を前記半導体レーザの光
出力−順方向電流特性を補正した信号に変換する変換テ
ーブルと、この変換テーブルにより変換された信号を前
記半導体レーザの順方向電流に変換するディジタル/ア
ナログ変換器とを有することを特徴とする半導体レーザ
制御装置。 8、請求項2記載の半導体レーザ制御装置において、前
記発光レベル指令信号をディジタル信号とし、前記変換
手段が前記発光レベル指令信号を前記半導体レーザの光
出力−順方向電流特性を補正した信号に変換する変換テ
ーブルと、この変換テーブルにより変換された信号を前
記半導体レーザの順方向電流に変換するディジタル/ア
ナログ変換器とを有することを特徴とする半導体レーザ
制御装置。
[Claims] 1. The light output of the driven semiconductor laser is detected by a light receiving section so that the light receiving signal proportional to the light output of the semiconductor laser obtained from the light receiving section is equal to the light emission level command signal. An optical/electrical negative feedback loop that controls the forward current of the semiconductor laser, and an optical/electrical negative feedback loop that controls the optical output of the semiconductor laser so that the light reception signal and the emission level command signal are equal to each other.
a conversion means for converting the light emission level command signal into a photocurrent of the semiconductor laser based on a forward current characteristic, a coupling coefficient between the light receiving section and the semiconductor laser, and a light input/light receiving signal characteristic of the light receiving section. A semiconductor laser control device characterized in that the semiconductor laser is controlled by a current that is the sum or difference between the control current of the optical/electrical negative feedback loop and the current generated by the conversion means. 2. The semiconductor laser control device according to claim 1, wherein the light output of the semiconductor laser is detected by a light receiver, and a light receiving current proportional to the light output of the semiconductor laser obtained from the light receiver, and a first light emission level. 2. A first optical/electrical negative feedback loop for controlling a forward current of said semiconductor laser so that a light emission level command signal obtained by converting a command signal into a current is equal to the light emission level command signal; and a voltage proportional to said light receiving current; The optical/electrical negative feedback loop according to claim 1 is configured by a second optical/electrical negative feedback loop that controls the first optical/electrical negative feedback loop so that the first optical/electrical negative feedback loop is equal to the optical/electrical negative feedback loop. Semiconductor laser control device. 3. The semiconductor laser control device according to claim 1, wherein the converter converts the light emission level command signal into an analog signal voltage by approximating the optical output-forward current characteristic of the semiconductor laser to a straight line. A semiconductor laser control device characterized by converting into a proportional current. 4. The semiconductor laser control device according to claim 2, wherein the converter converts the light emission level command signal into an analog signal voltage by approximating the optical output-forward current characteristic of the semiconductor laser to a straight line and converts the light emission level command signal into the light emission level command signal. A semiconductor laser control device characterized by converting into a proportional current. 5. The semiconductor laser control device according to claim 1, wherein the conversion means uses the light emission level command signal as an analog signal voltage, approximates the optical output-forward current characteristic of the semiconductor laser to a polygonal line, and converts the light emission level command signal into the light emission level command signal. A semiconductor laser control device characterized by converting the current into a corresponding current. 6. The semiconductor laser control device according to claim 2, wherein the conversion means uses the light emission level command signal as an analog signal voltage, approximates the optical output-forward current characteristic of the semiconductor laser to a polygonal line, and converts the light emission level command signal into the light emission level command signal. A semiconductor laser control device characterized by converting the current into a corresponding current. 7. The semiconductor laser control device according to claim 1, wherein the light emission level command signal is a digital signal, and the conversion means converts the light emission level command signal into a signal obtained by correcting the optical output-forward current characteristic of the semiconductor laser. 1. A semiconductor laser control device comprising: a conversion table that converts a signal converted by the conversion table; and a digital/analog converter that converts a signal converted by the conversion table into a forward current of the semiconductor laser. 8. The semiconductor laser control device according to claim 2, wherein the light emission level command signal is a digital signal, and the conversion means converts the light emission level command signal into a signal obtained by correcting the optical output-forward current characteristic of the semiconductor laser. 1. A semiconductor laser control device comprising: a conversion table that converts a signal converted by the conversion table; and a digital/analog converter that converts a signal converted by the conversion table into a forward current of the semiconductor laser.
JP1024925A 1988-12-05 1989-02-03 Semiconductor laser controller Expired - Lifetime JP2744043B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1024925A JP2744043B2 (en) 1989-02-03 1989-02-03 Semiconductor laser controller
US07/446,583 US5036519A (en) 1988-12-05 1989-12-05 Semiconductor laser controller
DE3940205A DE3940205B4 (en) 1988-12-05 1989-12-05 Semiconductor laser controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1024925A JP2744043B2 (en) 1989-02-03 1989-02-03 Semiconductor laser controller

Publications (2)

Publication Number Publication Date
JPH02205086A true JPH02205086A (en) 1990-08-14
JP2744043B2 JP2744043B2 (en) 1998-04-28

Family

ID=12151703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1024925A Expired - Lifetime JP2744043B2 (en) 1988-12-05 1989-02-03 Semiconductor laser controller

Country Status (1)

Country Link
JP (1) JP2744043B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079548A (en) * 1996-07-12 1998-03-24 Ricoh Co Ltd Semiconductor laser control device
JPH1079549A (en) * 1996-07-12 1998-03-24 Ricoh Co Ltd Semiconductor laser control device
US5784091A (en) * 1993-06-04 1998-07-21 Ricoh Company, Ltd. Image forming system using digital ASIC and analog ASIC for processing image data and controlling semiconductor laser, and half-tone pixel representing method
US5946334A (en) * 1996-03-27 1999-08-31 Ricoh Company, Inc. Semiconductor laser control system
JP2009527902A (en) * 2006-02-17 2009-07-30 イグザー コーポレイション Fast loop laser diode driver
JP2016072288A (en) * 2014-09-26 2016-05-09 沖電気工業株式会社 Photoelectric conversion circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5784091A (en) * 1993-06-04 1998-07-21 Ricoh Company, Ltd. Image forming system using digital ASIC and analog ASIC for processing image data and controlling semiconductor laser, and half-tone pixel representing method
US5946334A (en) * 1996-03-27 1999-08-31 Ricoh Company, Inc. Semiconductor laser control system
US6118798A (en) * 1996-03-27 2000-09-12 Ricoh Company, Ltd. Semiconductor laser control system
JPH1079548A (en) * 1996-07-12 1998-03-24 Ricoh Co Ltd Semiconductor laser control device
JPH1079549A (en) * 1996-07-12 1998-03-24 Ricoh Co Ltd Semiconductor laser control device
JP2009527902A (en) * 2006-02-17 2009-07-30 イグザー コーポレイション Fast loop laser diode driver
JP2016072288A (en) * 2014-09-26 2016-05-09 沖電気工業株式会社 Photoelectric conversion circuit

Also Published As

Publication number Publication date
JP2744043B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US6466595B2 (en) Laser diode driving method and circuit which provides an automatic power control capable of shortening the start-up period
JPH0273682A (en) Laser diode driving method and device
JP4043844B2 (en) Light emitting element driving device
US5237579A (en) Semiconductor laser controller using optical-electronic negative feedback loop
US9319146B2 (en) Optical transmitter
JPH02113640A (en) Automatic gain controller
JPH07321392A (en) Automatic temperature control circuit for laser diode and electro-optical signal conversion unit
JPH01117385A (en) Control method for semiconductor laser bias current
JP4984755B2 (en) Laser diode drive circuit
JPH02205086A (en) Semiconductor laser controller
JPH02205087A (en) Semiconductor laser controller
JP2840276B2 (en) Semiconductor laser controller
JP2744045B2 (en) Semiconductor laser controller
JP2840273B2 (en) Semiconductor laser controller
JP2840274B2 (en) Semiconductor laser controller
JP2840275B2 (en) Semiconductor laser controller
JP2601097B2 (en) Optical transmitter
JPH0321082A (en) Light receiving circuit
JP2536412B2 (en) Optical AGC circuit
JP2945051B2 (en) Semiconductor laser controller
JPH02205378A (en) Semiconductor laser controller
JPH02205085A (en) Semiconductor laser controller
JP3061832B2 (en) Semiconductor laser controller
JPH04286384A (en) Output control circuit of laser diode
JP2734026B2 (en) Semiconductor laser drive circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

EXPY Cancellation because of completion of term