JPH02205074A - Infrared ray detector - Google Patents

Infrared ray detector

Info

Publication number
JPH02205074A
JPH02205074A JP1025454A JP2545489A JPH02205074A JP H02205074 A JPH02205074 A JP H02205074A JP 1025454 A JP1025454 A JP 1025454A JP 2545489 A JP2545489 A JP 2545489A JP H02205074 A JPH02205074 A JP H02205074A
Authority
JP
Japan
Prior art keywords
crystal layer
compound semiconductor
semiconductor crystal
layer
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1025454A
Other languages
Japanese (ja)
Inventor
Yuichiro Ito
雄一郎 伊藤
Shoji Doi
土肥 正二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1025454A priority Critical patent/JPH02205074A/en
Publication of JPH02205074A publication Critical patent/JPH02205074A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain an infrared ray detector having many picture elements by detecting the quantity of carriers, which are excited by the photo energy of infrared ray that enters a first composed semiconductor crystal layer, being implanted into the second crystal layer passing the band offset of a hetero junction interface between the first and second crystal layers. CONSTITUTION:A GaAs crystal layer 13 of nondope is accumulated on an Si substrate 12, and an N<+> GaAs crystal layer 14(1) is accumulated thereon, and further thereon an AlxGa1-xAs (x=0.16) crystal layer 15(2) is formed. Further thereon, an N<+> GaAs crystal layer 16 as a contact layer is formed. The number of electrons, which are injected into the AlxGa1-xAs crystal layer 15(2) passing the offset band DELTAEc of a hetero junction face 4 by the energy of infrared rays of specified wave length which are entered into the N<+> GaAs layer 14 by applying DC currents into between the contact layer 16 of a detector 11 and the N<+> GaAs layer 14(1), is detected as the fluctuation of currents which flow between the contact layer 16 and the N<+> GaAs layer 14, and is detected as the fluctuation of electric waves, which are implanted into the input diode of the charge transfer device, with a charge transfer device.

Description

【発明の詳細な説明】 〔概 要〕 赤外線検知装置に関し、 画素数が多(、かつ8〜12μm帯の赤外線に感度を有
する検知装置を目的とし、 第1の化合物半導体結晶層と、該第1の化合物半導体結
晶層とエネルギーバンドギャップが異なる第2の化合物
半導体結晶層とでヘテロ接合を形成し、 該第1の化合物半導体結晶層に入射した赤外線の光エネ
ルギーで励起された第1の化合物半導体結晶層内のキャ
リアが、前記第1および第2の結晶層間のヘテロ接合界
面のバンドオフセットを越えて前記第2の化合物半導体
結晶層に注入される量を検知するようにして構成する。
[Detailed Description of the Invention] [Summary] Regarding an infrared detection device, the object is a detection device having a large number of pixels (and is sensitive to infrared rays in the 8 to 12 μm band), a first compound semiconductor crystal layer, a first compound semiconductor crystal layer, and a second compound semiconductor crystal layer. A heterojunction is formed between the first compound semiconductor crystal layer and a second compound semiconductor crystal layer having a different energy band gap, and the first compound is excited by infrared light energy incident on the first compound semiconductor crystal layer. The amount of carriers in the semiconductor crystal layer injected into the second compound semiconductor crystal layer beyond the band offset of the heterojunction interface between the first and second crystal layers is detected.

〔産業上の利用分野〕[Industrial application field]

本発明は赤外線検知装置に係り、特に8〜12μm帯の
赤外線に感度を有し、かつ画素数の多い検知装置に関す
る。
The present invention relates to an infrared detection device, and particularly to a detection device that is sensitive to infrared rays in the 8 to 12 μm band and has a large number of pixels.

赤外線に高感度を有し、エネルギーバンドギャップの狭
い水銀・カドミウム・テルルのような化合物半導体結晶
を用いて赤外線検知装置を形成し、この検知装置で得ら
れた信号を信号処理する電荷転送装置等をシリコン(S
i)を用いて形成し、これら電荷転送装置の入力ダイオ
ードと検知装置をインジウム等の金属バンプを用いて接
続した赤外線撮像装置は周知である。
Charge transfer devices, etc. that form an infrared detection device using compound semiconductor crystals such as mercury, cadmium, and tellurium that are highly sensitive to infrared rays and have narrow energy band gaps, and process the signals obtained by this detection device. Silicon (S
Infrared imaging devices are well known in which the input diodes of these charge transfer devices and detection devices are connected using metal bumps such as indium.

このような赤外線撮像装置に於いて、近年テレビ等の撮
像装置と同程度に500 X500画素程度の画素数の
多い高性能な赤外線撮像装置が望まれている。
Among such infrared imaging devices, there has recently been a demand for high-performance infrared imaging devices with a large number of pixels, about 500×500 pixels, on the same level as imaging devices such as televisions.

〔従来の技術〕[Conventional technology]

従来、このような赤外線撮像装置に用いられる赤外線検
知装置として、水銀・カドミウム・テルル(Hg1〜X
 CdX Te)およびインジウム・アンチモン(In
5b)等のエネルギーバンドギャップの狭い化合物半導
体結晶を用いて形成しているが、このような化合物半導
体結晶番主面積の大きい良質な結晶が得難く、画素数は
128 X12B画素程度が限度であり、テレビ並みの
500.、 X500画素程度の画素。
Conventionally, infrared detection devices used in such infrared imaging devices have been made of mercury, cadmium, tellurium (Hg1~X
CdX Te) and indium antimony (In
5b), etc., but it is difficult to obtain high-quality crystals with a large main area, and the number of pixels is limited to about 128 x 12B pixels. , 500. , about 500 pixels.

数の多い検知装置を得ることは困難である。It is difficult to obtain a large number of detection devices.

そこでStと例えば白金(Pt)、率いはパラジウム(
Pd)等の金属でショットキー接合を形成しぇこのショ
ットキー接合ダイオードによる検知装置を形成し、信号
処理装置と組み合わせて512 X512画素の赤外線
撮像装置を得ている。
Therefore, St and, for example, platinum (Pt), lead is palladium (
A Schottky junction is formed using a metal such as Pd), and a detection device is formed using a Schottky junction diode, which is combined with a signal processing device to obtain an infrared imaging device with 512 x 512 pixels.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し、上記したショットキー接合型の赤外線検知装置は
、感光波長が5μm以下で、遠距離の対象物を検知する
のに必要な8〜12μm帯の赤外線に感度を有する高性
能な検知装置は得られていないのが現状である。
However, the above-mentioned Schottky junction type infrared detection device has a sensitivity wavelength of 5 μm or less, and it is not possible to obtain a high-performance detection device that is sensitive to infrared rays in the 8 to 12 μm band, which is necessary to detect objects at a long distance. The current situation is that this is not the case.

そのため、かかるショットキー接合型ダイオードによる
検知装置に代わって8〜12μm帯の赤外線に感度を有
し、かつ画素数の多い検知装置が要望されている。
Therefore, in place of such a detection device using a Schottky junction diode, there is a demand for a detection device that is sensitive to infrared rays in the 8 to 12 μm band and has a large number of pixels.

本発明は上記した事項に鑑みて成され、面積の大きい結
晶が得られ易い■−■族の化合物半導体結晶を用い、1
0μm帯の赤外線に感度を有し、かつ画素数の多い赤外
線検知装置を得ることを目的とする。
The present invention was made in view of the above-mentioned matters, and uses compound semiconductor crystals of the ■-■ group, from which crystals with a large area are easily obtained, and
The object of the present invention is to obtain an infrared detection device that is sensitive to infrared rays in the 0 μm band and has a large number of pixels.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明の赤外線検知装置は、第1図
の原理図に示すように、第1の化合物半導体結晶層1と
、該第1の化合物半導体結晶層1どエネルギーバンドギ
ャップが異な暮第2の・化合物半導体結晶層2とでヘテ
ロ接合を形成し、該第1の化合物半導体結晶層1に入射
した赤外線の光エネルギーで励起きれた第1の化合物半
導体結晶層l内のキャリア3が、前記第りおよび第2の
結晶層1.2間のヘテロ接合界面4のバンドオフセット
5を越えて前記第2の化合物□半導体□結晶層2に注入
される量を検知するようにして構成する。
As shown in the principle diagram of FIG. 1, the infrared detecting device of the present invention that achieves the above object has a first compound semiconductor crystal layer 1 and a second compound semiconductor crystal layer 1 which have different energy band gaps. A heterojunction is formed with the second compound semiconductor crystal layer 2, and the carriers 3 in the first compound semiconductor crystal layer l excited by the infrared light energy incident on the first compound semiconductor crystal layer 1 are , the amount of the second compound□semiconductor□crystalline layer 2 is detected beyond the band offset 5 of the heterojunction interface 4 between the first and second crystalline layers 1.2. .

〔作 用〕[For production]

第1図の原理図に示すように1020原子/C113以
上の高濃度に不純物を添加したN・型のGaAsの第1
の化合物半導体結晶層1のフェルミレベルEFは伝導帯
Eelの底のエネルギーレベルより高(なるような縮退
されたエネルギーバンドを有する状態を呈する。そして
該結晶1に矢印A方向より入射された赤外線に依って該
結晶中の自由電子3は、該結晶層1にヘテロ接合され、
かつ該結晶層1よりエネルギーバンドギャップが大きく
、ヘテロ接合面4に形成されたバンドオフセットΔEC
を越えて、アルミニウム・ガリウム・砒素(Af、Ga
+−−As)結晶層2側へ注入される。
As shown in the principle diagram of Fig. 1, the first layer of N-type GaAs doped with impurities at a high concentration of 1020 atoms/C113 or more.
The Fermi level EF of the compound semiconductor crystal layer 1 is higher than the energy level of the bottom of the conduction band Eel. Therefore, the free electrons 3 in the crystal are in a heterojunction with the crystal layer 1,
And the energy band gap is larger than that of the crystal layer 1, and the band offset ΔEC formed at the heterojunction surface 4
Aluminum, gallium, arsenic (Af, Ga
+--As) is implanted into the crystal layer 2 side.

ここでバンドオフセットΔEcは前記した第1の化合物
半導体結晶層lの伝導帯Eclのエネルギーレベルと第
2の化合物半導体結晶層2の伝導帯の底のエネルギーレ
ベルEclの差でΔEC=Ec。
Here, the band offset ΔEc is the difference between the energy level of the conduction band Ecl of the first compound semiconductor crystal layer l and the bottom energy level Ecl of the conduction band of the second compound semiconductor crystal layer 2, and ΔEC=Ec.

Eczで表される。It is expressed as Ecz.

このバンドオフセ・ントは八12XGa+−x Asの
X(直に依存する。
This band offset depends directly on 812XGa+-xX of As.

また入射赤外線のエネルギーで励起される自由電子の数
は、入射する赤外線の波長に対応したエネルギーの大き
さによって異なるので、例えば10μmの波長のエネル
ギーの赤外線によって励起される自由電子の数を検知す
るにはバンドオフセットΔEcの値を0.12eVとし
なければ成らず、そのためX値を0.16の値にする必
要がある。
In addition, the number of free electrons excited by the energy of incident infrared rays varies depending on the magnitude of the energy corresponding to the wavelength of the incident infrared rays, so for example, the number of free electrons excited by infrared rays with energy of a wavelength of 10 μm is detected. For this reason, the value of the band offset ΔEc must be set to 0.12 eV, and therefore the X value must be set to a value of 0.16.

更に5μmの波長を検知するには、x値を0.33の値
にする必要があるので、検知すべき赤外線の波長に対応
して第2の結晶層2のAI!、x Gap−1lAsの
X値を制御することで8〜12μm帯の波長の赤外線を
検知できる。
Furthermore, in order to detect a wavelength of 5 μm, it is necessary to set the x value to a value of 0.33, so the AI! , xGap-11As, infrared rays having wavelengths in the 8 to 12 μm band can be detected.

〔実 施 例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第2図は本発明の赤外線検知装置の一実施例を示す構成
図で、第3図は本発明の装置の一実施例の断面図である
FIG. 2 is a configuration diagram showing one embodiment of the infrared detection device of the present invention, and FIG. 3 is a sectional view of one embodiment of the device of the present invention.

第2図および第3図に図示するように、本発明の赤外線
検知装置11は、St基板12上にノンドープのGaA
s結晶層13が積層され、更にその上には1020原子
/cm3程度に高濃度にN型の不純物が添加されたN′
″GaAs結晶層14(1)が積層され、更にその上に
は^1XGa+−x As(x=0.16)結晶層15
(2)が何れも分子線エピタキシャル成長法等を用いて
形成されている。更にその上にコンタクト層としてのN
″GaAs結晶層16が形成されている。そしてこのN
”GaAs結晶層16の表面よりAj2x Ga+−x
As結晶層15に到るまでメサエッチングされて画素を
画定している。
As shown in FIGS. 2 and 3, the infrared detection device 11 of the present invention has a non-doped GaA film on an St substrate 12.
An s-crystal layer 13 is laminated, and on top of that is an N' crystal layer doped with N-type impurities at a high concentration of about 1020 atoms/cm3.
"A GaAs crystal layer 14 (1) is laminated, and on top of that a ^1XGa+-x As (x=0.16) crystal layer 15
(2) are both formed using a molecular beam epitaxial growth method or the like. Furthermore, N is added as a contact layer on top of that.
``A GaAs crystal layer 16 is formed.
"Aj2x Ga+-x from the surface of the GaAs crystal layer 16
Mesa etching is performed up to the As crystal layer 15 to define pixels.

また上記検知装置11で得られた信号を処理する電荷転
送装置信号処理装置17としては、P型のSi基板21
にN型の不純物が導入されて入力ダイオード22が形成
され、該基板21上には絶縁膜23を介して該入力ダイ
オード22に注入された信号を転送電極25下に蓄積す
る入力ゲート電極24や、該信号を転送する転送電極2
5等がポリSi、或いはアルミニウムの蒸着により形成
されている。そしてこれら入力ダイオード22と前記し
た検知装置のコンタクト電極16とは金等よりなる結合
電極26を介して接続されている。
Further, as a charge transfer device signal processing device 17 that processes the signal obtained by the detection device 11, a P-type Si substrate 21 is used.
An input diode 22 is formed by introducing an N-type impurity into the substrate 21 , and an input gate electrode 24 and an input gate electrode 24 are formed on the substrate 21 to accumulate the signal injected into the input diode 22 through an insulating film 23 under the transfer electrode 25 . , a transfer electrode 2 that transfers the signal
5 and the like are formed by vapor deposition of poly-Si or aluminum. These input diodes 22 and the contact electrode 16 of the detection device described above are connected via a coupling electrode 26 made of gold or the like.

本実施例のようにSt基板12上にGaAsの結晶層1
3を形成してから検知装置11を形成することで、Si
基板21に形成した電荷転送装置17と検知装置11を
金等の結合電極で結合する際の基板間の熱膨張率の相違
によって歪が生じる問題が解決できる。また大面積の良
質のGaAsの結晶が得られるので、テレビ並みの50
0 X500画素程度の画素数の多い赤外線撮像装置が
可能となる。
As in this embodiment, a GaAs crystal layer 1 is placed on an St substrate 12.
By forming the detection device 11 after forming the Si
When the charge transfer device 17 and the detection device 11 formed on the substrate 21 are bonded together using a bonding electrode made of gold or the like, the problem of distortion occurring due to the difference in coefficient of thermal expansion between the substrates can be solved. In addition, since a large-area, high-quality GaAs crystal can be obtained, the
This enables an infrared imaging device with a large number of pixels, about 0.times.500 pixels.

またSt、 GaAs等の結晶は500℃までの温度に
耐えることができ、また機械的な強度も、St基板にG
aAsを付着したもので強度はSi基板並みと考えられ
るので、St基板21′r:形成した電荷転送装置17
と、GaAs −A I GaAsのヘテロ接合赤外線
検知装置11を結合する際のIn金属バンプ結合は不要
で、厚さが2〜3μmの金電極による結合電極26で、
検知装置11と電荷転送装置17を結合できる。
In addition, crystals such as St and GaAs can withstand temperatures up to 500°C, and their mechanical strength is
The St substrate 21'r: The formed charge transfer device 17
When bonding the GaAs-A I GaAs heterojunction infrared sensing device 11, In metal bump bonding is unnecessary, and the bonding electrode 26 is a gold electrode with a thickness of 2 to 3 μm.
The sensing device 11 and the charge transfer device 17 can be combined.

そのため、この金電極を蒸着によって形成することも可
能で撮像装置製造の工程が簡単で結合する際の赤外線検
知装置と電荷転送装置の位置ずれの問題も解消される。
Therefore, it is also possible to form this gold electrode by vapor deposition, which simplifies the process of manufacturing the imaging device and eliminates the problem of misalignment between the infrared detection device and the charge transfer device when they are combined.

尚、本実施例では検知すべき赤外線のカットオフ波長が
10μmの赤外線を検知するために、バンドオフセット
ΔEc= 120meVが必要となり、この場合はΔ1
.XGa+−x Asのx =0.16とする必要があ
るが、カットオフ波長が5μmの赤外線を検知するには
、バンドオフセットΔE e= 240meVの値と1
 〇− なり、この時のAj2x Gap−xAsのx =0.
32とする必要がある。
In this example, in order to detect infrared rays whose cutoff wavelength is 10 μm, a band offset ΔEc=120 meV is required, and in this case, Δ1
.. It is necessary to set x of XGa+-x As = 0.16, but in order to detect infrared rays with a cutoff wavelength of 5 μm, the value of band offset ΔE e = 240 meV and 1
〇-, then x of Aj2x Gap-xAs = 0.
It needs to be 32.

このようにした本発明の検知装置を用いて赤外線を検知
するには、第2図および第3図に示すように検知装置1
1の裏面側より矢印Aに示すように赤外線を入射する。
In order to detect infrared rays using the detection device of the present invention, as shown in FIGS. 2 and 3, the detection device 1
Infrared rays are incident from the back side of 1 as shown by arrow A.

そして検知袋W11のコンタクト層16とN″GaAs
層14 (層流4間に直流電圧を印加し、N″Ga’A
s層14に入射された所定波長の赤外線のエネルギーに
よってヘテロ接合面4のオフセットバンドΔEcを越え
てAffix Gap−xAs結晶層15(2)に注入
された電子の数を、前記コンタクト層16とN″GaA
s層14の間層流4る電流の変動として検知し、この変
化した電流を前記電荷転送装置の入力ダイオードに注入
された電流変動として電荷転送装置で検知することで入
射赤外線の光量とその波長が検知できる。
Then, the contact layer 16 of the detection bag W11 and the N″GaAs
Layer 14 (DC voltage is applied between laminar flow 4, N″Ga'A
The number of electrons injected into the Affix Gap-xAs crystal layer 15 (2) beyond the offset band ΔEc of the heterojunction surface 4 due to the energy of infrared rays of a predetermined wavelength incident on the s-layer 14 is calculated as follows: ″GaA
The amount of incident infrared rays and its wavelength are detected by detecting the current as a variation in the laminar current flowing through the S layer 14, and detecting this changed current as a variation in the current injected into the input diode of the charge transfer device by the charge transfer device. can be detected.

なお、第2図に於いて、Ev+はN” GaAs結晶層
14の価電子帯の上部のエネルギーレベル、Ec2はA
 I!、XGa、−xAs結晶層15の伝導帯の底のエ
ネルギーレベル、EvzはA lXGa+−x As結
晶層15の価電子帯の上部のエネルギーレベル、Ee3
はコンタクト層16の伝導帯の底のエネルギーレベル、
EV3はコンタクト層16の価電子帯の上部のエネルギ
ーレベルを示す。
In FIG. 2, Ev+ is the upper energy level of the valence band of the N'' GaAs crystal layer 14, and Ec2 is A
I! ,
is the energy level at the bottom of the conduction band of the contact layer 16,
EV3 indicates the upper energy level of the valence band of the contact layer 16.

このようにすることで多画素で8〜12μm帯の波長の
赤外線に感度を有する赤外線撮像装置が容易に得られる
By doing so, an infrared imaging device having a large number of pixels and having sensitivity to infrared rays having a wavelength in the 8 to 12 μm band can be easily obtained.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば良質な結
晶が得られやすいSt基基土上ヘテロ接合検知装置形成
用のGaAsの良質な大面積の結晶が得られるので多画
素の検知装置が得られる。またヘテロ接合によるエネル
ギーバンドギャップの相違によって生じるバンドオフセ
ットを用いて入射赤外線の波長に対応したエネルギーで
励起された自由キャリア(電子)を検知しているので、
8〜12μm帯の波長に感度を有する撮像装置が容易に
得られる。
As is clear from the above description, according to the present invention, it is possible to obtain a high-quality, large-area GaAs crystal for forming a heterojunction detection device on an St-based substrate, which is easy to obtain a high-quality crystal. can get. In addition, free carriers (electrons) excited with energy corresponding to the wavelength of the incident infrared rays are detected using the band offset caused by the difference in energy band gap due to the heterojunction.
An imaging device sensitive to wavelengths in the 8-12 μm band can be easily obtained.

=11=11

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の赤外線検知装置の原理図、第2図は本
発明の赤外線検知装置の一実施例を示す構成図、 第3図は本発明の赤外線検知装置を用いた撮像装置の一
実施例を示す断面図である。 図に於いて、 1は第1の化合物半導体結晶層、2は第2の化合物半導
体結晶層、3は自由電子、4はヘテロ接合面、5はバン
ドオフセット、11は赤外線検知装置、12.21はS
t基板、13はGaAs結晶層、14はN′″GaAs
結晶層、15はAf、・Ga、−、As結晶層、16は
N′″GaAs結晶層(コンタクト層)、17は電荷転
送装置、22は人力ダイオード、23は絶縁膜、24は
入力ゲート電極、25は転送電極、26は結合電極を示
す。 4ミiトθ月/l−fジ1a駄才更矢V〜ζ1〃理Gσ
第1図 Δ 代理人 弁理士  井 桁 貞 − M冑計グL凛パ灼裟Fir−丸誇例す噂ぺ田第2図
Fig. 1 is a principle diagram of the infrared detection device of the present invention, Fig. 2 is a configuration diagram showing an embodiment of the infrared detection device of the present invention, and Fig. 3 is an illustration of an imaging device using the infrared detection device of the present invention. It is a sectional view showing an example. In the figure, 1 is a first compound semiconductor crystal layer, 2 is a second compound semiconductor crystal layer, 3 is a free electron, 4 is a heterojunction surface, 5 is a band offset, 11 is an infrared detector, 12.21 is S
t substrate, 13 is a GaAs crystal layer, 14 is N′″GaAs
A crystal layer, 15 is an Af, .Ga, -, As crystal layer, 16 is an N''GaAs crystal layer (contact layer), 17 is a charge transfer device, 22 is a human diode, 23 is an insulating film, and 24 is an input gate electrode. , 25 indicates a transfer electrode, and 26 indicates a coupling electrode.
Figure 1 Δ Agent Patent Attorney Sada Igata - M-Kukei Group L Rinpa Burning Fir - Rumors of Maru Exemplar Peda Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)第1の化合物半導体結晶層(1)と、該第1の化
合物半導体結晶層とエネルギーバンドギャップが異なる
第2の化合物半導体結晶層(2)とでヘテロ接合を形成
し、 該第1の化合物半導体結晶層(1)に入射した赤外線の
光エネルギーで励起された第1の化合物半導体結晶層(
1)内のキャリアが、前記第1および第2の結晶層間の
ヘテロ接合界面(4)のバンドオフセット(5)を越え
て前記第2の化合物半導体結晶層(2)に注入される量
を検知するようにしたことを特徴とする赤外線検知装置
(1) forming a heterojunction with a first compound semiconductor crystal layer (1) and a second compound semiconductor crystal layer (2) having a different energy band gap from the first compound semiconductor crystal layer; The first compound semiconductor crystal layer (1) is excited by infrared light energy incident on the compound semiconductor crystal layer (1).
1) detecting the amount of carriers injected into the second compound semiconductor crystal layer (2) beyond the band offset (5) of the heterojunction interface (4) between the first and second crystal layers; An infrared detection device characterized by:
(2)前記赤外線が入射される第1の化合物半導体結晶
層(1)のエネルギレベルが縮退するように高濃度に不
純物が導入され、かつ第2の化合物半導体結晶層(2)
が、該結晶層間のヘテロ接合面(4)で、所定の波長の
赤外線のエネルギーによって励起されたキャリアが注入
可能なバンドオフセット(5)を有するように組成を制
御して形成されていることを特徴とする請求項1記載の
赤外線検知装置。
(2) Impurities are introduced at a high concentration so that the energy level of the first compound semiconductor crystal layer (1) to which the infrared rays are incident is degenerated, and the second compound semiconductor crystal layer (2)
is formed by controlling the composition so that it has a band offset (5) that allows carriers excited by infrared energy of a predetermined wavelength to be injected at the heterojunction interface (4) between the crystal layers. The infrared detection device according to claim 1, characterized in that:
(3)前記第1の化合物半導体結晶層(1)と、第2の
化合物半導体結晶層(2)がシリコン基板(12)上に
積層形成されたガリウム砒素結晶層(14)とアルミニ
ウム・ガリウム・砒素(Al_xGa_1_−_xAs
)結晶層(15)で構成され、該Al_xGa_1_−
_xAsのx値が0.1〜0.4であることを特徴とす
る請求項1および2記載の赤外線検知装置。
(3) A gallium arsenide crystal layer (14) in which the first compound semiconductor crystal layer (1) and the second compound semiconductor crystal layer (2) are laminated on a silicon substrate (12) and an aluminum gallium arsenide crystal layer (14). Arsenic (Al_xGa_1_-_xAs
) crystal layer (15), the Al_xGa_1_-
The infrared detection device according to claim 1 or 2, wherein the x value of _xAs is 0.1 to 0.4.
JP1025454A 1989-02-02 1989-02-02 Infrared ray detector Pending JPH02205074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1025454A JPH02205074A (en) 1989-02-02 1989-02-02 Infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1025454A JPH02205074A (en) 1989-02-02 1989-02-02 Infrared ray detector

Publications (1)

Publication Number Publication Date
JPH02205074A true JPH02205074A (en) 1990-08-14

Family

ID=12166472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025454A Pending JPH02205074A (en) 1989-02-02 1989-02-02 Infrared ray detector

Country Status (1)

Country Link
JP (1) JPH02205074A (en)

Similar Documents

Publication Publication Date Title
TWI261934B (en) Infrared sensing IC, infrared sensor and method for producing the same
US5386128A (en) Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output
US10079262B2 (en) Semiconductor photo-detector
JP3256470B2 (en) Low light level image detector having extended wavelength response range using atomically bonded (fused) semiconductor material
US7180066B2 (en) Infrared detector composed of group III-V nitrides
US10312390B2 (en) Light receiving device and method of producing light receiving device
Rogalski New trends in semiconductor infrared detectors
JP6972831B2 (en) Infrared detector, imaging device and imaging system
US20140217540A1 (en) Fully depleted diode passivation active passivation architecture
US4791467A (en) Heterojunction HgCdTe photovoltaic detector and its production process
US20230282759A1 (en) Electromagnetic wave detector and electromagnetic wave detector assembly
Razeghi et al. Type II superlattice photodetectors for MWIR to VLWIR focal plane arrays
Vasilyev et al. Focal plane arrays based on HgCdTe epitaxial layers MBE-grown on GaAs substrates
US5140381A (en) Optical detection device with variable detection threshold
Rhiger et al. Progress with type-II superlattice IR detector arrays
Hipwood et al. Affordable high-performance LW IRFPAs made from HgCdTe grown by MOVPE
JPH02205074A (en) Infrared ray detector
Razeghi et al. High-operating-temperature MWIR photon detectors based on type II InAs/GaSb superlattice
JP2022173791A (en) Electromagnetic wave detector and electromagnetic wave detector assembly
Delaunay et al. High-performance focal plane array based on type-II InAs/GaSb superlattice heterostructures
US5846850A (en) Double sided interdiffusion process and structure for a double layer heterojunction focal plane array
JP2022032720A (en) Two-wavelength photodetector and image sensor using the same
Masek et al. Photovoltaic infrared sensor array in heteroepitaxial narrow gap lead-chalcogenides on silicon
WO2024100784A1 (en) Electromagnetic wave detector and electromagnetic wave detector assembly
JP7428891B2 (en) Optical sensors and imaging devices