JPH02204350A - Production of inorganic foamed material - Google Patents

Production of inorganic foamed material

Info

Publication number
JPH02204350A
JPH02204350A JP1023694A JP2369489A JPH02204350A JP H02204350 A JPH02204350 A JP H02204350A JP 1023694 A JP1023694 A JP 1023694A JP 2369489 A JP2369489 A JP 2369489A JP H02204350 A JPH02204350 A JP H02204350A
Authority
JP
Japan
Prior art keywords
particle size
particles
inorganic foam
less
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1023694A
Other languages
Japanese (ja)
Other versions
JPH0678182B2 (en
Inventor
Yoshio Masumura
益村 宜雄
Kazukimi Iwata
和公 岩田
Atsuhiro Matsumoto
松本 篤浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2369489A priority Critical patent/JPH0678182B2/en
Publication of JPH02204350A publication Critical patent/JPH02204350A/en
Publication of JPH0678182B2 publication Critical patent/JPH0678182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/065Residues from coal gasification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a high-strength inorganic foamed material which is fine and lightweight and has continuous particle size and low water absorptive properties by heat-treating and expanding particles of amorphous by-product slag in the specified conditions which is obtained by partial oxidation of coal and has specified size. CONSTITUTION:Amorphous by-product slag which is obtained by partial oxidation of coal and contains particles having <=0.3mm particle diameter at >=90wt.% is heat-treated in a range within 500-1000 deg.C/min temp. rise velocity at 800-1000 deg.C and expanded. Fly ashes or particulate coal are addeted to the slag at the rate of <=20wt.% fly ash and/or <=10wt.% particulate coal for the above- mentioned slag. When this mixture is calcined in the reducing atmosphere, it is foamed and expanded in a short time and therefore production cost is preferably lowered.

Description

【発明の詳細な説明】 [発明の分野] 本発明は、無機質発泡体の製造法の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to improvements in the manufacturing method of inorganic foams.

[発明の背景] 建築物などの構造物は、省エネルギー、省資源および耐
震性向上のため、軽量化、高強度化および断熱化が進め
られており、これに必要な軽量コンクリート用骨材とし
て優れた品質の!!機質発泡体を安価に製造する方法が
課題となっている。
[Background of the Invention] Structures such as buildings are becoming lighter, stronger, and more insulated in order to save energy, save resources, and improve earthquake resistance. Of high quality! ! The problem is how to produce structural foams at low cost.

特に、品質は高強度性の面から微細で連続粒度を持ち、
しかも軽口で低吸水性の無機質発泡体が要望されている
In particular, the quality is fine and continuous grain size in terms of high strength,
Moreover, there is a demand for inorganic foams that are lightweight and have low water absorption.

[従来技術および課題] 従来、石炭の部分酸化により得られた非晶性副生スラグ
を主原料にして無機質発泡体を製造する方法に関して、
例えば特開昭61−197479号公報および特開昭6
1−251551号公報に提案がなされている。
[Prior Art and Problems] Conventionally, regarding a method for manufacturing an inorganic foam using amorphous by-product slag obtained by partial oxidation of coal as a main raw material,
For example, JP-A-61-197479 and JP-A-6
A proposal has been made in Publication No. 1-251551.

これらの方法は、その特許請求の範囲の記載から、前者
は[石炭の部分酸化により得られた非品性残滓を600
℃以上の温度で加熱処理して膨張させることを特徴とす
る形成成分中の8102の含有率が60重量%以上、八
ρ203の含有率が20重盪%以上、かつCaOの含有
率が5型筒%以上である無機質発泡体の製造法」であり
、後者は「石炭の部分酸化により得られた非品性残滓の
粒子の内粒子径2.57117J以下の粒子を600℃
以上の温度で加熱処理して膨張させることを特徴とする
、5IOzの含有率が60重」%以下、AI! 203
の含有率が20重量%以上であり、単位容積重量が0.
6Kg/j!より上であって1.2句/j以下である無
機質発泡体の製造法Jである。
From the claims of these methods, the former method [600%
The content of 8102 in the forming component is 60% by weight or more, the content of 8ρ203 is 20% by weight or more, and the content of CaO is type 5, which is expanded by heat treatment at a temperature of ℃ or higher. % or more," and the latter is "a method for producing an inorganic foam with an internal particle diameter of 2.57117 J or less obtained from partial oxidation of coal at 600°C.
The content of 5IOz is 60% by weight or less, characterized by expansion by heat treatment at a temperature above, AI! 203
The content of is 20% by weight or more, and the unit volume weight is 0.
6Kg/j! This is a method J for producing an inorganic foam which is higher than 1.2/j or less.

しかしながら、粒子径0.311#I以下の粒子が90
重量%以上である非晶性副生スラグを原料とする無機質
発泡体の製造は企業化されていないのが現状である。そ
の主な理由は、これら公知方法を用いて製造した無機質
発泡体は、非常に融着しやすいために低温焼成をしいら
れ充分に発泡していない粒子が含有したり、ざらには低
温焼成であるために加熱処理時間を長(する必要があり
、それによって無機質発泡体が互いに融着して大きな塊
状物となったり、加熱処理装置に融着して該装置の円滑
な運転が阻害されたりするという問題があるためである
However, particles with a particle size of 0.311 #I or less
At present, the production of inorganic foams using amorphous by-product slag, which accounts for more than 1% by weight, as a raw material has not been commercialized. The main reason for this is that the inorganic foams produced using these known methods are very easy to fuse, so they are required to be fired at low temperatures and may contain particles that are not foamed sufficiently. Because of this, it is necessary to extend the heat treatment time, which may cause the inorganic foam to fuse with each other and form large lumps, or to fuse to the heat treatment equipment and hinder the smooth operation of the equipment. This is because there is a problem of

[発明の目的] 本発明は、微細で連続粒度を持ち、しかも軽口で低吸水
性の高強度無機質発泡体の製造方法を提供することを主
な目的とする。
[Object of the Invention] The main object of the present invention is to provide a method for producing a high-strength inorganic foam that has fine and continuous particle size, is lightweight, and has low water absorption.

更に詳しくは、本発明は石炭の部分酸化により得られた
非晶性副生スラグの内、粒子径0.3s以下の粒子の有
効利用および高品質の無機質発泡体の需要の増大の二つ
の課題を同時に解決する安価で高品質、かつ省資源に役
立つ無機質発泡体の製造方法を提供することを目的とす
るものである。
More specifically, the present invention addresses two issues: the effective use of particles with a particle size of 0.3 s or less among amorphous by-product slag obtained by partial oxidation of coal, and the increasing demand for high-quality inorganic foams. The purpose of the present invention is to provide a method for manufacturing an inorganic foam that is inexpensive, high quality, and useful for resource saving, and that solves the following problems at the same time.

[発明の要旨] 本発明は、本出願人が既に出願した特開昭61−197
479@公報および特開昭61−251551号公報を
改良した無機質発泡体の製造法に関するものであり、従
来、焼成困難であった粒子径0.3mm以下の粒子が9
0重」5以上である非晶性副生スラグを昇温速度500
〜1000℃/minの範囲で、800〜1000℃の
温度範囲で加熱膨張させて微細な無機質発泡体を製造す
る方法である。ざらに第2の発明は、フライアッシュお
よび/または微粉炭を添加し還元雰囲気で焼成すること
により、微細で連続粒度を持つ低吸水性の高強度無機質
発泡体をより有利に製造する方法である。
[Summary of the Invention] The present invention is based on Japanese Patent Application Laid-Open No. 61-197, which the applicant has already filed.
479@ Publication and JP-A No. 61-251551, it relates to a method for producing an inorganic foam, and it is possible to produce 9 particles with a particle diameter of 0.3 mm or less, which was conventionally difficult to sinter.
Amorphous by-product slag with a weight of 0 weight or more is heated at a heating rate of 500
This is a method of manufacturing fine inorganic foam by heating and expanding it at a temperature range of 800 to 1000°C at a rate of 1000°C/min. Zarani's second invention is a method for more advantageously producing a high-strength inorganic foam with fine and continuous particle size and low water absorption by adding fly ash and/or pulverized coal and firing in a reducing atmosphere. .

[発明の効果] 本発明の無機質発泡体の製造法は、従来無機質発泡体と
して企業化されなかった粒子径0.3#!II!以下の
粒子が90重量%以上である非晶性副生スラグを用いて
製造することができる。ざらに、フライアッシュおよび
/または微粉炭を添加することにより短時間に発泡・膨
張するので無機質発泡体の製造コストを低減することが
できる。
[Effects of the Invention] The method for producing an inorganic foam of the present invention has a particle size of 0.3 #, which has not been commercialized as an inorganic foam in the past! II! It can be manufactured using an amorphous by-product slag containing 90% by weight or more of the following particles. Furthermore, by adding fly ash and/or pulverized coal, the foaming and expansion can be achieved in a short time, thereby reducing the manufacturing cost of the inorganic foam.

また、本発明の製造法による無機質発泡体は、微細で連
続粒度を持ち、軽量で吸水率が低く、かつ強度が高い。
Further, the inorganic foam produced by the production method of the present invention has a fine and continuous particle size, is lightweight, has a low water absorption rate, and has high strength.

ざらに、耐火性にすぐれ、熱伝導率が低いので良好な断
熱性も有している。したがって、これまでのfi機貿発
泡体より非常に用途が広い。
In addition, it has excellent fire resistance and low thermal conductivity, so it also has good heat insulation properties. Therefore, it is much more versatile than previous FI foams.

[発明の詳細な記述] 従来の無機質発泡体の製造技術は、石炭の部分酸化によ
り得られた非晶性副生スラグをボールミルで粉砕・篩分
けし、得られた粒子径0.3〜5.0IIur1の原料
をロータリーキルン(φ1,3×31.5m)で焼成し
ている。しかしながら、上記の原料粒径に調製する際に
大量に発生する非晶性副生スラグの粒子径0.3s以下
の粒子あるいは粒子径0.3s以下の粒子が90重置%
以上である非晶性副生スラグ(以下、粒子径0.3%以
下の粒子と称すこともある。)は、いまだに発泡性が劣
るために無機質発泡体として使われずにセメント原料へ
の代替あるいは埋立てなどへ処理され、付加価値が高め
られていない。
[Detailed Description of the Invention] Conventional inorganic foam manufacturing technology involves crushing and sieving amorphous by-product slag obtained by partial oxidation of coal using a ball mill, resulting in particle sizes of 0.3 to 5. .0IIur1 raw material is fired in a rotary kiln (φ1, 3 x 31.5 m). However, particles with a particle size of 0.3 s or less or particles with a particle size of 0.3 s or less of the amorphous by-product slag generated in large quantities when preparing the raw material particle size above are 90%
The above amorphous by-product slag (hereinafter sometimes referred to as particles with a particle size of 0.3% or less) is still not used as an inorganic foam due to its poor foamability, and is instead used as a substitute for cement raw materials or as a raw material for cement. It is disposed of in landfills, etc., and its added value is not increased.

本発明者らは、無機質発泡体の製造技術において非晶性
副生スラグの粒子径0.3s以下の粒子を原料として用
いた場合に良質な無機質発泡体が得られない原因を先ず
究明した。
The present inventors first investigated the reason why a high-quality inorganic foam cannot be obtained when particles of amorphous by-product slag with a particle size of 0.3 s or less are used as a raw material in an inorganic foam manufacturing technology.

その結果、非晶性副生スラグの粒子径0.3〜5#の原
料については、昇温速度が150℃/lllin以下で
あっても粒径による影響はほとんどなく、良質な無機質
発泡体が得られた。しかし、非晶性副生スラグの粒子径
0.3M以下の粒子の原料を昇温速度150°C,’m
in以下で行なうと粒子同志が融着しやすいために加熱
処理温度が800℃未満に制限され、単位容積重量o:
o1〜0.80ffg/lの無機質発泡体を得ることは
困難であった。
As a result, for amorphous by-product slag raw materials with a particle size of 0.3 to 5#, even if the temperature increase rate is 150℃/llin or less, there is almost no effect due to the particle size, and high-quality inorganic foam can be produced. Obtained. However, when the raw material of the amorphous by-product slag particles with a particle size of 0.3M or less was heated at a heating rate of 150°C,'m
If the heat treatment is carried out at a temperature of less than 800°C, the particles tend to fuse together, so the heat treatment temperature is limited to less than 800°C, and the unit volume weight o:
It was difficult to obtain an inorganic foam with o1 to 0.80 ffg/l.

そこで、非晶性副生スラグの粒子径0.3s以下の粒子
の物性を把握し、原料に適する焼成方法を検討した。
Therefore, we investigated the physical properties of particles of amorphous by-product slag with a particle size of 0.3 seconds or less, and investigated a firing method suitable for the raw material.

その結果、昇温速度を500〜b の範囲で、かつ加熱温度を800〜1000℃の温度範
囲で加熱処理すれば、粒子径0.3#I以下の粒子を原
料としても良質な無機質発泡体が得られることが判明し
た。
As a result, if heat treatment is performed at a heating rate of 500 to 800°C and a heating temperature of 800 to 1000°C, high-quality inorganic foam can be produced using particles with a particle size of 0.3 #I or less as raw material. It turned out that it was possible to obtain

昇温速度500℃/l1lin未満では、前述した様に
加熱処理温度が800℃未満と制限された焼成となるた
めに有効に膨張せず、無機質発泡体中に未膨張粒子が混
入している。逆に、昇温速度を1000℃/minを越
えると急激な高温焼成となり、1qられた無機質発泡体
が互いに!!!看して大きな塊状物となったり、加熱処
理装置に融着して該装置の円滑な運転が阻害されたりす
ることがある。
If the temperature increase rate is less than 500°C/l1lin, as described above, the heat treatment temperature is limited to less than 800°C, so the foam does not expand effectively, and unexpanded particles are mixed into the inorganic foam. On the other hand, if the heating rate exceeds 1000°C/min, the firing will occur at a rapid high temperature, and the inorganic foams separated by 1q will collide with each other! ! ! The particles may turn into large lumps or may fuse to the heat treatment equipment, interfering with the smooth operation of the equipment.

また、加熱処理温度は800〜1000℃の範囲が好適
でおる。800℃未満だと非晶性副生スラグの粒子径0
.3#以下の粒子が有効に膨張せず、無機質発泡体中に
未膨張粒子の混入となり、1000℃を越えると得られ
れた無機質発泡体が互いに融着して大きな塊状物となっ
たり、加熱処理装置にl看して該装置の円滑な運転が阻
害されたりすることがある。
Further, the heat treatment temperature is preferably in the range of 800 to 1000°C. If it is below 800℃, the particle size of amorphous by-product slag is 0.
.. Particles of 3 # or less do not expand effectively, resulting in unexpanded particles being mixed into the inorganic foam, and when the temperature exceeds 1000°C, the resulting inorganic foam may fuse together and form large lumps, or heat treatment may occur. This may interfere with the smooth operation of the device.

次に、粉砕した非晶性副生スラグの粒子径0.3s以下
の粒子と未粉砕の非晶性副生スラグの粒子径0.3#l
f以下の粒子を比べた結果、次の様に物性が異なってい
ることが判明した。つまり、粉砕品は■化学成分はほと
んど差がなかったものの未焼成炭素分がほとんど消滅し
ていた。■粒子形状が歪となり、実積率が増したために
単位容積重量も高くなっている。および■粒子内部の細
孔量が減少している。このことを考慮して加熱処理方法
を更に検討した。
Next, the particles of the crushed amorphous by-product slag with a particle size of 0.3 s or less and the particles of the unpulverized amorphous by-product slag with a particle size of 0.3 #l
As a result of comparing particles of f or less, it was found that the physical properties were different as follows. In other words, the pulverized products had almost no difference in chemical composition, but the unfired carbon content had almost disappeared. ■The particle shape becomes distorted and the actual volume ratio increases, resulting in a higher unit volume weight. and ■ The amount of pores inside the particles is reduced. Taking this into consideration, we further investigated the heat treatment method.

粉砕した非晶性副生スラグの粒子径0.3171#1以
下の粒子は、未焼成炭素分が少ないために酸化雰囲気焼
成となるので発泡性が劣り、ざらに高温焼成となるため
に無機質発泡体が互いに融着しやすく、品質がばらつき
やすいので還元性雰囲気で焼成する必要があることが判
明した。
Particles of the crushed amorphous by-product slag with a particle size of 0.3171#1 or less have a low unfired carbon content, so they are fired in an oxidizing atmosphere, resulting in poor foaming properties, and they are fired at a high temperature, resulting in inorganic foaming. It was found that it was necessary to fire in a reducing atmosphere because the bodies tend to fuse together and the quality tends to vary.

還元雰囲気焼成を行うための還元作用物質としてフライ
アッシュ、微粉炭および酸化鉄などの無機質のものとC
OおよびH2などのガス状物質、ざらには重油などの液
状物質があげられるが、経済性、作業性および製品の品
質の面から見て無機質であるフライアッシュおよび/ま
たは微粉炭を用いるのが好適である。
Inorganic materials such as fly ash, pulverized coal, and iron oxide and C are used as reducing substances for firing in a reducing atmosphere.
Examples include gaseous substances such as O and H2, and liquid substances such as heavy oil, but from the viewpoint of economy, workability, and product quality, it is preferable to use inorganic fly ash and/or pulverized coal. suitable.

さらに、フライアッシュや微粉炭燃焼灰は、無機質発泡
体に混入してもほとんど弊害がなく、逆に微粉末フィラ
ーとして有効に作用する。
Further, fly ash and pulverized coal combustion ash have almost no harmful effects even if mixed into the inorganic foam, and on the contrary, they act effectively as a fine powder filler.

なお、フライアッシュの添加量は、無機質発泡体の粒度
構成から判断して20重四%以下が好ましく、フライア
ッシュの未燃焼炭素分は4〜10重量%が好ましい。ま
た、微粉炭の添加量が10重母%を越えると、低温で自
己燃焼をおこし、炉内が急激な温度上昇となり、加熱処
理温度コントロールが離しくなり品質がばらつくので、
10重量%以下が好ましい。 フライアッシュの粒子径
はブレーン比表面積で2500〜b 微粉炭の粒子径はフルイ88μm残分5〜12重量%の
ものが使用できる。
The amount of fly ash added is preferably 20% by weight or less, judging from the particle size structure of the inorganic foam, and the unburned carbon content of the fly ash is preferably 4 to 10% by weight. Additionally, if the amount of pulverized coal added exceeds 10%, self-combustion will occur at low temperatures, causing a rapid temperature rise in the furnace, making it difficult to control the heat treatment temperature, and resulting in inconsistent quality.
It is preferably 10% by weight or less. The particle size of the fly ash is 2500 to 2,500 b based on the Blaine specific surface area.The particle size of the pulverized coal is 88 μm, with a residual content of 5 to 12% by weight.

非晶性副生スラグ粒子径0.3#以下の粒子にフライア
ッシュを20重量%以下および/または微粉炭を10@
量%以下を添加して、昇温速度を5QO〜1000℃/
m i n(7)範囲ニテ、加熱9n理温度を800〜
1000℃で加熱処理を行うことにより、さらに良質な
無機質発泡体が得られるようになった。
Add 20% by weight or less of fly ash and/or 10% of pulverized coal to amorphous by-product slag particles with a particle size of 0.3# or less
% or less to increase the temperature increase rate from 5QO to 1000℃/
min(7) range: heating 9n temperature to 800~
By performing heat treatment at 1000°C, it became possible to obtain an even better quality inorganic foam.

すなわち、石炭の部分酸化により得られた非晶性副生ス
ラグの粒子径0.381以下の粒子を加熱処理温度80
0〜1ooo℃、昇温速度500〜1000℃/min
ざらに、還元物質を添加して還元雰囲気にて加熱処理す
ることによってより有効に発泡・膨張させるとができ、
加熱処理装置の運転が尚−層容易であり、同時に製造の
際の製品歩留りも高くなる。
That is, particles of amorphous by-product slag obtained by partial oxidation of coal with a particle size of 0.381 or less are heat-treated at a temperature of 80
0~1ooo℃, heating rate 500~1000℃/min
By adding a reducing substance and heat-treating in a reducing atmosphere, it is possible to foam and expand more effectively.
The operation of the heat treatment equipment is much easier, and at the same time, the product yield during manufacturing is also increased.

従来の無機質発泡体の製造方法は、徐々に発泡・膨張さ
せるのに対して本発明の無機質発泡体の製造方法は急速
に発泡・膨張させるため加熱処理温度での保持時間が短
くなり、製造が容易でおる。
Conventional methods for producing inorganic foams gradually foam and expand, whereas the method for producing inorganic foams of the present invention rapidly foams and expands, which shortens the holding time at the heat treatment temperature, making production easier. It's easy.

なお、本発明の製造方法においては0.3#より大きな
粒子が10ffii%以下の範囲内で混入してもなんら
影響をうけることもなく、良質な無機質発泡体を製造す
ることができる。
In addition, in the manufacturing method of the present invention, even if particles larger than 0.3 # are mixed within a range of 10ffii% or less, there is no effect, and a high-quality inorganic foam can be manufactured.

本発明の製造法により、粒子径0.3s以下の粒子が9
5重甜%以上の非品性副生スラグを原料として使用した
場合に得られた無機質発泡体は、一般に粒子径が600
μm以下で平均粒子径が250μm以下、ざらに添加材
としてフライアッシュおよび/または微粉炭を使用した
場合の平均粒子径は200μm以下、通常は、平均粒子
径が150μTrL〜200μmの範囲にある微細な無
機質発泡体である。
By the production method of the present invention, particles with a particle diameter of 0.3s or less
Inorganic foam obtained when using non-quality by-product slag with a content of 5% or more as a raw material generally has a particle size of 600% or more.
μm or less, the average particle size is 250 μm or less, and when fly ash and/or pulverized coal is used as an additive, the average particle size is 200 μm or less, and usually the average particle size is in the range of 150 μTrL to 200 μm. It is an inorganic foam.

また、この微細な無機質発泡体は、軽口であり、通常そ
の単位容積重量は0.4〜0.8Kg/、i!の範囲に
ある。なお、見掛比重で表記すると0.8〜1.6の範
囲にある。
In addition, this fine inorganic foam is light in weight and usually has a unit volume weight of 0.4 to 0.8 Kg/, i! within the range of Note that when expressed in terms of apparent specific gravity, it is in the range of 0.8 to 1.6.

ざらに、本発明の無機質発泡体は、圧縮変位10mの時
の圧縮荷重が250.!ryfであるのに対し、従来の
無機質発泡体の50Kyfであり、約5倍の強度を示し
た。
Roughly speaking, the inorganic foam of the present invention has a compressive load of 250 mm when the compressive displacement is 10 m. ! RYF, it was 50 Kyf, which is about 5 times stronger than that of conventional inorganic foam.

したがって、本発明の製造方法による無機質発泡体は、
軽量で高強度であるので、たとえば構造・非構造用軽量
部材などとして使用することができる。
Therefore, the inorganic foam produced by the production method of the present invention is
Since it is lightweight and has high strength, it can be used, for example, as lightweight structural and non-structural members.

本発明の製造法による無機質発泡体は、その粒子中に気
泡を有している。気泡は、独立気泡からなっているため
24時間吸水率が5型組%以下と極めて低く、たとえば
軽み骨材としてセメントと混練する際に使用する混線水
量を少なくすることが可能であり、ざらにそのセメント
混練物の硬化体は、高い強度を示すと共に凍結融解など
に対する耐久性にも優れている。また、気泡を多数含有
するので熱伝導率が低く、通常0.05Kcal/m・
h・°C程度であり、良好な断熱性を有しており断熱材
料として使用することができる。
The inorganic foam produced by the production method of the present invention has air bubbles in its particles. Since air bubbles are made up of closed cells, the 24-hour water absorption rate is extremely low at less than 5%, making it possible to reduce the amount of mixed water used when mixing with cement as a light aggregate. The hardened cement mixture exhibits high strength and excellent durability against freezing and thawing. In addition, since it contains many air bubbles, its thermal conductivity is low, usually 0.05 Kcal/m・
It has a good heat insulating property and can be used as a heat insulating material.

本発明の製造法は、従来有効な用途が開発されていなか
った石炭の部分酸化の際に生成する非晶性副生スラグの
粒子径0.3m以下の粒子を用いることができるので非
常に安価に良質の無機質発泡体を製造することができる
The production method of the present invention is very inexpensive because it can use amorphous by-product slag particles with a particle size of 0.3 m or less, which are produced during partial oxidation of coal, for which no effective use has been developed in the past. high quality inorganic foam can be produced.

また、本発明の製造法により得られた無機質発泡体は、
発泡体であることを利用した他の用途、例えば断熱材、
軽量骨材、肥料、洗剤あるいは塗料などの増量材、土壌
改良材などとしても使用することができるのは勿論でお
る。
In addition, the inorganic foam obtained by the production method of the present invention is
Other uses that take advantage of the foam, such as insulation,
Of course, it can also be used as a lightweight aggregate, fertilizer, filler for detergents or paints, soil improvement material, etc.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

[実施例1コ 原料としては、テキサコ法を利用した石炭ガス化炉から
排出された非晶性副生スラグを篩で粒子径0.3an以
下の粒子が95重量%以上であるものを使用した。使用
した副生スラグの化学組成を第1表、粒度分布を第2表
に示す。
[Example 1] As the raw material, amorphous by-product slag discharged from a coal gasification furnace using the Texaco method was sieved to contain 95% by weight or more of particles with a particle size of 0.3 an or less. . The chemical composition of the by-product slag used is shown in Table 1, and the particle size distribution is shown in Table 2.

なあ、この副生スラグはX線回折の結果、非晶質である
ことが確認された。
Incidentally, as a result of X-ray diffraction, this by-product slag was confirmed to be amorphous.

得られた粒子径0.3s以下の粒子が95重量%以上で
ある副生スラグを小型外熱式回転電気炉(φ60X10
00馴)により昇温速度を900’C/m i nで加
熱処理最高温度950℃上昇させ、無機質発泡体を製造
した。
The resulting by-product slag, in which 95% by weight or more of particles with a particle size of 0.3 s or less, is heated in a small external heating rotary electric furnace (φ60
An inorganic foam was produced by raising the maximum temperature of the heat treatment by 950°C at a heating rate of 900'C/min.

得られた無機質発泡体の単位容積重量が0.63Kg/
L24時間吸水率が3.8重量%であった。得られた無
機質発泡体の化学組成を第1表に、そして粒度分布を第
2表に示す。
The unit volume weight of the obtained inorganic foam is 0.63 kg/
The 24-hour water absorption rate of L was 3.8% by weight. The chemical composition of the obtained inorganic foam is shown in Table 1, and the particle size distribution is shown in Table 2.

なお、上記の測定は、下記の方法および装置を用いて行
なった。
Note that the above measurements were performed using the method and apparatus described below.

[測定方法] 単位容積重■ 100dのメスシリンダーまたは2gマスを用意して測
定対象の粒子をこのメスシリンダーまたはマスに取り、
この粒子の型口を測定した。
[Measurement method] Unit volume weight ■ Prepare a 100 d graduated cylinder or 2 g mass, take the particles to be measured into this graduated cylinder or mass,
The mold opening of this particle was measured.

比重および吸水量 JIS  A  1134に準じて測定した。Specific gravity and water absorption Measured according to JIS A 1134.

校1旦血 JIS  A  1102に準じて測定した。First blood at school Measured according to JIS A 1102.

を更皿滅 JIS  M  8852に準じて分析した。The plate is destroyed It was analyzed according to JIS M 8852.

工遺望厘 B、5812に準じて簡易法により粒子5重量%破壊の
荷重を測定した。
The load at which 5% by weight of particles broke was measured by a simple method according to Koukibokan B, 5812.

【実施例2.3および比較例1.2] 加熱処理温度を500″C(比較例1)、875℃(実
施例2>、1000℃(実施例3)および1200℃(
比較例2)に変えた以外は、実施例1と同様にして加熱
処理実験を行なった。
[Example 2.3 and Comparative Example 1.2] Heat treatment temperatures were set at 500"C (Comparative Example 1), 875"C (Example 2>), 1000"C (Example 3) and 1200"C (
A heat treatment experiment was conducted in the same manner as in Example 1, except that Comparative Example 2) was used.

得られた無機質発泡体の物性を第3表に示す。Table 3 shows the physical properties of the obtained inorganic foam.

[実施例4および比較例3] 昇温速度20℃/min (比較例3)および500”
C/min (実施例4)に変えて、それら加熱処理可
能な最高温度にて加熱処理実験を行なった以外は実施例
1と同様。
[Example 4 and Comparative Example 3] Temperature increase rate 20°C/min (Comparative Example 3) and 500”
C/min (Example 4), except that the heat treatment experiment was conducted at the highest heat-treatable temperature.

得られた無機質発泡体の物性を第3表に示す。Table 3 shows the physical properties of the obtained inorganic foam.

[実施例5] 原料としては、テキサコ法を利用した石炭ガス化炉から
排出された副生スラグの粒子径0.37111I!以上
の粒子をボールミルで粉砕して粒子径0.3M以下の粒
子が95重量%以上であるものを使用した。使用した副
生スラグの化学組成を第1表、粒度分布を第2表に示す
[Example 5] As a raw material, by-product slag discharged from a coal gasifier using the Texaco method had a particle size of 0.37111I! The above particles were pulverized with a ball mill and the particles having a particle diameter of 0.3M or less accounted for 95% by weight or more were used. The chemical composition of the by-product slag used is shown in Table 1, and the particle size distribution is shown in Table 2.

粉砕されて得られた粒子径0.3mm以下の粒子が95
5重量以上である副生スラグを使用した以外、は、実施
例1と同様にして加熱処理実験を行なった。
Particles with a particle size of 0.3 mm or less obtained by pulverization are 95
A heat treatment experiment was conducted in the same manner as in Example 1, except that by-product slag having a weight of 5% or more was used.

得られた無機質発泡体の化学組成及び粒度分布を第1表
および第2表に、そして物性を第3表に示す。
The chemical composition and particle size distribution of the obtained inorganic foam are shown in Tables 1 and 2, and the physical properties are shown in Table 3.

[実施例6〜8] 実施例5に用いた原料に添加材としてフライアッシュを
15重量%(実施例6)、微粉炭を5重量%(実施例7
)添加したもの。ざらに、フライアッシュを10重量%
と微粉炭5重量%(実施例8)を添加した以外は実施例
1と同様に加熱処理実験を行なった。
[Examples 6 to 8] 15% by weight of fly ash (Example 6) and 5% by weight of pulverized coal (Example 7) were added to the raw materials used in Example 5 as additives.
) added. Zara, 10% fly ash by weight
A heat treatment experiment was conducted in the same manner as in Example 1, except that 5% by weight of pulverized coal (Example 8) was added.

得られた無機質発泡体の物性を第3表に示す。Table 3 shows the physical properties of the obtained inorganic foam.

[比較例4] 実施例5に用いた原料に添加材として微粉炭15重量%
添加した以外は実施例1と同様に加熱処理実験を行なっ
た。
[Comparative Example 4] 15% by weight of pulverized coal was added as an additive to the raw material used in Example 5.
A heat treatment experiment was carried out in the same manner as in Example 1, except that the addition of C.

得られた無機質発泡体の物性を第3表に示す。Table 3 shows the physical properties of the obtained inorganic foam.

[実施例9.10コ 実施例1および実施例6の原料および燃焼条件にて有効
内径φ1.3×長さ3.5mのロータリーキルンを用い
て加熱処理実験を行なった。
[Examples 9 and 10] A heat treatment experiment was conducted using the raw materials and combustion conditions of Examples 1 and 6 using a rotary kiln with an effective inner diameter of 1.3 m and a length of 3.5 m.

得られた無機質発泡体の物性を第4表に示す。Table 4 shows the physical properties of the obtained inorganic foam.

Claims (2)

【特許請求の範囲】[Claims] (1)石炭の部分酸化により得られた粒子径0.3mm
以下の粒子が90重量%以上である非晶性副生スラグを
昇温速度500〜1000℃/minの範囲にて800
〜1000℃の温度範囲で加熱処理して膨張させること
を特徴とする無機質発泡体の製造法。
(1) Particle size 0.3 mm obtained by partial oxidation of coal
Amorphous by-product slag containing 90% by weight or more of the following particles was heated to 800°C at a heating rate of 500 to 1000°C/min.
A method for producing an inorganic foam, the method comprising expanding the inorganic foam by heat treatment in a temperature range of ~1000°C.
(2)上記スラグに対してフライアッシュが20重量%
以下および/または微粉炭が10重量%以下になるよう
にフライアッシュまたは微粉炭を添加して還元雰囲気内
で焼成することを特徴とする請求項(1)項記載の無機
質発泡体の製造法。
(2) Fly ash is 20% by weight based on the above slag.
The method for producing an inorganic foam according to claim 1, characterized in that fly ash or pulverized coal is added so that the amount of pulverized coal is 10% by weight or less, and the pulverized coal is fired in a reducing atmosphere.
JP2369489A 1989-02-03 1989-02-03 Method for producing inorganic foam Expired - Fee Related JPH0678182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2369489A JPH0678182B2 (en) 1989-02-03 1989-02-03 Method for producing inorganic foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2369489A JPH0678182B2 (en) 1989-02-03 1989-02-03 Method for producing inorganic foam

Publications (2)

Publication Number Publication Date
JPH02204350A true JPH02204350A (en) 1990-08-14
JPH0678182B2 JPH0678182B2 (en) 1994-10-05

Family

ID=12117522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2369489A Expired - Fee Related JPH0678182B2 (en) 1989-02-03 1989-02-03 Method for producing inorganic foam

Country Status (1)

Country Link
JP (1) JPH0678182B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269760A (en) * 2008-04-30 2009-11-19 Central Res Inst Of Electric Power Ind Manufacturing method and manufacturing system of coal gasified slag foam
JP2016077261A (en) * 2014-10-22 2016-05-16 株式会社大林組 Weed-proof material and construction method for the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650834A (en) * 2019-01-25 2019-04-19 贵州长泰源节能建材股份有限公司 A kind of processing method of antiseepage type aerated bricks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269760A (en) * 2008-04-30 2009-11-19 Central Res Inst Of Electric Power Ind Manufacturing method and manufacturing system of coal gasified slag foam
JP2016077261A (en) * 2014-10-22 2016-05-16 株式会社大林組 Weed-proof material and construction method for the same

Also Published As

Publication number Publication date
JPH0678182B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
CN111116210B (en) Method for preparing light ceramsite by utilizing biological coal ecological sintering waste soil
CN104355546B (en) Foam glass using basalt glass clinker and CRT (cathode ray tube) screen glass as main raw materials and preparation method of foam glass
CN106542843A (en) A kind of method that utilization solid waste prepares light heat-insulation wall material
CN107098683A (en) Sintered coal gangue insulating brick and preparation method thereof
US2543987A (en) Method of producing porous, lightweight, burned argillaceous material
CN108821621A (en) A kind of light high-strength haydite and preparation method
CN106396719A (en) Method for producing ceramsite by using blast furnace slags
Tang et al. Self-foaming high strength artificial lightweight aggregates derived from solid wastes: expansion mechanism and environmental impact
CN101486562B (en) Haydite used as conductive concrete aggregate and preparation thereof
JPH02204350A (en) Production of inorganic foamed material
US3702257A (en) Manufacture of lightweight aggregate
CN106146024A (en) A kind of preparation method of basalt porous insulation material
JPH11209130A (en) Manufacture of super-lightweight aggregate
JP2514865B2 (en) Method for producing inorganic foam particles
RU2671582C1 (en) Method of producing heat-insulating material - foam glass and mixture for production thereof
JP2006298730A (en) Method of firing incineration ash and sintered compact obtained by the same method
JPH11335146A (en) Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method
JP4509269B2 (en) Artificial aggregate and method for producing the same
JPH0251858B2 (en)
JP3623021B2 (en) Artificial aggregate and method for producing the same
CN106045474A (en) High-volume stone flour lightweight ceramsite and preparation method thereof
CN107098592B (en) Method for producing foam glass ceramics by using high-silicon vanadium tailings and high-magnesium phosphorus tailings
CN117401960B (en) Method for preparing heat preservation and insulation material by using gas slag
CN109553434A (en) A kind of high-strength light haydites of book structure and preparation method thereof
JP2013249219A (en) Porous sintered body and method for manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees