JPH02204312A - Method for synthesizing metal sulfide-based interlaminar compound - Google Patents

Method for synthesizing metal sulfide-based interlaminar compound

Info

Publication number
JPH02204312A
JPH02204312A JP1021696A JP2169689A JPH02204312A JP H02204312 A JPH02204312 A JP H02204312A JP 1021696 A JP1021696 A JP 1021696A JP 2169689 A JP2169689 A JP 2169689A JP H02204312 A JPH02204312 A JP H02204312A
Authority
JP
Japan
Prior art keywords
metal
sulfide
alkali
metal sulfide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1021696A
Other languages
Japanese (ja)
Inventor
Akira Sami
佐美 亮
Hidefusa Uchikawa
英興 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1021696A priority Critical patent/JPH02204312A/en
Publication of JPH02204312A publication Critical patent/JPH02204312A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a metal sulfide-based interlaminar compd. having a high diffusion coefft. of guest ions such as alkali ions by mixing a metal alkoxide with an alkali metal sulfide and an acid, bringing this mixture into a reaction and sintering the resultant product in an H2S atmosphere. CONSTITUTION:At least one kind of compd. selected among metal alkoxides such as titanium tetraisopropoxide and metal beta-diketone type org. compds. is mixed with at least one kind of compd. selected among alkali metal sulfides such as lithium sulfide and alkali metal hydrosulfides and an acid such as sulfuric acid. This mixture is brought into a reaction in a solvent and the resultant reaction product is separated, concd., dried and sintered in an H2S atmosphere. A metal sulfide-based interlaminar compd. uniformly doped with alkali cations can be synthesized by the single reaction.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は例えば電池、センサー エレクトロクロミッ
ク素子、電位記憶素子などの電気化学的デバイスに用い
る金属硫化物系層間化合物の合成方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for synthesizing a metal sulfide-based intercalation compound used in electrochemical devices such as batteries, sensors, electrochromic devices, and potential storage devices.

[従来の技術] 従来、金属硫化物系層間化合物は、一般に層状構造を持
つ金属硫化物をホスト物質として、ここにアルカリイオ
ン等のゲスト物質を化学的、電気化学的にドープするこ
とによって得られている。
[Prior Art] Conventionally, metal sulfide-based intercalation compounds are generally obtained by doping a metal sulfide with a layered structure as a host material with a guest material such as an alkali ion chemically or electrochemically. ing.

ホスト物質である金属硫化物の合成は例えば刊行物(I
norganic  5yntheses、vol、1
2.1.p15gおよびp82(1973))に示され
ているように、−殻内に硫化水素または硫化炭素雰囲気
中で金属を加熱したり、金属と硫黄とを密閉容器中で加
熱したり、金属塩化物の蒸気と硫化水素とを加熱するこ
とにより行われている。この様にして得たホスト物質の
電気化学的なドープは、ゲスト物質を溶解した溶媒中で
ホスト物質を電気化学的手法によって酸化または還元す
ることにより行われている。 またゲスト物質を化学的
にドープするには例えば刊行物(J。
The synthesis of metal sulfides as host materials is described, for example, in the publication (I
organic 5 syntheses, vol. 1
2.1. p. 15g and p. 82 (1973)) - heating the metal in a hydrogen sulfide or carbon sulfide atmosphere in the shell, heating the metal and sulfur in a closed container, It is carried out by heating steam and hydrogen sulfide. Electrochemical doping of the host material obtained in this manner is carried out by electrochemically oxidizing or reducing the host material in a solvent in which the guest material is dissolved. In addition, to chemically dope a guest substance, for example, the publication (J.

Electorochem、Soc、voI 124.
9.p1387〜198g(1977))に示されてい
るように、ヨウ化リチウムのアセトニトリル溶液を用い
て直接ホスト物質と反応させることにより行われている
Electrochem, Soc, voI 124.
9. 1387-198g (1977)), this method is carried out by directly reacting a host material with a solution of lithium iodide in acetonitrile.

[発明が解決しようとする課題] しかし従来の金属硫化物ホスト物質の製造方法は本質的
に固−気相、rM−固相、気−気相反応なので均質な物
質が得にくいことに伴うイオン伝導性の不良が生じ易か
った。そのためイオン伝導性の高い金属硫化物ホスト物
質の製造方法が待ち望まれていた。さらにゲスト物質の
電気化学的ドープ法はイオンの泳動等を制御する電流密
度の設定などの操作が複雑すぎて工業化に向かず、また
化学的ドープ法は筒便なドープ法であるが均一な組成の
層間化合物を得にくシまため生成した層間化合物におけ
るゲスト物質のみかけの拡散係数が小さくなるという課
題があった。
[Problem to be solved by the invention] However, since the conventional manufacturing method of metal sulfide host materials is essentially a solid-vapor phase, rM-solid phase, and gas-vapor phase reaction, it is difficult to obtain a homogeneous material, and ions are generated. Poor conductivity was likely to occur. Therefore, a method for producing metal sulfide host materials with high ionic conductivity has been awaited. Furthermore, the electrochemical doping method for guest substances is not suitable for industrialization because the operations such as setting the current density to control ion migration are too complicated, and the chemical doping method is a convenient doping method, but it produces a uniform composition. There was a problem that the apparent diffusion coefficient of the guest substance in the generated intercalation compound became small because it was difficult to obtain the intercalation compound.

この発明はかかる課題を解決するためになされたもので
1例えばアルカリイオン等のゲストイオンの拡散係数の
大きな金属硫化物系層間化合物の合成方法を得ることを
目的とする。
The present invention has been made to solve the above problems, and an object thereof is to provide a method for synthesizing a metal sulfide-based intercalation compound having a large diffusion coefficient for guest ions such as alkali ions.

[課題を解決するための手段] この発明の金属硫化物系層間化合物の合成方法は、金属
アルコキシドおよび金属β−ジケトン型有機物の内の少
なくとも一種、アルカリ金属の硫化物およびアルカリ金
属の硫化水素化物の内の少なくとも一種、および酸を混
合して溶液とし反応させ9反応生成物をH2S雰囲気中
で焼成するものである。
[Means for Solving the Problems] The method for synthesizing a metal sulfide-based intercalation compound of the present invention comprises at least one of a metal alkoxide and a metal β-diketone type organic substance, an alkali metal sulfide, and an alkali metal hydrogen sulfide. At least one of these and an acid are mixed to form a solution, reacted, and the reaction product is calcined in an H2S atmosphere.

[作用] この発明における金属アルコキシドおよび金属β−ジケ
トン型有機物の少なくとも一種を出発原料とする反応は
従来の気相反応とは本質的に異なる液相反応の内のゾル
−ゲル法を基本としているので、生成物である金属硫化
物系層間化合物は粒径の揃った微粒子として得られる。
[Function] The reaction using at least one of a metal alkoxide and a metal β-diketone type organic substance as a starting material in the present invention is based on a sol-gel method, which is a liquid phase reaction that is essentially different from conventional gas phase reactions. Therefore, the product, a metal sulfide intercalation compound, is obtained as fine particles with uniform particle size.

このことは電子R微鏡観察によって確認した。従ってア
ルカリカチオンが層間化合物と溶媒との間を行き来する
反応の場である界面の面積が従来のものと比べて飛躍的
に増大させているために、アルカリカチオンの見かけの
拡散係数が大きくなっているものと考えられる。またこ
の発明による金属硫化物系層間化合物は、ホスト物質で
ある金属硫化物を合成すると同時にゲスト物質であるア
ルカリカチオンをドープするのでアルカリカチオンが均
一にドープされた組成になっていると推定される。これ
は従来のいかなる合成方法でも得られなかったものであ
るが、このこともアルカリカチオンの拡散係数を大きく
している主因の1つであると思われる。
This was confirmed by electron R microscopic observation. Therefore, the area of the interface, which is the reaction site where alkali cations go back and forth between the intercalation compound and the solvent, has been dramatically increased compared to conventional ones, and the apparent diffusion coefficient of alkali cations has increased. It is thought that there are. In addition, the metal sulfide-based intercalation compound according to the present invention is presumed to have a composition in which alkali cations are uniformly doped because the metal sulfide that is the host material is synthesized and the alkali cation that is the guest material is doped at the same time. . Although this cannot be obtained by any conventional synthesis method, this is also considered to be one of the main reasons for increasing the diffusion coefficient of alkali cations.

なおこの発明の合成方法が有するこの様な利点は。These advantages of the synthesis method of the present invention are as follows.

この発明がセラミック超微粒子の合成方法として一般に
知られているゾル−ゲル法を基本にしたものであること
に起因すると考えられる。
This is believed to be due to the fact that this invention is based on the sol-gel method, which is generally known as a method for synthesizing ultrafine ceramic particles.

[実施例] この発明の金属硫化物系層間化合物の合成方法に係わる
金属アルコキシドおよび金属β−ジケトン型有機物中の
中心金属としては、一般にその硫化物が層状構造を有す
るとされている元素周期律表中■、族、■族、および■
1族に属する金属原子の内少なくとも一種のものを用い
ることが可能である。
[Example] The central metal in the metal alkoxide and metal β-diketone type organic substance related to the method for synthesizing the metal sulfide intercalation compound of the present invention is selected from the periodic system of elements in which the sulfide is generally said to have a layered structure. ■, family, ■family, and ■ in the table
It is possible to use at least one type of metal atoms belonging to Group 1.

また金属アルコキシドの構造としては第1図に示した一
般式のように金属とアルキル基とが酸素を介して結合し
ているものであるが、アルキル基はすべて同じである必
要はない。また第2図に示したような複核構造であって
もよく、その場合、複数の金属原子はそれぞれ異なるも
のであってもよい、図において、R1−R6はアルキル
基、M、Ml、M2は金属である。一方金属β−ジケト
ン型有機物は第3図に示すようなβ−ジケトン型の配位
子が中心金属に配位した構造をしており、β位の置換基
R口〜R目はアルキル基またはフェニル基であっても良
く、互いに異なるものであっても良い。また金属β−ジ
ケトン型有機物の場合は、例えば化学式(CHs CO
CHCOCH3) 2 M o O2のように。
The structure of a metal alkoxide is such that a metal and an alkyl group are bonded via oxygen, as shown in the general formula shown in FIG. 1, but the alkyl groups do not all have to be the same. It may also have a dinuclear structure as shown in Figure 2, in which case the plurality of metal atoms may be different from each other. In the figure, R1-R6 are alkyl groups, M, Ml, M2 are It is metal. On the other hand, metal β-diketone type organic substances have a structure in which a β-diketone type ligand is coordinated to a central metal as shown in Figure 3, and the substituents R to R at the β position are alkyl groups or It may be a phenyl group or may be different from each other. In the case of metal β-diketone type organic substances, for example, the chemical formula (CHs CO
Like CHCOCH3) 2 M o O2.

一部が酸化物であっても良い。さらに、第4図に示すよ
うに金属アルコキシドと金属β−ジケトン型有機物との
混合体であっても良い。なお、構造式の例には配位数4
の中心金属を示したが、配位数に制限は無い。
Part of it may be an oxide. Furthermore, as shown in FIG. 4, it may be a mixture of a metal alkoxide and a metal β-diketone type organic substance. In addition, the example of the structural formula has a coordination number of 4.
Although the central metal is shown, there is no restriction on the number of coordinations.

この発明の金属硫化物系層間化合物の合成方法に係わる
酸としては、いかなる鉱酸や有機酸も用いることができ
、硫化水素などもそ9作用から考えて酸として用いるこ
とができる。
Any mineral acid or organic acid can be used as the acid involved in the method of synthesizing the metal sulfide intercalation compound of the present invention, and hydrogen sulfide can also be used as the acid in view of its effects.

この発明の金属硫化物系層間化合物の合成方法に係わる
アルカリ金属の硫イピ物およびアルカリ金属の硫化水素
化物としては、例えば硫化ナトリウム、硫化水素ナトリ
ウム、硫化す、チウム、硫化カリウム、硫化ルビジウム
、硫化セシウムなど全てのアルカリ金属の硫化物及び硫
化水素化物の内から選ばれた少なくとも一種を用いるこ
とができる。
Examples of the alkali metal sulfide and alkali metal hydrogen sulfide used in the method for synthesizing metal sulfide-based intercalation compounds of the present invention include sodium sulfide, sodium hydrogen sulfide, sulphur sulfide, thium, potassium sulfide, rubidium sulfide, At least one selected from sulfides and hydrogen sulfides of all alkali metals such as cesium sulfide can be used.

この発明の金属硫化物系#間化合物の合成方法に係わる
溶媒としては、無機系及び有機系の内の少なくとも一種
のものを広く用いることができる。
As the solvent involved in the method of synthesizing the metal sulfide intermetallic compound of the present invention, at least one type of inorganic and organic solvents can be widely used.

この発明の金属硫化物系層間化合物の合成方法に係わる
合成反応は、溶媒中でアルカリ金属の硫化物や硫化水素
化物を酸と反応させることによって上記溶媒中に硫化水
素とアルカリカチオンとを同時に発生せしめ、これらと
上記溶媒中に共存せしめた金属アルコキシドおよび金属
β−ジケトン型有機物の内の少なくとも一種との液層反
応によって、アルカリカチオンが均一にドープされた金
属硫化物系層間化合物をただ一回の反応によって合成す
るものである。
The synthesis reaction related to the method for synthesizing metal sulfide-based intercalation compounds of the present invention involves simultaneously generating hydrogen sulfide and alkali cations in the solvent by reacting an alkali metal sulfide or hydrogen sulfide with an acid in the solvent. Then, a metal sulfide-based intercalation compound uniformly doped with alkali cations is formed by a liquid phase reaction between these and at least one of a metal alkoxide and a metal β-diketone type organic substance coexisting in the above solvent. It is synthesized by the reaction of

なお、この発明の実施例の金属硫化物系層間化合物の合
成方法において、金属アルコキシドおよび金属β−ジケ
トン型有機物の内の少なくとも一種の溶液に、アルカリ
金属の硫化物およびアルカリ金属の硫化水素化物の内の
少なくとも一種を混合した後、Mを混合するか、金属ア
ルコキシドおよび金属β−ジケトン型有機物の内の少な
くとも一種の溶液に、アルカリ金属の硫化物およびアル
カリ金属の硫化水素化物の内の少なくとも一種のものの
酸溶液を混合しても良い。
In the method for synthesizing a metal sulfide-based intercalation compound according to an embodiment of the present invention, an alkali metal sulfide and an alkali metal hydrogen sulfide are added to a solution of at least one of a metal alkoxide and a metal β-diketone type organic substance. After mixing at least one of them, M is mixed, or at least one of an alkali metal sulfide and an alkali metal hydrogen sulfide is added to a solution of at least one of a metal alkoxide and a metal β-diketone type organic substance. You may also mix acid solutions.

以下、この発明を実施例により具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 金属アルコキシドとしてチタンテトライソプロポキシド
28.56.を、溶媒である無水チオフェン50cl1
3に溶解した。ここにアルカリ金属の硫化物として硫化
リチウム2.774gを溶解した後、aとして硫化水素
を流量2cm3/sinで1時間添加した。これをろ過
してチオフェンで洗った後真空乾燥してこの発明の一実
施例の金属硫化物系層間化合物の合成方法による金属硫
化物系層間化合物のLil]、aTiS2を得た。得ら
れた生成物をペレット状に成形して作用電極とし、リチ
ウムフォイルを対極と参照極。
Example 1 Titanium tetraisopropoxide as metal alkoxide 28.56. and 50 cl1 of anhydrous thiophene as a solvent.
It was dissolved in 3. After 2.774 g of lithium sulfide was dissolved therein as an alkali metal sulfide, hydrogen sulfide was added as a at a flow rate of 2 cm 3 /sin for 1 hour. This was filtered, washed with thiophene, and then dried in vacuum to obtain a metal sulfide intercalation compound, aTiS2, obtained by the method for synthesizing a metal sulfide intercalation compound according to an embodiment of the present invention. The resulting product was formed into a pellet to serve as the working electrode, and lithium foil was used as the counter and reference electrode.

LiCl0mのINプロピレンカーボネート溶液を電解
液として測定セルを組んだ。このセルを用いてリチウム
の見かけの拡散係数をカレントパルス法によって測定し
結果を表に示す。
A measurement cell was assembled using an IN propylene carbonate solution containing 0 m of LiCl as an electrolyte. Using this cell, the apparent diffusion coefficient of lithium was measured by the current pulse method, and the results are shown in the table.

実施例2 金属β−ジケトン型有機物として、WI化チタン(■)
アセチルアセトナート20.97gを溶媒である無水ア
セトニトリル50c113に溶解した。ここにアルカリ
金属の硫化物として硫化リチウム2.210gを溶解し
た後に酸として硫1’il 58.86gを添加した。
Example 2 Titanium WI (■) as a metal β-diketone type organic substance
20.97 g of acetylacetonate was dissolved in anhydrous acetonitrile 50c113 as a solvent. After dissolving 2.210 g of lithium sulfide as an alkali metal sulfide, 58.86 g of 1'il sulfur was added as an acid.

ここから反応生成物を分別#ji濃縮乾燥し、これを硫
化水素雰囲気中1000℃で6時間焼成してこの発明の
他の実施例の金属硫化物系層間化合物の合成方法による
金属硫化物系層間化合物のLis、eTiS+を得た。
The reaction product is separated, concentrated and dried, and then calcined for 6 hours at 1000°C in a hydrogen sulfide atmosphere to form a metal sulfide intercalation compound according to the method for synthesizing a metal sulfide intercalation compound according to another embodiment of the present invention. The compounds Lis and eTiS+ were obtained.

これについて、実施例1と同様にしてリチウムイオンの
見かけの拡散係数を測定し結果を表に示す。
Regarding this, the apparent diffusion coefficient of lithium ions was measured in the same manner as in Example 1, and the results are shown in the table.

比較例 二硫化チタン(6津製薬!11) 15.681にn−
ブチルリチウムのヘキサン溶液(MERCK)を添加し
アルゴン気流中に室温で20時間放置してLi、i+、
aTiS2を調整した後、リチウムイオンの見かけの拡
散係数を実施例1と同様に測定し結果を表に示す。
Comparative example Titanium disulfide (6tsu Pharmaceutical! 11) 15.681 n-
A hexane solution of butyl lithium (MERCK) was added and left at room temperature in an argon stream for 20 hours to form Li, i+,
After adjusting aTiS2, the apparent diffusion coefficient of lithium ions was measured in the same manner as in Example 1, and the results are shown in the table.

表から明かのように、この発明の実施例の金属硫化物系
j[化合物の合成方法による金属硫化物系層間化合物は
従来のものと比較してリチウムの見かけの拡散係数が2
桁近く高くなることが明かとなった。
As is clear from the table, the metal sulfide intercalation compound produced by the metal sulfide compound synthesis method of the embodiment of the present invention has an apparent diffusion coefficient of lithium of 2 compared to the conventional compound.
It became clear that the price would be nearly an order of magnitude higher.

[発明の効果] 以上説明したとおり、この発明は金属アルコキシドおよ
び金属β−ジケトン型有機物の内の少なくとも一種、ア
ルカリ金属の硫化物およびアルカリ金属の硫化水素化物
の内の少なくとも一種、および酸を混合して溶液とし反
応させ、反応生成物をH2S雰囲気中で焼成することに
より、ゲストイオンの拡散係数の大きな金属硫化物系層
間化合物の合成方法を得ることができる。
[Effects of the Invention] As explained above, the present invention provides a mixture of at least one of a metal alkoxide and a metal β-diketone type organic substance, at least one of an alkali metal sulfide and an alkali metal hydrogen sulfide, and an acid. A method for synthesizing a metal sulfide-based intercalation compound having a large guest ion diffusion coefficient can be obtained by reacting in a solution and firing the reaction product in an H2S atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれこの発明の実施例の金
属硫化物系層間化合物の合成方法に係わる金属アルコキ
シドの構造式を示す構造図、第3図はこの発明の実施例
の金属硫化物系層間化合物の合成方法に係わる金属β−
ジケトン型有機物の構造式を示す構造図、第4図はこの
発明の実施例の金属硫化物系層間化合物の合成方法に係
わる金属アルコキシドと金属β−ジケトン型有機物の混
合体の’FRR式を示すa造園である。 図において、R+”Raはアルキル基、M、M+。 M2は金属、R口〜R目はアルキル基またはフェニル基
である。 なお、各図中同一符号は同一または相当部分を示す。 第1図 第2図 R,〜6:アルキル基 M、Mt、M2 :金属
1 and 2 are structural diagrams showing the structural formulas of metal alkoxides related to the method for synthesizing metal sulfide-based intercalation compounds according to embodiments of the present invention, and FIG. 3 is structural diagrams showing the structural formulas of metal alkoxides according to embodiments of the invention. Metal β- related to the synthesis method of intercalation compound
Structural diagram showing the structural formula of a diketone type organic substance. FIG. 4 shows the 'FRR formula of a mixture of a metal alkoxide and a metal β-diketone type organic substance related to the method for synthesizing a metal sulfide intercalation compound according to an embodiment of the present invention. a. Landscaping. In the figures, R+"Ra is an alkyl group, M, M+. M2 is a metal, and R-th to R-th are an alkyl group or a phenyl group. In each figure, the same reference numerals indicate the same or corresponding parts. FIG. Figure 2 R, ~6: Alkyl group M, Mt, M2: Metal

Claims (1)

【特許請求の範囲】[Claims] 金属アルコキシドおよび金属β−ジケトン型有機物の内
の少なくとも一種、アルカリ金属の硫化物およびアルカ
リ金属の硫化水素化物の内の少なくとも一種、および酸
を混合して溶液とし反応させ、反応生成物をH_2S雰
囲気中で焼成する金属硫化物系層間化合物の合成方法。
At least one of a metal alkoxide and a metal β-diketone type organic substance, at least one of an alkali metal sulfide and an alkali metal hydrogen sulfide, and an acid are mixed and reacted as a solution, and the reaction product is placed in an H_2S atmosphere. A method for synthesizing metal sulfide-based intercalation compounds by firing in a medium.
JP1021696A 1989-01-31 1989-01-31 Method for synthesizing metal sulfide-based interlaminar compound Pending JPH02204312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1021696A JPH02204312A (en) 1989-01-31 1989-01-31 Method for synthesizing metal sulfide-based interlaminar compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1021696A JPH02204312A (en) 1989-01-31 1989-01-31 Method for synthesizing metal sulfide-based interlaminar compound

Publications (1)

Publication Number Publication Date
JPH02204312A true JPH02204312A (en) 1990-08-14

Family

ID=12062233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1021696A Pending JPH02204312A (en) 1989-01-31 1989-01-31 Method for synthesizing metal sulfide-based interlaminar compound

Country Status (1)

Country Link
JP (1) JPH02204312A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155197A (en) * 2007-12-26 2009-07-16 Samsung Electro Mech Co Ltd Method for production of lamella-structure nanoparticle
WO2014148432A1 (en) * 2013-03-18 2014-09-25 独立行政法人産業技術総合研究所 Lithium titanium sulfide, lithium niobium sulfide, and lithium titanium niobium sulfide
WO2020213340A1 (en) * 2019-04-19 2020-10-22 三井金属鉱業株式会社 Method for producing sulfide solid electrolyte

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155197A (en) * 2007-12-26 2009-07-16 Samsung Electro Mech Co Ltd Method for production of lamella-structure nanoparticle
WO2014148432A1 (en) * 2013-03-18 2014-09-25 独立行政法人産業技術総合研究所 Lithium titanium sulfide, lithium niobium sulfide, and lithium titanium niobium sulfide
JP6011989B2 (en) * 2013-03-18 2016-10-25 国立研究開発法人産業技術総合研究所 Lithium titanium sulfide, lithium niobium sulfide and lithium titanium niobium sulfide
US10090524B2 (en) 2013-03-18 2018-10-02 National Institute Of Advanced Industrial Science And Technology Lithium titanium sulfide, lithium niobium sulfide, and lithium titanium niobium sulfide
WO2020213340A1 (en) * 2019-04-19 2020-10-22 三井金属鉱業株式会社 Method for producing sulfide solid electrolyte
JPWO2020213340A1 (en) * 2019-04-19 2021-09-13 三井金属鉱業株式会社 Method for producing sulfide solid electrolyte
KR20210120126A (en) * 2019-04-19 2021-10-06 미쓰이금속광업주식회사 Method for preparing sulfide solid electrolyte
CN113631507A (en) * 2019-04-19 2021-11-09 三井金属矿业株式会社 Method for producing sulfide solid electrolyte
US11618678B2 (en) 2019-04-19 2023-04-04 Mitsui Mining & Smelting Co., Ltd. Method for producing sulfide solid electrolyte

Similar Documents

Publication Publication Date Title
Kwak et al. Na2ZrCl6 enabling highly stable 3 V all-solid-state Na-ion batteries
Adeli et al. Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes
Recham et al. Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications
CN104124467B (en) A kind of method utilizing lithium lanthanum zirconium oxygen presoma coated powder to prepare solid electrolyte
Calpa et al. Chemical stability of Li4PS4I solid electrolyte against hydrolysis
Wu et al. High-performance rechargeable aluminum–selenium battery with a new deep eutectic solvent electrolyte: thiourea-AlCl3
WO2015064351A1 (en) Solid-electrolyte precursor, manufacturing method therefor, method for manufacturing solid electrolyte, and method for manufacturing solid-electrolyte/‌electrode-active-material complex
JP7151839B2 (en) Electrolytes, batteries, electronics, methods of making electrolytes and batteries
Tey et al. Synthesis, Structure, and Magnetic Properties of [Li (H2O) M (N2H3CO2) 3]⊙ 0.5 H2O (M= Co, Ni) as Single Precursors to LiMO2 Battery Materials
Kokal et al. Sol–gel synthesis and lithium ion conduction properties of garnet-type Li6BaLa2Ta2O12
Losilla et al. NASICON to scandium wolframate transition in Li1+ xMxHf2− x (PO4) 3 (M= Cr, Fe): structure and ionic conductivity
CN108461750A (en) A kind of nickel cobalt aluminium ternary anode material for lithium-ion batteries, the Preparation method and use of doping
Tan et al. Low-Temperature Ionothermal Synthesis of Li-Ion Conductive Li4B7O12Cl Solid-State Electrolyte
Duchardt et al. Flow-oriented synthesis of Li2S and Li3PS4· 3THF: opening up a completely solvent-based solid electrolyte value chain
Nagai et al. Synchronous electrochromism of lithium ion battery with chemically fabricated transparent thin films
McCarthy et al. Synthesis in molten alkali metal polythiophosphate fluxes. The new quaternary bismuth and antimony thiophosphates ABiP2S7 (A= K, Rb), A3M (PS4) 2 (A= K, Rb, Cs; M= Sb, Bi), Cs3Bi2 (PS4) 3, and Na0. 16 Bi1. 28P2S6
Yamamoto et al. Synthesis of the metastable cubic phase of Li2OHCl by a mechanochemical method
JP7031353B2 (en) How to manufacture electrolytes, batteries, electronic devices, electrolytes and batteries
CN108598471B (en) Cobalt-containing positive electrode material of sodium ion battery and preparation method thereof
Karunawan et al. Truncated Octahedral Shape of Spinel LiNi0. 5Mn1. 5O4 via a Solid-State Method for Li-Ion Batteries
JPH02204312A (en) Method for synthesizing metal sulfide-based interlaminar compound
Genin et al. Hydrogen bronzes of new oxides of the WO3-MoO3 system with hexagonal, pyrochlore and ReO3-type structures
Boyle et al. Synthesis, characterization, and electrochemical properties of a series of sterically varied iron (II) alkoxide precursors and their resultant nanoparticles
Fanah et al. Symmetry effect on the enhancement of lithium-ion mobility in layered oxides Li2A2B2TiO10 (A= La, Sr, Ca; B= Ti, Ta)
CA1103424A (en) Chalcogenides and method of preparation