JPH0220306B2 - - Google Patents

Info

Publication number
JPH0220306B2
JPH0220306B2 JP58071922A JP7192283A JPH0220306B2 JP H0220306 B2 JPH0220306 B2 JP H0220306B2 JP 58071922 A JP58071922 A JP 58071922A JP 7192283 A JP7192283 A JP 7192283A JP H0220306 B2 JPH0220306 B2 JP H0220306B2
Authority
JP
Japan
Prior art keywords
powder
pressure
liquefied gas
container
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58071922A
Other languages
Japanese (ja)
Other versions
JPS59196773A (en
Inventor
Kunio Ooguri
Satoshi Mekata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA EYAZOORU KOGYO KK
Original Assignee
OOSAKA EYAZOORU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA EYAZOORU KOGYO KK filed Critical OOSAKA EYAZOORU KOGYO KK
Priority to JP7192283A priority Critical patent/JPS59196773A/en
Publication of JPS59196773A publication Critical patent/JPS59196773A/en
Publication of JPH0220306B2 publication Critical patent/JPH0220306B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nozzles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は粉体噴霧器、とくに一度に多量の粉体
を噴霧し、使いきるタイプの簡易な粉体噴霧器に
関する。 従来から粉体噴霧器は種々提案されているが一
度に多量の粉体を噴霧でき、しかも小型軽量のも
のは見当たらない。たとえば少量の粉体を多量の
液化ガスで噴霧するエアゾール製品はあるがそれ
は単に多量の液化ガスなどの成分の性質を改善す
るために少量の粉体成分が用いられているという
だけのものであり、噴霧される主成分が粉体、該
粉体の性質を主として利用しようとするものでは
ない。他方、粉末消火器のように粉末を圧縮ガ
ス、たとえばチツ素や炭酸ガスなどの圧縮ガスで
噴霧するものもある。しかしながらそれらの多く
は圧縮ガスを非常な高圧、たとえば35℃において
40〜60Kg/cm2Gの状態で小型の耐圧性の非常に高
い容器に封入し、使用時にこの圧縮ガスを粉末を
入れた容器に導入し、該粉末を容器外に噴霧しよ
うとするものである。この種の粉体噴霧器は圧縮
ガスの容器が非常な高圧に耐えなければならない
ため非常に高価になり、かつ取扱いも複雑で簡易
な機構とはいえず、小型軽量にもなりがたい。前
記のような複雑な機構を単純にするために噴射弁
を取付けた耐圧容器に粉末を入れ、炭酸ガスなど
の圧縮ガスを充填した粉体噴霧器である消火器も
作製されているがそのような消火器は長期間所望
の圧力を保持することが困難である。その種の粉
体噴霧器では2〜3年で圧力が約半分になるもの
もあり、圧力低下を防止する方法が種々検討され
ているが効果のある方法は本来の簡易な粉末噴霧
器の作製という趣旨からはずれるような複雑な構
造にせざるをえないのが実状であり、市場に定着
するには至つていない。 前記のような実状に鑑み、本発明者らは通常の
エアゾール製品とことなり粉体を主成分として噴
霧でき、通常の粉末噴霧器消火器のように非常に
高い圧力にたえうる容器と複雑な機構などを必要
とせず、長期間所望の圧力を保持することのでき
る好ましい粉体噴霧器を開発するため鋭意研究を
重ねた結果、噴射弁がもうけられている耐圧容器
に粉体を入れ、該粉体の組成中に10mμ〜10μm
の一次粒子からなる粉体を配合し該耐圧容器の空
隙に対して0.5〜1.0モル/の液化ガスを充填し
て粉体噴霧器を作製することにより、前記諸目的
を達成するに至り、本発明を完成した。 すなわち本発明では粉体を噴霧させるために液
化ガスを用いることにより、チツ素ガスを用いる
ばあいのように非常に高い耐圧容器を用いる必要
がなくなり、長期間所望の圧力を保持することが
できるようになり、かつ粉体噴霧器に噴射弁をも
うけた簡単な機構の粉体噴霧器にしうるとという
顕著な効果がえられる。 本発明に用いる噴射弁がもうけられている耐圧
容器としては、たとえばエアゾールバルブがもう
けられているエアゾール容器のような13Kg/cm2
で変形せず15Kg/cm2Gで破壊しない程度の強度を
有する噴射弁がもうけられている容器であれば大
きさ、形状または材質などにより制限されるもの
ではない。しかし好ましい材質としては価格、加
工性などの点からブリキ、アルミニウムなどがあ
げられ、その大きさとしては100ml〜1程度の
ものが手軽に取扱えるなどの点から好ましく、ま
た形状としてはほぼ円筒状のものが好ましい。 前記耐圧容器にもうけられている噴射弁は耐圧
容器が作製されたのち該容器に取付けられてもよ
く、噴射弁を有する耐圧容器として一体成形する
などの方法によつて作製されてもよい。 本発明に用いる噴射弁としては前記のエアゾー
ルバルブ以外に消火器に通常用いられている封板
タイプの噴射弁などが採用されてもよい。 本発明に用いる粉体の種類にはとくに制限はな
く、たとえば炭酸カルシウム、重炭酸ソーダ、炭
酸ソーダ、塩化カルシウム、食塩、その他の金属
塩、タルク、カオリン、活性白土、ケイソウ土な
どの鉱産物、リン酸アンモニウム、無水シリカ、
ゼオライト、アルミニウムクロロハイドレートな
どの無機物、有機顔料のような有機物またはそれ
らの混合物などがあげられ、それらの表面などを
改質したものであつてもよく、それらをマイクロ
カプセル化したものであつてもよく、またそれら
の粉体に有効成分を含浸させたものであつてもよ
い。 本発明に用いる主たる粉体の粒径としては10μ
m〜0.3mm程度のものが好ましく、主たる粉体の
粒径が約10μm未満になると粉体の見かけ比重が
小さくなり、耐圧容器中に占める粉体の量が少な
くなり不経済になるなどの問題が生じ、粒径が
0.3mmをこえると噴霧するときにつまりやすくな
つたり、押出されなくなつたりするなどの問題が
生じる。また本発明では10mμから10μmの一次
粒子からなる粉体を主たる粉体に配合しているの
で、主たる粉体の見かけ比重を小さくし、流動性
を大きくすることができる。そして、このため効
果的に粉体を噴霧することができる。 前記粉体の見かけ比重としては約0.2〜1.0であ
ることが望ましい。見かけ比重が約0.2未満にな
ると耐圧容器中に占める粉体量が少なくなり、不
経済になる。一方、見かけ比重が約1.0をこえる
と粉体噴霧器を長期間保存すると粉体の凝集がお
こりやすくなり、粉体がうまく噴霧されないばあ
いが生じたりする。前記一次粒子からなる粉体と
しては見かけ比重の小さい無水シリカの微粉末な
どがあげられる。重炭酸ソーダの見かけ比重を調
整するためにアエロジル200(無水微粉末シリカ、
日本アエロジル工業(株)製)を混合した混合物の見
かけ比重と混合物組成との関係を第1図に示す。
第1図に示すようにアエロジル200を用いること
により、重炭酸ソーダの見かけ比重を効果的に調
整しうる。 本発明に用いる粉体は見かけで耐圧容器に約70
〜95容量%充填されることが好ましく、たとえば
内容積500mlの耐圧容器ならば約350〜475ml充填
することが好ましく、重量としては粉体の見かけ
比重から考えて見かけ比重が0.2のばあいには約
70〜95g、見かけ比重が0.5のばあいには約175〜
237.5g、見かけ比重が1.0のばあいには約350〜
475g充填することが好ましい。 本発明に用いる液化ガスとしては35℃における
圧力が約4.0〜8.0Kg/cm2Gの液化ガスがあげら
れ、粉体の噴射剤として用いられる。該液化ガス
は安全性の面を考慮すると不燃性液化ガスが好ま
しいが可燃性液化ガスであつても使用されうる。
前記液化ガスとしてはジクロロジフルオロメタ
ン、ブロモトリフルオロメタンまたはクロロジフ
ルオロメタンなどの不燃性液化ガス;前記のよう
な不燃性液化ガスとトリクロロフルオロメタンま
たはジクロロテトラフルオロエタンなどとの不燃
性混合液化ガス;プロパン、イソブタンまたはジ
メチルエーテルなどの可燃性液化ガス;前記のよ
うな可燃性液化ガスとノルマルブタンなどとの可
燃性混合液化ガスなどがあげられ、それらを単独
で用いることが使用時の圧力維持などの点から望
ましいが、混合して用いてもよい。前記のような
不燃性液化ガスまたは不燃性混合液化ガス90%
(重量%、以下同様)以上に対して可燃性液化ガ
スまたは可燃性混合液化ガス10%以下を混合した
混合物も不燃性になるが可燃性成分が10%をこえ
る量含有されると多くのばあい混合物が可燃性に
なる。 本発明に用いる液化ガスの充填量は耐圧容器中
の空隙に対して約0.5〜1.0モル/であることが
好ましい。前記液化ガスの充填量が約0.5モル/
より少ないばあいには噴射性能が充分ではな
く、長期間の保存により液化ガスの圧力降下が生
じ、さらに噴射性能が低下する。液化ガスの充填
量が約1.0モル/より多いばあいには長期間の
保存による液化ガスの圧力降下はおこらないが、
液化ガスによる粉体の湿潤がおこり、粉体粒子間
相互作用が強くなり、ペースト状の非流動性物質
が形成されて噴射不能になる。なおここにいう耐
圧容器の空隙とは耐圧容器に粉体を充填した残り
の空間のことをいうが、見かけの空間をさすもの
ではなく、次式で示されるように耐圧容器の内容
積から粉体の重量/粉体の真比重(以下、真体積
という)を差引いたものである。 耐圧容器の空隙=耐圧容器の内容積−真体積 粉体が混合物のばあいにはそれぞれの粉体の真
体積の合計が粉体の真体積である。 一般にチツ素などの圧縮ガスでは簡易型の耐圧
容器内の空隙に対して0.3モル/程度までしか
充填できない。なぜならば簡易型の耐圧容器では
圧力を8Kg/cm2G程度までにおさえなければなら
ないからである。 本発明に用いる液化ガスが耐圧容器内の空隙に
対して約0.5〜1.0モル/も充填でき、しかも簡
易型の耐圧容器が使用できる程度の圧力を維持す
るのは充填された液化ガスのうちの一部(0.2〜
0.7モル/程度)が液化しているためと考えら
れる。通常は液化したガスは耐圧容器内の底にた
まるが本発明における液化ガスの充填量の範囲で
はそれが観察されない。これは本発明においては
耐圧容器内に粉体が充填されているから約0.3モ
ル/をこえて充填された液化ガスが粉体表面に
吸着または粉体同士がひつつかない程度に湿潤さ
れるためと考えられ、液化ガス以外に粉体のみが
充填されているばあいに限り観察される現象であ
る。しかし液化ガスの充填量が約1.0モル/を
こえると粉体表面に吸着された液化ガスが液体と
して働き、粉体を凝集させ、粉体をペースト状に
する。ペースト状になつた粉体は粉体噴霧器のつ
まりの原因となり、これが従来からの本発明の粉
体噴霧器と類似の噴霧器の開発を阻害してきたと
考えられる。 本発明の粉体噴霧器は耐圧容器に粉体を充填し
たのち噴射弁を取付け、通常の方法で液化ガスを
充填する方法により、または噴射弁をもうけた耐
圧容器に粉体および液化ガスを充填するような方
法などにより作製される。 つぎに本発明の粉体噴霧器を実施例および比較
例にもとづき詳細に説明する。 実施例 1 内容積520mlのブリキ製耐圧容器に平均粒径
50μmの重炭酸ソーダ240gおよび微粉末シリカ
(日本アエロジル工業(株)製、アエロジル200)15g
を充填し、エアゾール用噴射弁を取付けた。充填
した粉体の見かけ体積は約450mlであり、真体積
は130ml、したがつて耐圧容器内の空隙は390mlで
あつた。これに第1表に示す量の噴射剤であるジ
クロロジフルオロメタン(以下、F12という)お
よびジクロロテトラフルオロエタン(以下、
F114という)を充填し、粉体噴霧タイプの消火
器を作製した。 えられた消火器は油火災に対して有効であつ
た。また該消火器の作製直後の噴射性能および長
期間経過後の噴射性能を噴射時の状態を肉眼観察
することにより測定した。その結果を第1表に示
す。 前記消火器の長期間経過時の噴射性能を測定す
るために前記方法とは別に内圧の経時変化を測定
した。また容器に超微細な孔をあけて強制的にガ
スを漏洩させたばあいの内圧の変化を測定した。
それらの結果をそれぞれ第2図および第3図に示
す。 実施例 2 内容積450mlのアルミニウム製耐圧容器にMEP
剤粉剤(スミチオン(住友化学工業(株)製)を2%
含有するタルクを主体とする粉剤)140gと無水
ケイ酸(サイロイド244、富士デヴイソン化学(株)
製)5gとを入れ、エアゾール用噴霧弁を取付け
た。前記粉体混合物の見かけ体積は約420mlであ
り、真体積は50ml、したがつて耐圧容器内の空隙
は400mlであつた。これにジムチルエーテル12.8
gを充填し、噴霧が非常に簡単に行なえる農薬
(殺虫剤)の粉体噴霧器を作製した。 えられた噴霧器の作製直後および長期間経過後
の噴射性能を実施例1と同様にして測定した。そ
の結果を第1表に示す。 比較例 1〜2 第1表に示す粉体および噴射剤を用いて実施例
1と同様にして粉体噴霧タイプの消火器を作製
し、その性能を測定した。その結果を第1表に示
す。 比較例 3 第1表に示す粉体および噴射剤を用いて実施例
1と同様にして粉体噴霧タイプ消火器を作製し、
その性能を測定した。その結果を第1表に示す。 前記消火器の長期間経過時の噴射性能を測定す
るために前記方法とは別に内圧の経時変化を測定
した。また容器に超微細な孔をあけて強制的にガ
スを漏洩させたばあいの内圧の変化を測定した。
それらの結果をそれぞれ第2図および第3図に示
す。
The present invention relates to a powder sprayer, and particularly to a simple powder sprayer that sprays a large amount of powder at one time and can be used up. Various powder atomizers have been proposed in the past, but none that can spray a large amount of powder at once and is small and lightweight has yet to be found. For example, there are aerosol products that spray a small amount of powder with a large amount of liquefied gas, but this simply means that a small amount of the powder component is used to improve the properties of the component, such as the large amount of liquefied gas. , the main component to be sprayed is powder, and the properties of the powder are not intended to be primarily utilized. On the other hand, there are also powder fire extinguishers that spray powder with a compressed gas, such as nitrogen or carbon dioxide. However, many of them operate compressed gas at very high pressures, e.g. 35°C.
It is sealed in a small container with extremely high pressure resistance at 40 to 60 kg/cm 2 G, and when used, this compressed gas is introduced into the container containing the powder, and the powder is sprayed outside the container. be. This type of powder atomizer is very expensive because the compressed gas container must withstand extremely high pressure, and it is also complicated to handle, so it cannot be said to have a simple mechanism, and it is difficult to make it small and lightweight. In order to simplify the complicated mechanism described above, fire extinguishers have also been produced, which are powder sprayers in which powder is placed in a pressure-resistant container equipped with an injection valve and filled with compressed gas such as carbon dioxide. Fire extinguishers have difficulty maintaining the desired pressure for long periods of time. In some powder sprayers of this type, the pressure decreases by about half in 2 to 3 years, and various methods are being considered to prevent pressure drop, but the only effective method is to create a simple powder sprayer. The reality is that they have no choice but to create complex structures that deviate from the standard, and they have not yet become established in the market. In view of the above-mentioned circumstances, the inventors of the present invention have developed a container that can spray powder as a main ingredient, unlike ordinary aerosol products, and a container that can withstand extremely high pressures and a complicated design, unlike ordinary powder spray fire extinguishers. As a result of intensive research to develop a preferable powder atomizer that can maintain the desired pressure for a long period of time without requiring any mechanisms, we found that powder is placed in a pressure-resistant container equipped with an injection valve, and the powder is 10mμ to 10μm in body composition
The above objects have been achieved by manufacturing a powder sprayer by blending powder consisting of primary particles and filling the voids of the pressure container with 0.5 to 1.0 mol/liquid gas, and the present invention completed. In other words, in the present invention, by using liquefied gas to atomize the powder, there is no need to use a very high pressure container as in the case of using nitrogen gas, and the desired pressure can be maintained for a long period of time. This has the remarkable effect of making it possible to create a powder atomizer with a simple mechanism by adding an injection valve to the powder atomizer. Examples of pressure-resistant containers equipped with injection valves used in the present invention include 13 kg/cm 2 G, such as aerosol containers equipped with an aerosol valve.
The container is not limited by size, shape, material, etc. as long as it has an injection valve that is strong enough not to be deformed under 15 kg/cm 2 G and not destroyed under 15 kg/cm 2 G. However, preferred materials include tinplate and aluminum in terms of cost and workability, and the preferred size is 100 ml to 1 ml because it can be easily handled, and the shape is approximately cylindrical. Preferably. The injection valve provided in the pressure-resistant container may be attached to the pressure-resistant container after the pressure-resistant container is manufactured, or may be manufactured by a method such as integrally molding the pressure-resistant container with the injection valve. In addition to the aerosol valves described above, sealing plate type injection valves commonly used in fire extinguishers may be employed as the injection valves used in the present invention. There are no particular restrictions on the type of powder used in the present invention, and examples include calcium carbonate, bicarbonate of soda, sodium carbonate, calcium chloride, common salt, other metal salts, talc, kaolin, activated clay, diatomaceous earth, and other minerals, and phosphoric acid. ammonium, anhydrous silica,
Examples include inorganic substances such as zeolite and aluminum chlorohydrate, organic substances such as organic pigments, or mixtures thereof, and they may be surface-modified substances, or they may be microencapsulated. Alternatively, the powder may be impregnated with the active ingredient. The particle size of the main powder used in the present invention is 10μ
0.3 mm is preferable, and if the particle size of the main powder is less than about 10 μm, the apparent specific gravity of the powder will be small, which will reduce the amount of powder that occupies the pressure-resistant container, leading to problems such as becoming uneconomical. occurs, and the particle size increases.
If it exceeds 0.3 mm, problems such as clogging or failure to extrude may occur when spraying. In addition, in the present invention, since powder consisting of primary particles of 10 mμ to 10 μm is blended into the main powder, the apparent specific gravity of the main powder can be reduced and fluidity can be increased. Therefore, the powder can be effectively sprayed. The apparent specific gravity of the powder is preferably about 0.2 to 1.0. When the apparent specific gravity is less than about 0.2, the amount of powder that occupies the pressure container decreases, making it uneconomical. On the other hand, if the apparent specific gravity exceeds about 1.0 and the powder atomizer is stored for a long period of time, the powder tends to aggregate, and the powder may not be sprayed properly. Examples of the powder made of the primary particles include fine powder of anhydrous silica having a small apparent specific gravity. Aerosil 200 (anhydrous fine powder silica,
Figure 1 shows the relationship between the apparent specific gravity and the mixture composition of a mixture containing Nippon Aerosil Kogyo Co., Ltd.).
As shown in FIG. 1, by using Aerosil 200, the apparent specific gravity of sodium bicarbonate can be effectively adjusted. Approximately 70% of the powder used in the present invention is stored in a pressure-resistant container.
It is preferable to fill up to 95% by volume.For example, if it is a pressure-resistant container with an internal volume of 500ml, it is preferable to fill it with about 350 to 475ml.As for the weight, considering the apparent specific gravity of the powder, if the apparent specific gravity is 0.2, about
70~95g, about 175~ if the apparent specific gravity is 0.5
237.5g, approximately 350~ if the apparent specific gravity is 1.0
It is preferable to fill 475g. The liquefied gas used in the present invention includes a liquefied gas having a pressure of about 4.0 to 8.0 kg/cm 2 G at 35° C., and is used as a powder propellant. The liquefied gas is preferably a nonflammable liquefied gas from the viewpoint of safety, but a flammable liquefied gas may also be used.
The liquefied gas includes a nonflammable liquefied gas such as dichlorodifluoromethane, bromotrifluoromethane or chlorodifluoromethane; a nonflammable mixed liquefied gas of the above nonflammable liquefied gas and trichlorofluoromethane or dichlorotetrafluoroethane; propane , flammable liquefied gases such as isobutane or dimethyl ether; flammable mixed liquefied gases such as the above-mentioned flammable liquefied gases and normal butane, etc.; using them alone is important for maintaining pressure during use, etc. Although it is preferable to use these, they may be used in combination. 90% non-flammable liquefied gas or non-flammable mixed liquefied gas as above
(wt%, the same applies hereafter) A mixture containing 10% or less of flammable liquefied gas or combustible mixed liquefied gas to the above will also become nonflammable, but if flammable components are contained in an amount exceeding 10%, many The mixture becomes flammable. The filling amount of the liquefied gas used in the present invention is preferably about 0.5 to 1.0 moles per void in the pressure vessel. The filling amount of the liquefied gas is approximately 0.5 mol/
If the amount is less, the injection performance will not be sufficient, and long-term storage will cause a pressure drop in the liquefied gas, further reducing the injection performance. If the amount of liquefied gas charged is more than about 1.0 mol/mol, the pressure of liquefied gas will not drop due to long-term storage, but
Wetting of the powder by the liquefied gas occurs, and interactions between powder particles become stronger, forming a pasty, non-flowing substance that cannot be jetted. Note that the void in the pressure container referred to here refers to the space remaining after the pressure container is filled with powder, but it does not refer to the apparent space; It is calculated by subtracting the weight of the powder/true specific gravity of the powder (hereinafter referred to as true volume). Gap in pressure container = internal volume of pressure container - true volume If the powder is a mixture, the sum of the true volumes of each powder is the true volume of the powder. In general, compressed gases such as nitrogen can only fill up to about 0.3 mole per void in a simple pressure-resistant container. This is because in a simple pressure container, the pressure must be kept to about 8 kg/cm 2 G. The liquefied gas used in the present invention can fill the voids in the pressure container at a rate of about 0.5 to 1.0 mol/mole/mole, and the pressure that can be maintained in a simple pressure container can be maintained by using only the liquefied gas filled in the container. Some (0.2~
This is thought to be due to the fact that about 0.7 mol/mole) is liquefied. Normally, liquefied gas accumulates at the bottom of the pressure vessel, but this is not observed within the range of the amount of liquefied gas filled in the present invention. This is because in the present invention, since the powder is filled in a pressure-resistant container, the liquefied gas filled in the amount exceeding about 0.3 moles is adsorbed to the surface of the powder or wetted to the extent that the powder does not stick to each other. This is a phenomenon that is observed only when the gas is filled with powder other than liquefied gas. However, when the amount of liquefied gas charged exceeds about 1.0 mol/mol, the liquefied gas adsorbed on the powder surface acts as a liquid, coagulates the powder, and turns the powder into a paste. The paste-like powder causes clogging of powder atomizers, and this is thought to have hindered the development of conventional atomizers similar to the powder atomizer of the present invention. In the powder sprayer of the present invention, a pressure-resistant container is filled with powder, an injection valve is attached, and liquefied gas is filled in the usual manner, or a pressure-resistant container equipped with an injection valve is filled with powder and liquefied gas. It is manufactured by a method such as Next, the powder sprayer of the present invention will be explained in detail based on Examples and Comparative Examples. Example 1 Average particle size in a tin pressure container with an internal volume of 520 ml
240 g of 50 μm bicarbonate of soda and 15 g of finely powdered silica (Aerosil 200, manufactured by Nippon Aerosil Industries Co., Ltd.)
and installed an aerosol injection valve. The apparent volume of the filled powder was about 450 ml, and the true volume was 130 ml, so the void inside the pressure container was 390 ml. This was combined with the propellants dichlorodifluoromethane (hereinafter referred to as F12) and dichlorotetrafluoroethane (hereinafter referred to as F12) in the amounts shown in Table 1.
F114) was used to create a powder spray type fire extinguisher. The fire extinguisher provided was effective against oil fires. In addition, the jetting performance of the fire extinguisher immediately after its manufacture and after a long period of time were measured by visually observing the state at the time of jetting. The results are shown in Table 1. In order to measure the injection performance of the fire extinguisher over a long period of time, changes in internal pressure over time were measured separately from the above method. We also measured the change in internal pressure when we made ultra-fine holes in the container and forced the gas to leak.
The results are shown in FIGS. 2 and 3, respectively. Example 2 MEP in an aluminum pressure-resistant container with an internal volume of 450ml
2% powder agent (Sumithion (manufactured by Sumitomo Chemical Co., Ltd.)
140g of talc-based powder) and silicic anhydride (Thyroid 244, Fuji Davison Chemical Co., Ltd.)
(manufactured by) and an aerosol spray valve was attached. The apparent volume of the powder mixture was about 420 ml, and the true volume was 50 ml, so the void in the pressure container was 400 ml. Dimthyl ether 12.8 to this
An agricultural chemical (insecticide) powder sprayer that can be filled with the following ingredients and can be sprayed very easily was prepared. The spraying performance of the obtained sprayer was measured immediately after preparation and after a long period of time in the same manner as in Example 1. The results are shown in Table 1. Comparative Examples 1-2 Powder spray type fire extinguishers were produced in the same manner as in Example 1 using the powders and propellants shown in Table 1, and their performance was measured. The results are shown in Table 1. Comparative Example 3 A powder spray type fire extinguisher was produced in the same manner as in Example 1 using the powder and propellant shown in Table 1,
Its performance was measured. The results are shown in Table 1. In order to measure the injection performance of the fire extinguisher over a long period of time, changes in internal pressure over time were measured separately from the above method. We also measured the change in internal pressure when we made ultra-fine holes in the container and forced the gas to leak.
The results are shown in FIGS. 2 and 3, respectively.

【表】 前記のように本発明の粉体噴霧器は粉体および
液化ガスの特性を利用したまつたく新しいタイプ
の粉体噴霧器であり、しかも従来一部で使用され
ていた炭酸ガスを用いた粉体噴霧器よりも寿命が
長く、安全なものである。
[Table] As mentioned above, the powder atomizer of the present invention is a completely new type of powder atomizer that utilizes the characteristics of powder and liquefied gas. It has a longer lifespan and is safer than body sprays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は重炭酸ソーダとアエロジル200との混
合物の組成と見かけ比重との関係を示すグラフ、
第2図は本発明の一実施態様である消火器および
比較として用いた消火器の内圧と期間との関係を
示すグラフおよび第3図は第2図に示すそれぞれ
の消火器に超微細な孔をあけたときの内圧とガス
漏洩量との関係を示すグラフである。
Figure 1 is a graph showing the relationship between the composition and apparent specific gravity of a mixture of sodium bicarbonate and Aerosil 200.
Figure 2 is a graph showing the relationship between internal pressure and period for a fire extinguisher according to an embodiment of the present invention and a fire extinguisher used as a comparison, and Figure 3 is a graph showing the relationship between the internal pressure and duration of a fire extinguisher that is an embodiment of the present invention and a fire extinguisher used for comparison. It is a graph showing the relationship between the internal pressure and the amount of gas leakage when opened.

Claims (1)

【特許請求の範囲】[Claims] 1 噴射弁がもうけられている耐圧容器に粉体を
入れ、該粉体の組成中に10mμ〜10μmの一次粒
子からなる粉体を配合し、該耐圧容器の空〓に対
して0.5〜1.0モル/の液化ガスを充填したこと
を特徴とする粉体噴霧器。
1. Powder is placed in a pressure container equipped with an injection valve, and powder consisting of primary particles of 10 mμ to 10 μm is added to the composition of the powder, and the amount of powder is 0.5 to 1.0 mol based on the empty space of the pressure container. A powder atomizer characterized by being filled with a liquefied gas.
JP7192283A 1983-04-23 1983-04-23 Powder atomizer Granted JPS59196773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7192283A JPS59196773A (en) 1983-04-23 1983-04-23 Powder atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7192283A JPS59196773A (en) 1983-04-23 1983-04-23 Powder atomizer

Publications (2)

Publication Number Publication Date
JPS59196773A JPS59196773A (en) 1984-11-08
JPH0220306B2 true JPH0220306B2 (en) 1990-05-08

Family

ID=13474507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7192283A Granted JPS59196773A (en) 1983-04-23 1983-04-23 Powder atomizer

Country Status (1)

Country Link
JP (1) JPS59196773A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123053A (en) * 1974-08-20 1976-02-24 Matsushita Electric Ind Co Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123053A (en) * 1974-08-20 1976-02-24 Matsushita Electric Ind Co Ltd

Also Published As

Publication number Publication date
JPS59196773A (en) 1984-11-08

Similar Documents

Publication Publication Date Title
US4680173A (en) Aerosol dispensing system
US5620631A (en) Pressurized-gas pack and propellant for aerosols
US4450151A (en) Powder aerosol composition
US3938708A (en) Aerosol dispensing system
USRE30093E (en) Aerosol dispensing system
US11577110B2 (en) Post-foaming composition for protection against fire and/or heat
US4354638A (en) Spiral actuator for aerosol powdered suspension product
US4234432A (en) Powder dissemination composition
US3974945A (en) Aerosol dispensing system
US4431120A (en) Packaging system
US3656553A (en) Flame-extinguishing substance comprising 1,2-dibromohexafluropropane
US5466386A (en) Fire extinguishing compositions
CA1282948C (en) Fire extinguishant
US4909328A (en) Fire extinguisher composition and apparatus
JPH0220306B2 (en)
US20180250541A1 (en) Enhanced dry chemical fire extinguishing composition, apparatus, and method
JP2001072152A (en) Full amount injection type aerosol product
US5002757A (en) Perfluoroalkanes and perfluoroalkane and sulphur hexafluoride compositions as aerosol propellants
JPS6233115A (en) Spray composition for coating human body
JPS5944281B2 (en) Space aerosol insecticide
US3369913A (en) Self-propelling food mixture
CA2271418A1 (en) Gas generating unit
JPH0347906B2 (en)
JP3378643B2 (en) Manufacturing method of powder fire extinguisher aerosol simple fire extinguisher
JPH07241498A (en) Method for generating aerosol with nonpolluting liquefied gas as propellant