JPH02202344A - Motor - Google Patents

Motor

Info

Publication number
JPH02202344A
JPH02202344A JP1881889A JP1881889A JPH02202344A JP H02202344 A JPH02202344 A JP H02202344A JP 1881889 A JP1881889 A JP 1881889A JP 1881889 A JP1881889 A JP 1881889A JP H02202344 A JPH02202344 A JP H02202344A
Authority
JP
Japan
Prior art keywords
coil
permanent magnet
poles
motor
magnetic poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1881889A
Other languages
Japanese (ja)
Other versions
JP2742078B2 (en
Inventor
Nobuteru Maekawa
前川 展輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1018818A priority Critical patent/JP2742078B2/en
Publication of JPH02202344A publication Critical patent/JPH02202344A/en
Application granted granted Critical
Publication of JP2742078B2 publication Critical patent/JP2742078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the manufacture of an apparatus by making the axis of a coil corresponding to a movable element, in which a plurality of pairs of magnets forming a pair of unlike poles axially are arranged circumferentially so that poles of adjacent magnets alternately become unlike poles, equal to the array direction of magnetic poles. CONSTITUTION:To form a permanent body 1, a plurality (four in the drawing) of magnet pairs 3 reversing in the pole axially are bonded to a rotor core 5 fastened to a rotating shaft 6 so that polarities are alternately inverted in the circumferential direction. A permanent magnet 4 is magnetized in the direction of thickness. A coil 9 is wound round a bobbin 14 and a plurality (six in the drawing) of said coils are provided in the circumferential direction to form a coil body 2. The core 10 of said coil 9 is divided into core pieces 12, 13 and inserted into said bobbin 14 after the coil 9 has been wound thereon. Said permanent magnet body 1 and coil body 2 face each other via a gap 8. Thus, it is possible to improve the winding density of said coil 9 easily and to manufacture a small-sized but high output motor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ブラシレスタイプのモータに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a brushless type motor.

〔従来の技術〕[Conventional technology]

第8図ないし第11図に従来例を示す。すなわち、この
モータは、周方向に交互に異なる磁極N5Sを有する4
極構成の永久磁石体80が可動子すなわちロータとなり
、ラジアル方向ギャップ81を介してラジアル方向の6
個のボール82にコイル83を巻回してなるコイル体8
4がステータとなった3相のラジアルギャップ型のモー
タである。
Conventional examples are shown in FIGS. 8 to 11. That is, this motor has four magnetic poles N5S that alternately differ in the circumferential direction.
A permanent magnet body 80 having a pole configuration serves as a mover or a rotor, and a radial direction gap 81 is provided.
Coil body 8 formed by winding a coil 83 around balls 82
It is a three-phase radial gap type motor with numeral 4 serving as a stator.

85はロータ鉄心、86は軸、87はホール素子、88
はリード線である。
85 is a rotor core, 86 is a shaft, 87 is a Hall element, 88
is the lead wire.

このモータの永久磁石体80のEnhN、Sとコイル8
3との関係は第10図のようになる。○に「×」の記号
は紙面の裏側に向かう磁束の方向、○に「・」の記号は
紙面の表側に向かう磁束の方向、Xlは鉄心長、X2は
コイルエンドである。
EnhN, S of the permanent magnet body 80 of this motor and the coil 8
The relationship with 3 is as shown in Figure 10. The symbol "×" in the circle indicates the direction of the magnetic flux toward the back side of the paper, the symbol "." in the circle indicates the direction of the magnetic flux toward the front side of the paper, Xl is the iron core length, and X2 is the coil end.

そしてこのモータは、ホール素子87により永久磁石体
80すなわちロータの回転位置を検出し、コイル83を
ロータ位置に応動してl1ilI磁してモータとしての
回転トルクを得るようにしている。
This motor detects the rotational position of the permanent magnet 80, that is, the rotor, using the Hall element 87, and magnetizes the coil 83 in response to the rotor position to obtain the rotational torque of the motor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、このモータは、ボール82にコイル83を巻
回しているため巻線作業が容易でなく、高密度にS線で
きないので高出力が得にくいという欠点があった。また
第11図のような磁束Φの流れに対してコイル83を励
磁するものであり、各相間に相互誘導が発生するため制
j2Iが容易でない。さらに、種々のロータ径に応じて
ステータを形成する必要があり、またステータの鉄心を
リニアモータ等に適用できないという欠点があった。
However, this motor has the disadvantage that the coil 83 is wound around the ball 82, making it difficult to wind the wire, and that it is difficult to obtain high output because the S wire cannot be formed with high density. Further, since the coil 83 is excited with respect to the flow of magnetic flux Φ as shown in FIG. 11, mutual induction occurs between each phase, so it is not easy to control j2I. Furthermore, it is necessary to form the stator according to various rotor diameters, and the iron core of the stator cannot be applied to a linear motor or the like.

したがって、この発明の目的は、高密度かつ容易にS線
でき相互誘導を小さくすることができるとともに、回転
式の場合の径の異なるモータや、回転式およびリニア式
のモータに、コイルの鉄心を共用することができるモー
タを提供°することである。
Therefore, an object of the present invention is to make it possible to easily form S-wires with high density and to reduce mutual induction. The objective is to provide a motor that can be shared.

〔課題を解決するための手段〕[Means to solve the problem]

この発明のモータは、永久磁石体およびコイル体の一方
を可動子、他方を固定子とし、前記永久磁石体は互いに
異なる極の一対の磁極を同じ向きに並べるとともに、前
記一対の磁極の複数組を前記一対の磁極の並び方向と直
角な方向に並設してなり、前記コイル体はコイル軸が前
記一対の磁極の並び方向と同方向となるように複数のコ
イルを並設してなり、前記複数のコイルを前記永久磁石
体の前記磁極に対してギャップを介して配置したことを
特徴とするものである。
In the motor of the present invention, one of a permanent magnet body and a coil body is used as a movable element, and the other is used as a stator, and the permanent magnet body has a pair of mutually different magnetic poles arranged in the same direction, and a plurality of sets of the pair of magnetic poles. are arranged in parallel in a direction perpendicular to the arrangement direction of the pair of magnetic poles, and the coil body is made up of a plurality of coils arranged in parallel so that the coil axis is in the same direction as the arrangement direction of the pair of magnetic poles, The present invention is characterized in that the plurality of coils are arranged with gaps between them with respect to the magnetic poles of the permanent magnet body.

〔作用〕[Effect]

この発明の構成によれば、永久磁石体の磁束は前記一対
の磁極間を前記ギャップおよび前記ギャップを介して対
向するコイルを通して流れ、前記可動子の移動方向と直
角な閉ループを形成する。
According to the configuration of the present invention, the magnetic flux of the permanent magnet flows between the pair of magnetic poles through the gap and the opposing coils via the gap, forming a closed loop perpendicular to the moving direction of the movable element.

この磁束に対して可動子と固定子との位置関係に応して
コイルを励磁することにより可動子に推進力が得られる
。この場合、コイルは可動子の移動方向と直角な方向に
コイル軸を有するため、従来例と比較してコイルの巻線
作業が容易な構造にしやすくしかも高密度に巻線するこ
とが可能となるのでモータ定数が大きく高出力が可能と
なる。またコイルの相互間に磁束が流れないので相互誘
導の影響が極めて少なく、したがって制御が容易になる
。さらに、ラジアルギャップ型のモータではコイル軸が
スラスト方向となるため径の異なる場合でもコイルの鉄
心の形状を同一にして積層枚数の増減により対応でき、
またアキシャルギヤツブ型のモータにあってはロータ径
が大きくても同一のコイルの鉄心の使用が可能であり、
回転式およびリニア式のモータのコイル部分の共用が可
能となる。
Propulsive force is obtained in the movable element by exciting a coil in accordance with the positional relationship between the movable element and the stator with respect to this magnetic flux. In this case, since the coil has a coil axis in a direction perpendicular to the direction of movement of the mover, it is easier to create a structure that makes it easier to wind the coil than in the conventional example, and it is possible to wind the coil at a high density. Therefore, the motor constant is large and high output is possible. Further, since no magnetic flux flows between the coils, the influence of mutual induction is extremely small, and therefore control becomes easy. Furthermore, in a radial gap type motor, the coil axis is in the thrust direction, so even if the coil diameter is different, the shape of the core of the coil can be kept the same and the number of layers can be increased or decreased.
In addition, for axial gear type motors, it is possible to use the same coil core even if the rotor diameter is large.
It is possible to share the coil part of rotary and linear motors.

〔実施例〕〔Example〕

二の発明の第1の実施例を第1図ないし第4図に基づい
て説明する。すなわち、このモータは、永久磁石体1を
可動子となるロータとし、コイル体2を固定子となるス
テータとしたラジアルギャップ型のモータである。
A first embodiment of the second invention will be described based on FIGS. 1 to 4. That is, this motor is a radial gap type motor in which the permanent magnet body 1 serves as a rotor serving as a mover, and the coil body 2 serves as a stator serving as a stator.

永久磁石体1は、互いに異なる極の一対の磁極N、Sを
磁極面3の向き(径方向)を同じにして並べる(軸方向
)とともに、前記一対の磁1JiN。
The permanent magnet body 1 has a pair of magnetic poles N and S having different poles arranged side by side (axial direction) with the direction (radial direction) of the magnetic pole faces 3 being the same, and the pair of magnetic poles 1JiN.

Sの複数組を前記一対の磁極N、Sの並び方向と直角な
方向(周方向)に並設してなる。すなわら、実施例は円
周の磁極面上において磁極N、  Sはスラスト方向に
N、S、!:着磁され、かつ円周方向にN、S、N、S
と着磁されるように複数の永久磁石4により構成されて
4掻を形成している。各永久磁石4は円弧状をなし板厚
方向に着磁されている。これらの永久磁石4は接着剤に
よりロータ鉄心5に固定されロータ鉄心5は軸6に固定
されている。また永久磁石4の遠心力に対する強度を持
たすため第3図に示すように磁石固定リング7を永久磁
石4の軸方向の両端部に取付けている。なお、ロータ鉄
心5は永久磁石4の機械的保持と磁束を得るための継鉄
の役目をしている。
A plurality of pairs of magnetic poles S are arranged in parallel in a direction (circumferential direction) perpendicular to the direction in which the pair of magnetic poles N and S are arranged. That is, in the embodiment, on the circumferential magnetic pole surface, the magnetic poles N, S are N, S, ! in the thrust direction. : Magnetized and circumferentially N, S, N, S
It is composed of a plurality of permanent magnets 4 so as to be magnetized to form four magnets. Each permanent magnet 4 has an arc shape and is magnetized in the thickness direction. These permanent magnets 4 are fixed to a rotor core 5 with an adhesive, and the rotor core 5 is fixed to a shaft 6. Further, in order to provide strength against the centrifugal force of the permanent magnet 4, magnet fixing rings 7 are attached to both ends of the permanent magnet 4 in the axial direction, as shown in FIG. Note that the rotor core 5 serves as a yoke for mechanically holding the permanent magnets 4 and obtaining magnetic flux.

コイル体2は、コイル軸が前記一対の磁極NSの並び方
向と同方向となるように複数のコイル9を並設してなり
、前記複数のコイル9を前記永久磁石体lの前記磁極N
、Sに対してギヤツブ8を介して配置している。すなわ
ち、ステータ磁心となる6個のコイル9の鉄心10にス
ラスト方向にコイル軸が並ぶように巻回されたコイル9
を円周上に配置し、モールド樹脂により形成される有底
の円筒形のケース11に同時成形により固定されている
。鉄心10は積層鉄心を用いるが、巻線を容易にするた
め第3図のように2分割された鉄心片12.13を係合
させて形成している。またコイル9はコイル枠14に巻
回してコイル枠14を鉄心10に挿入してステータブロ
ックを形成している。
The coil body 2 is formed by arranging a plurality of coils 9 in parallel so that the coil axis is in the same direction as the alignment direction of the pair of magnetic poles NS, and the plurality of coils 9 are connected to the magnetic poles N of the permanent magnet body l.
, S via a gear 8. That is, the coils 9 are wound around the iron cores 10 of six coils 9, which serve as the stator magnetic core, so that the coil axes are aligned in the thrust direction.
are arranged on the circumference and fixed by simultaneous molding to a bottomed cylindrical case 11 made of molded resin. The iron core 10 uses a laminated iron core, and is formed by engaging two divided iron core pieces 12 and 13 as shown in FIG. 3 to facilitate winding. Further, the coil 9 is wound around a coil frame 14, and the coil frame 14 is inserted into the iron core 10 to form a stator block.

またケース11の底部およびケース11の開口部を閉塞
する軸受台15にそれぞれ軸受16が設けられ、軸受1
6にロータの軸6が回転自在に支持される。
In addition, bearings 16 are provided at the bottom of the case 11 and at the bearing stand 15 that closes the opening of the case 11.
A rotor shaft 6 is rotatably supported at 6.

第3図のようにロータの永久磁石4のラジアル方向のギ
ャップ8側の磁極Nから出た磁束Φはギャップ8を通り
、鉄心ll内をスラスト方向に通り、再びギャップ8を
通り永久磁石4の磁極Sから磁極Nを経てロータ鉄心5
を通る閉ループを形成する。すなわち、磁束Φは6個の
鉄心11内を個別に通り、鉄心11間を通る磁束は橿め
て少なく実用上は無視できる。
As shown in FIG. 3, the magnetic flux Φ emitted from the magnetic pole N on the gap 8 side in the radial direction of the permanent magnet 4 of the rotor passes through the gap 8, passes through the iron core 11 in the thrust direction, passes through the gap 8 again, and is attached to the permanent magnet 4. From the magnetic pole S to the rotor core 5 via the magnetic pole N
form a closed loop passing through. That is, the magnetic flux Φ passes through each of the six iron cores 11 individually, and the magnetic flux passing between the iron cores 11 is extremely small and can be ignored in practice.

そして、ロータの位置がホール素子17により検出され
、円周方向に推進力が発生するようにコイル9を励磁す
る。すなわち、第4図はコイル9の駆動回路であり、ホ
ール素子17の出力信号により制御回路(図示せず)を
動作させ、トランジスタTrl−Tr6のオンとなる時
点および時間を制御する。この制御は従来例と同様であ
り、公知であるので省略する。Eは電源である。
Then, the position of the rotor is detected by the Hall element 17, and the coil 9 is excited so that a propulsive force is generated in the circumferential direction. That is, FIG. 4 shows a drive circuit for the coil 9, which operates a control circuit (not shown) using the output signal of the Hall element 17 to control the point and time when the transistors Trl-Tr6 are turned on. This control is the same as in the conventional example and is well known, so a description thereof will be omitted. E is a power source.

この実施例によれば、コイル9は可動子の移動方向と直
角な方向にコイル軸を有するため、従来例と比較してコ
イル9の巻線作業が容易な構造にしやすくしかも高密度
にt1’aすることが可能となるのでモータ定数が大き
く高出力が可能となる。
According to this embodiment, since the coil 9 has a coil axis in a direction perpendicular to the moving direction of the movable element, it is easier to wind the coil 9 in a structure that is easier to wind than in the conventional example, and moreover, the coil 9 can be wound with high density at t1'. Since it becomes possible to increase the motor speed by a, the motor constant becomes large and high output becomes possible.

またコイル9の相互間に磁束が流れないので相互誘導の
影響が掻めて少なく、したがって制御が容易になる。さ
らに、ラジアルギャップ型のモータではコイル軸がスラ
スト方向となるため径の異なる場合でもコイルの鉄心の
形状を同一にして積層枚数の増減により対応できる。
Further, since no magnetic flux flows between the coils 9, the influence of mutual induction is greatly reduced, and therefore control becomes easier. Furthermore, in a radial gap type motor, the coil axis is in the thrust direction, so even if the coil diameters are different, the shape of the core of the coils can be kept the same and the number of laminated coils can be increased or decreased.

またこの実施例では、予めコイル枠14に巻線されたコ
イルブロックを鉄心11に挿入して組立られるため、非
常に巻線作業が容易になり高密度に巻くことができ、よ
り一層高い高トルク化に寄与する。
In addition, in this embodiment, since the coil block, which has been pre-wound on the coil frame 14, is inserted into the iron core 11 and assembled, the winding work is extremely easy, the winding can be done with high density, and even higher torque can be achieved. Contribute to

この発明の第2の実施例を第5図および第6図に示す、
すなわち、このモータは、動作方向が直線となるリニア
モータを実施例とするものであり、第1の実施例の回転
方向の円周を直線に展開したものに!(Iffする。す
なわち、可動子となる永久磁石体1の一対の磁極N、S
の複数組が直線上に移動方向に並び、コイル軸を前記磁
iN、Sの並び方向に平行にしたコイル体2の複数のコ
イル9が永久磁石体1に対して平行に並んでいる。しが
もこの実施例では永久磁石4が平板状に形成されその両
面を磁極面3として、各KIFi面3に対向して一対の
コイル体2を構成しているが、全体としては永久磁石体
lが2極に対してコイル体2が3極になっている。17
は永久磁石4の両側に固定されたガイド受けであり、1
8はガイド、19は滑動体である。このモータの動作原
理は第1の実施例と同じで可動子の位置に応動してコイ
ル9を励磁することにより推進力を得る。なお、永久磁
石4の磁極N、Sは板厚方向に着磁されているが、図で
は記載の都合上N、  Sの符号を斜めに記載している
A second embodiment of the invention is shown in FIGS. 5 and 6.
In other words, this motor is an embodiment of a linear motor whose operating direction is a straight line, and the circumference in the rotation direction of the first embodiment is developed into a straight line! (Iff. In other words, the pair of magnetic poles N and S of the permanent magnet body 1 that becomes the mover
The plurality of coils 9 of the coil body 2 are arranged in parallel to the permanent magnet body 1, with the coil axes parallel to the direction in which the magnets iN and S are arranged. However, in this embodiment, the permanent magnet 4 is formed into a flat plate shape, and both sides of the permanent magnet 4 are used as magnetic pole faces 3, and a pair of coil bodies 2 are configured to face each KIFi face 3, but the permanent magnet body as a whole is 1 has two poles, whereas the coil body 2 has three poles. 17
are guide receivers fixed on both sides of the permanent magnet 4, and 1
8 is a guide, and 19 is a sliding body. The operating principle of this motor is the same as that of the first embodiment, and a propulsive force is obtained by exciting the coil 9 in response to the position of the movable element. Although the magnetic poles N and S of the permanent magnet 4 are magnetized in the thickness direction, the symbols N and S are written diagonally in the figure for convenience of description.

この実施例によれば、第1の実施例と同じ効果を得るほ
か、第1の実施例のコイル9および鉄心lOを共用でき
る利点がある。
According to this embodiment, in addition to obtaining the same effects as the first embodiment, there is an advantage that the coil 9 and iron core 10 of the first embodiment can be shared.

なお、第2の実施例は永久磁石4の両面に磁極面3を形
成し、これに対して一対のコイル体2を対向したが、片
方のみにコイル体2を設けたものでよく、この場合、永
久磁石4のコイル体2と反対側に鉄心を設けてもよい。
In addition, in the second embodiment, the magnetic pole faces 3 are formed on both sides of the permanent magnet 4, and the pair of coil bodies 2 are opposed to the pole faces 3, but the coil bodies 2 may be provided on only one side. , an iron core may be provided on the side of the permanent magnet 4 opposite to the coil body 2.

この発明の第3の実施例を第7図に示す。すなわら、こ
のモータは、面対向型すなわちアキシャルギャップ型の
回転モータであり、第1の実施例の軸6を中心とし一方
の軸受16を傘骨の付は根として傘を開いた状態に類偵
するので、共通部分に同一符号を付している。すなわち
、永久磁石体1の一対のtiIN、Sおよびコイル9の
コイル軸はラジアル方向に向き、磁極N、Sの複数組お
よび複数のコイル9は放射状に並び、動作方向は回転方
向となり、ギャップ8はスラスト方向となる。
A third embodiment of the invention is shown in FIG. In other words, this motor is a surface-facing type, that is, an axial gap type rotary motor, and the shaft 6 of the first embodiment is the center, and one bearing 16 is used as the base of the umbrella rib to maintain the umbrella in the open state. Since they are similar, common parts are given the same reference numerals. That is, the pair of tiIN and S of the permanent magnet body 1 and the coil axes of the coil 9 are oriented in the radial direction, the plurality of sets of magnetic poles N and S and the plurality of coils 9 are arranged radially, the operating direction is the rotation direction, and the gap 8 is the thrust direction.

動作原理は第1の実施例と同様である。なお、永久磁石
4の磁極N、Sは板厚方向に着磁されているが、図では
記載の都合上N、Sの符号を斜めに記載している。
The operating principle is similar to the first embodiment. Although the magnetic poles N and S of the permanent magnet 4 are magnetized in the thickness direction, the symbols N and S are written diagonally in the figure for convenience of description.

この実施例も第1の実施例と同効果を有するほか、第1
の実施例のコイル9および鉄心10を共用でき、かつロ
ータ径が大きくなっても同一のコイル9および鉄心10
の共用が可能になるという利点がある なお、前記第1の実施例のモータは、永久磁石体1の磁
極数を2n個としたときコイル体2のコイル9の数を3
nXm(mは1,2・・・)個としたものでもよいが、
この発明はこれに限定されない。
This embodiment also has the same effect as the first embodiment, and also has the same effect as the first embodiment.
The coil 9 and iron core 10 of the embodiment can be shared, and even if the rotor diameter becomes larger, the same coil 9 and iron core 10 can be used.
Furthermore, in the motor of the first embodiment, when the number of magnetic poles of the permanent magnet body 1 is 2n, the number of coils 9 of the coil body 2 is 3.
It may be nXm (m is 1, 2...), but
This invention is not limited to this.

また、前記各実施例は永久磁石体1を可動子としコイル
体2を固定子としたが、一定範囲を往復動作するような
モータの場合、コイル体2を可動子としてもよい。
Further, in each of the above embodiments, the permanent magnet body 1 is used as the movable element and the coil body 2 is used as the stator, but in the case of a motor that reciprocates within a certain range, the coil body 2 may be used as the movable element.

前記実施例はホール素子17により可動子の位置を磁気
検知したが、他の磁気検知素子その他磁気以外の位置検
知素子を用いることができるほか、ステータと可動子と
の位置関係、推進力や速度が分かっている場合には位置
検知素子はなくても制御可能である。
In the above embodiment, the position of the movable element is magnetically detected by the Hall element 17, but other magnetic sensing elements or other position sensing elements other than magnetic may be used. If it is known, control can be performed without a position sensing element.

〔発明の効果〕〔Effect of the invention〕

この発明のモータによれば、コイルは可動子の移動方向
と直角な方向にコイル軸を有するため、従来例と比較し
てコイルの巻線作業が容易な構造にしやすくしかも高密
度に’IIすることが可能となるのでモータ定数が大き
く高出力が可能となる。
According to the motor of the present invention, since the coil has the coil axis in a direction perpendicular to the moving direction of the movable element, it is easier to wind the coil in a structure that is easier to wind than in the conventional example, and the coil can be wound with high density. This makes it possible to increase the motor constant and achieve high output.

またコイルの相互間に磁束が流れないので相互誘導の影
響が極めて少なく、したがって制御が容易になる。さら
に、ラジアルギャップ型のモータではコイル軸がスラス
ト方向となるため径の異なる場合でもコイルの鉄心の形
状を同一にして積層枚数の増減により対応でき、またア
キシャルギヤ。
Further, since no magnetic flux flows between the coils, the influence of mutual induction is extremely small, and therefore control becomes easy. Furthermore, in a radial gap type motor, the coil axis is in the thrust direction, so even if the coil diameter is different, the shape of the core of the coil can be made the same and the number of layers can be increased or decreased, and axial gears can be used.

プ型のモータにあってはロータ径が大きくても同一のコ
イルの鉄心の使用が可能であり、回転式およびリニア式
のモータのコイル部分の共用が可能となるという効果が
ある。
In the case of a rotary type motor, it is possible to use the same coil core even if the rotor diameter is large, and there is an effect that the coil portion of rotary type and linear type motors can be shared.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例の断面図、第2図はそ
のn−n線拡大断面図、第3図は磁束の流れを説明する
説明図、第4図はコイルの駆動回路図、第5図は第2の
実施例の断面図、第6図はそのVl−Vl線断面図、第
7図は第3の実施例の断面図、第8図は従来例の断面図
、第9図はその■■線断面間、第10図はコイルと磁極
の位置関係を説明する説明図、第11図は磁束の流れを
説明する説明図である。 1・・・永久磁石体、2・・・コイル体、3・・・磁極
面、8・・・ギヤツブ、9・・・コイル、N、S・・・
磁極第4図 第3図 第 図 第 図 第 10図 第 図
Fig. 1 is a sectional view of the first embodiment of the present invention, Fig. 2 is an enlarged sectional view taken along line nn, Fig. 3 is an explanatory diagram explaining the flow of magnetic flux, and Fig. 4 is a coil drive circuit. 5 is a sectional view of the second embodiment, FIG. 6 is a sectional view taken along the line Vl-Vl, FIG. 7 is a sectional view of the third embodiment, and FIG. 8 is a sectional view of the conventional example. FIG. 9 is an explanatory diagram illustrating the cross section between the lines ■■, FIG. 10 is an explanatory diagram illustrating the positional relationship between the coil and the magnetic pole, and FIG. 11 is an explanatory diagram illustrating the flow of magnetic flux. DESCRIPTION OF SYMBOLS 1... Permanent magnet body, 2... Coil body, 3... Magnetic pole surface, 8... Gear knob, 9... Coil, N, S...
Magnetic Pole Figure 4 Figure 3 Figure 10 Figure

Claims (1)

【特許請求の範囲】[Claims]  永久磁石体およびコイル体の一方を可動子、他方を固
定子とし、前記永久磁石体は互いに異なる極の一対の磁
極を磁極面の向きを同じにして並べるとともに、前記一
対の磁極の複数組を前記一対の磁極の並び方向と直角な
方向に並設してなり、前記コイル体はコイル軸が前記一
対の磁極の並び方向と同方向となるように複数のコイル
を並設してなり、前記複数のコイルを前記永久磁石体の
前記磁極に対してギャップを介して配置したことを特徴
とするモータ。
One of the permanent magnet body and the coil body is used as a mover, and the other is used as a stator, and the permanent magnet body has a pair of magnetic poles with different poles arranged in the same direction, and a plurality of sets of the pair of magnetic poles. The coil body has a plurality of coils arranged in parallel in a direction perpendicular to the direction in which the pair of magnetic poles are arranged, and the coil body has a plurality of coils arranged in parallel so that the coil axis is in the same direction as the direction in which the pair of magnetic poles are arranged. A motor characterized in that a plurality of coils are arranged with gaps between them with respect to the magnetic poles of the permanent magnet body.
JP1018818A 1989-01-26 1989-01-26 motor Expired - Lifetime JP2742078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1018818A JP2742078B2 (en) 1989-01-26 1989-01-26 motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1018818A JP2742078B2 (en) 1989-01-26 1989-01-26 motor

Publications (2)

Publication Number Publication Date
JPH02202344A true JPH02202344A (en) 1990-08-10
JP2742078B2 JP2742078B2 (en) 1998-04-22

Family

ID=11982151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1018818A Expired - Lifetime JP2742078B2 (en) 1989-01-26 1989-01-26 motor

Country Status (1)

Country Link
JP (1) JP2742078B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354390B1 (en) * 2001-10-01 2007-07-25 Matra Manufacturing & Services Sas Rotary electric motor having axially aligned stator poles and/or rotor poles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502232A (en) * 1984-05-21 1986-10-02 ツグマ・インスツルメンツ,インコ−ポレ−テッド stepping motor
JPH0253274U (en) * 1988-10-07 1990-04-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502232A (en) * 1984-05-21 1986-10-02 ツグマ・インスツルメンツ,インコ−ポレ−テッド stepping motor
JPH0253274U (en) * 1988-10-07 1990-04-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354390B1 (en) * 2001-10-01 2007-07-25 Matra Manufacturing & Services Sas Rotary electric motor having axially aligned stator poles and/or rotor poles

Also Published As

Publication number Publication date
JP2742078B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
US5532531A (en) Permanent magnet type brushless motor
JP4234831B2 (en) Axial gap motor
US4899072A (en) Pulse motor
JP2001136721A (en) Axially-spaced permanent magnet synchronous machine
JP5610989B2 (en) Rotating motor
KR19980064701A (en) motor
US4104552A (en) Synchronous motor structure
JPH0479741A (en) Permanent magnet rotor
JPH1141902A (en) Motor
JPS59165950A (en) Small-sized stepping motor
JPH02202344A (en) Motor
JP2003289653A (en) Manufacturing method and device for servo motor
JP4226840B2 (en) Electric motor
JPH03195343A (en) Magnetizer for step motor
JPH02228241A (en) Stepping motor
JP2021010211A (en) Rotary electric machine and rotary electric machine manufacturing method
JP3840715B2 (en) Permanent magnet synchronous motor
JP3679294B2 (en) Ring coil type rotating electrical machine
JPH01103146A (en) Motor
JP3045935B2 (en) Permanent magnet type stepping motor
JPH0433551A (en) Motor using permanent magnet
JP2005102366A (en) Multipole rotary electric machine
JP3644424B2 (en) Motor and disk device
JP3138627B2 (en) Driving method of hybrid type step motor
JPH01164252A (en) Permanent magnet field two-phase multipolar synchronous machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 11

EXPY Cancellation because of completion of term