JPH02201871A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH02201871A
JPH02201871A JP1021398A JP2139889A JPH02201871A JP H02201871 A JPH02201871 A JP H02201871A JP 1021398 A JP1021398 A JP 1021398A JP 2139889 A JP2139889 A JP 2139889A JP H02201871 A JPH02201871 A JP H02201871A
Authority
JP
Japan
Prior art keywords
lead
active material
lead oxide
acid battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1021398A
Other languages
Japanese (ja)
Other versions
JP3087275B2 (en
Inventor
Toshihiro Inoue
利弘 井上
Kenji Kobayashi
健二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP01021398A priority Critical patent/JP3087275B2/en
Publication of JPH02201871A publication Critical patent/JPH02201871A/en
Application granted granted Critical
Publication of JP3087275B2 publication Critical patent/JP3087275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • H01M4/57Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead of "grey lead", i.e. powders containing lead and lead oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To obtain a sealed lead-acid battery having compact size and excellent performance by using paste mainly comprising lead powder containing lead oxide having a specified red lead oxide rate, water, and dilute sulfuric acid prepared by kneading as the positive active material, and using a Ca-Sn-Pb alloy containing a specified percentage of Sn in a positive grid. CONSTITUTION:Paste mainly comprising lead powder containing lead oxide whose red lead oxide rate is 90% or less, water, and dilute sulfuric acid prepared by kneading is used as a positive active material. Since the lead oxide whose red lead oxide rate is 90% or less has red lead oxide only on the surface of particle and has mainly lead monoxide on the inside of the particle, bonding of active material particles is strengthened even in kneading, and micronization of the active material particle in charge-discharge is retained. By using Ca-Sn-Pb alloy containing 1.5% or more Sn as a positive grid alloy, the adhesive between active material particle and the positive grid is furthermore increased. A battery having compact size, long charge-discharge cycle life, good electrolyte retention, and good overcharge resistance is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ポータプル機器用として、あるいは防災用と
して広く用いられている密閉式鉛蓄電池に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sealed lead-acid battery that is widely used for portable equipment or for disaster prevention.

従来の技術 密閉式鉛蓄電池は、高い経済性と取扱いの手軽さからポ
ータブ)v V’ T Ryボータプルテレビをはじめ
とする多くのポータプル機器の電源として用いられてい
る。
BACKGROUND OF THE INVENTION Sealed lead-acid batteries are used as power sources for many portable devices, including portable televisions, because of their high cost efficiency and ease of handling.

この種の用法において電源に要求される特性は、電池に
ついては小形軽量で゛あること、取扱いが容易であるこ
との二つが主である。
The two main characteristics required of a power source in this type of usage are that the battery be small and lightweight, and that it be easy to handle.

前者の小形軽量化の方法として、一般にプラスチック部
品をはじめ電池構成のすべての部品を小形化−軽量化し
ていく方法が取られるが、その中でも正極活物質と負極
活物質の利用率を向上させ、軽量化を図ることが効果的
である。
The former method of reducing size and weight generally involves reducing the size and weight of all parts of the battery, including plastic parts. It is effective to reduce the weight.

活物質の利用率を向上させる方法としては、カーボンの
ような電子伝導性物質を添加する方法や、あるいは活物
質の密度を小さくし、活物質の反応の比表面積を大きく
する方法が行われている。
Methods to improve the utilization rate of active materials include adding electronically conductive substances such as carbon, or decreasing the density of the active material and increasing the specific surface area for reaction of the active material. There is.

発明が解決しようとする課題 上記のような活物質を低密度化し、軽量化しようとする
従来の手法による電池を急速充電器による充放電サイク
ルを行った場合、正極活物質中でカーボンが酸化されて
二酸化炭素として分解されたり、活物質の密度が小さい
場合は活物質粒子間の電子伝導性が低くなるという問題
がみられた。
Problems to be Solved by the Invention When a battery manufactured using the conventional method of reducing the density and weight of the active material as described above is subjected to charge/discharge cycles using a rapid charger, carbon in the positive electrode active material is oxidized. When the active material is decomposed into carbon dioxide, and the density of the active material is low, there are problems in that the electronic conductivity between the active material particles decreases.

すなわち、電池の内部インピーダンスが高くなるため充
電が困難となり、活物質の溶解析出が行われにくくなシ
、活物質自身が微粒子化され、その結果電池の内部抵抗
の増加が生じ、電池容量の低下が加速されるという結果
を招いた。
In other words, the internal impedance of the battery increases, making charging difficult, making it difficult to dissolve and deposit the active material, and the active material itself becoming fine particles, resulting in an increase in the internal resistance of the battery and a decrease in battery capacity. This resulted in an acceleration of

そのため、活物質問の結合力の低い、微細な活物質粒子
が生成し、充放電サイクル寿命ばかりではなく、電池を
過充電した場合にも電池容量の著しい低下を招いていた
As a result, fine active material particles with low bonding strength between living materials are produced, which causes not only a shortened charge/discharge cycle life but also a significant reduction in battery capacity when the battery is overcharged.

本発明は上記問題点を解決するものであり、軽量で、小
形の密閉式鉛蓄電池のサイクル寿命の特性を向上させ、
同時に耐過充電特性の向上を目的とするものである。
The present invention solves the above problems, and improves the cycle life characteristics of a lightweight, small-sized sealed lead-acid battery.
At the same time, the purpose is to improve overcharge resistance characteristics.

課題を解決するだめの手段 上記問題点を解決するために本発明は、活物質密度を小
さくした場合においても、サイクル寿命時の容量低下の
ない小形軽量の密閉型鉛蓄電池を提供するものであシ、
正極活物質に鉛丹化率90チ以下の鉛酸化物を含む鉛粉
と水、希硫酸を主成分として練合したペーストを用いる
ことを特徴としている。鉛丹化率90%以下の鉛酸化物
は、粒子表面のみの鉛丹化が進行し、内部は一酸化鉛が
主体の粒子からなるため、ペーストの練合によっても活
物質粒子間の結合力に優れ、充放電における活物質粒子
の微細化を抑制することができる。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a small and lightweight sealed lead-acid battery that does not have a capacity drop during its cycle life even when the density of the active material is reduced. C,
The positive electrode active material is characterized by using a paste made by kneading lead powder containing lead oxide with a lead chloride rate of 90 or less, water, and dilute sulfuric acid as main components. For lead oxides with a lead redness rate of 90% or less, lead redness progresses only on the surface of the particles, and the interior consists of particles mainly composed of lead monoxide, so the bonding strength between the active material particles is reduced even when the paste is kneaded. It has excellent properties and can suppress the miniaturization of active material particles during charging and discharging.

加えて、正極格子合金にSn濃度が1.5%以上のCa
−8n−Pb合金を用いることによシ、活物質粒子と正
極格子体の密着性をさらに向上させることができる。
In addition, Ca with a Sn concentration of 1.5% or more is added to the positive electrode lattice alloy.
By using the -8n-Pb alloy, it is possible to further improve the adhesion between the active material particles and the positive electrode grid.

さらに、ガラスマット状セパレータの繊維11をコント
ロールすることによシ、内部抵抗が低く、かつ電解液の
保持液量の大きいセパレータを用いることにより、活物
質とセパレータの密着性に優れた電池とすることができ
、活物質粒子の微粒子化を抑制し充放電サイクル寿命、
耐過充電特性を向上させると共に活物質を軽量化するこ
とができる。
Furthermore, by controlling the fibers 11 of the glass mat-like separator, a separator with low internal resistance and a large amount of electrolyte retained can be used, resulting in a battery with excellent adhesion between the active material and the separator. This can suppress the atomization of active material particles and improve the charge/discharge cycle life.
The overcharge resistance characteristics can be improved and the weight of the active material can be reduced.

作  用 上記の方法によシ、低密度で活物質の利用率が高く、ま
た鉛丹化率90%以下の鉛酸化物添加により、活物質粒
子の結合力が強化され、充放電サイクル寿命、電解液保
持能力に優れ、耐過充電特性に優れた電池の提供が可能
となる。
Effect The method described above has a high active material utilization rate with low density, and the addition of lead oxide with a lead chloride rate of 90% or less strengthens the bonding force of the active material particles, increasing the charge/discharge cycle life. It becomes possible to provide a battery that has excellent electrolyte retention ability and excellent overcharge resistance characteristics.

実施例 以下、本発明の実施例により説明する。Example The present invention will be explained below using examples.

正極板として、Sn濃度が1.3,1.5 、1.8.
2.2゜2.5係の5n−0,08%Ca−Pb合金よ
りなる格子に酸化鉛、鉛丹化率86チの鉛酸化物、水、
希硫酸を練り合わせたペースI−を充填し、化成した厚
さ3.0聾、長さ40rm、幅25調のものを用意した
。鉛丹化率85%鉛酸化物の添加量は50%。
As a positive electrode plate, the Sn concentration is 1.3, 1.5, 1.8.
2.2゜A lattice made of 5n-0,08% Ca-Pb alloy with a ratio of 2.5 was coated with lead oxide, lead oxide with a lead salinity of 86, water,
Filled with PACE I-, which was mixed with dilute sulfuric acid, a chemically formed mold was prepared with a thickness of 3.0 mm, a length of 40 rm, and a width of 25 mm. Red lead rate is 85%, and the amount of lead oxide added is 50%.

80チ、90係とした。There were 80 and 90 staff.

負極板としてはPb−Ca−3rs合金よりなる格子に
酸化鉛、硫酸バリウム、有機添加剤、水、希硫酸等を練
り合わせたペーストを充填し化成した厚さ1゜5■、長
さ40 tm、幅25mのものを用意し、2枚の正極板
と3枚の負極板を組み合せ、極板間には微細なガラス繊
維からなるマット状セパレータを挿入し、電解液には比
重1.30の希硫酸を用いた。また、比較dために添加
物を含まない従来品をも試作した。
The negative electrode plate was formed by filling a lattice made of Pb-Ca-3rs alloy with a paste made by kneading lead oxide, barium sulfate, organic additives, water, dilute sulfuric acid, etc., and forming a chemical compound with a thickness of 1°5 and a length of 40 tm. A width of 25 m was prepared, and two positive electrode plates and three negative electrode plates were combined, a mat separator made of fine glass fiber was inserted between the electrode plates, and a dilute electrolyte with a specific gravity of 1.30 was inserted. Sulfuric acid was used. In addition, a conventional product containing no additives was also prototyped for comparison.

活物質量は従来例で正極が23.Of!/セル、負極が
21.8y/七ルであり、これらの電池は従来例を基準
とした場合、10時間率容量2.oAhとなりそれぞれ
6セル接続し12V/2.oAhの電池とした。
In the conventional example, the amount of active material in the positive electrode is 23. Of! /cell, and the negative electrode is 21.8y/7l, and these batteries have a 10 hour rate capacity of 2.8y/7y, based on the conventional example. oAh, 6 cells connected each, 12V/2. It was used as an oAh battery.

セパレータは、平均繊維径が0.8μmのガラス繊維を
抄紙し、繊維密度を0.12 、0018,0.202
/I とした。
The separator is made of glass fiber with an average fiber diameter of 0.8 μm, and the fiber density is 0.12, 0018, 0.202.
/I.

これらの電池を160の定抵抗にて放電終止電圧10.
5V4 で放Kl、、14.7V/1.8 AtD定重
圧にて3時間充電したときの充放電サイクル寿命を第1
図に示す。
The final discharge voltage of these batteries was 10.
The charge/discharge cycle life when charged for 3 hours at 5V4 and 14.7V/1.8 AtD constant pressure is the first
As shown in the figure.

また、0.75Aの定電流で放電終止電圧1o、6Vま
で連続放電した際の放電時間と各種添加物との関係を第
2図、第3図に示す。
Further, FIGS. 2 and 3 show the relationship between discharge time and various additives when continuous discharge was performed at a constant current of 0.75 A to a discharge end voltage of 1o and 6 V.

鉛丹化率の低い鉛酸化物を添加することにより、格子の
Sn濃度と併せて充放電サイクル寿命に優れた電池とな
る。セパレータ繊維密度は実施例範囲で電解液の保持液
量が増加するだめ、放電時間の増加がみられる。
By adding lead oxide with a low lead chloride rate, a battery with excellent charge/discharge cycle life can be obtained in combination with the Sn concentration of the lattice. As the separator fiber density increases within the range of Examples, the discharge time increases as the amount of electrolyte retained increases.

第2図、第3図にはこれらの電池をo、1cA定電流に
て連続過充電した時の容量維持率を示した。
Figures 2 and 3 show the capacity retention rates when these batteries were continuously overcharged at a constant current of 1 cA.

いずれも本発明品の方が優れた特性となる。また、鉛丹
化率90%以下の鉛酸化物を添加する際、その添加量が
10チ以下では従来例と変らず、6゜チをこえるとペー
ストの酸化が進みやすくなシ、好ましくなかった。
In both cases, the products of the present invention have superior properties. In addition, when adding lead oxide with a lead oxidation rate of 90% or less, if the amount added is less than 10 degrees, it is no different from the conventional example, but if it exceeds 6 degrees, oxidation of the paste tends to proceed, which is not desirable. .

そのため、実施例は25 w10添加を示した。Therefore, the example showed addition of 25w10.

なお、セパレータ繊維密度が0.12未満では活物質の
脱落が起こりやすく、好ましくない。同様に、繊維密度
が0.2を越えると電池の内部抵抗が増加し7、またセ
パレータの電解液の吸液量が減少するため容量が短くな
った。
Note that if the separator fiber density is less than 0.12, the active material tends to fall off, which is not preferable. Similarly, when the fiber density exceeds 0.2, the internal resistance of the battery increases7 and the amount of electrolyte absorbed by the separator decreases, resulting in a shortened capacity.

発明の効果。Effect of the invention.

本発明は、以上のように小形軽量で、急速充放電サイク
ル寿命、耐過充電特性に優れた密閉式鉛蓄電池を提供す
るものである。
As described above, the present invention provides a sealed lead-acid battery that is small and lightweight, and has excellent rapid charge/discharge cycle life and overcharge resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、正極への鉛丹化率の低い鉛酸化物を添加し、
正極格子合金Sn濃度の異なる電池の充放電サイクル寿
命の関係を示す図、第2図、第3図は定電流過充電時の
容量維持率を示す図である。 代理人の氏名 弁理士 粟 野 重 孝ほか1名第2図 期間(fiiL)
Figure 1 shows that lead oxide with a low lead chloride rate is added to the positive electrode.
Figures 2 and 3 are diagrams showing the relationship between charge and discharge cycle life of batteries with different Sn concentrations in positive electrode lattice alloys, and are diagrams showing capacity retention rates during constant current overcharging. Name of agent: Patent attorney Shigetaka Awano and one other figure 2 period (fiiL)

Claims (3)

【特許請求の範囲】[Claims] (1)二酸化鉛を正極活物質とする正極と、スポンジ状
鉛を負極活物質とする負極と、マット状ガラス繊維から
なるセパレータとからなる密閉型鉛蓄電池において、正
極活物質に鉛丹化率90%以下の鉛酸化物を含む鉛粉と
水、希硫酸を主成分として練合したペーストを用いると
ともに、正極格子体にSnを1.5%以上含む、Ca−
Sn−Pb合金を用いることを特徴とする密閉型鉛蓄電
池。
(1) In a sealed lead-acid battery consisting of a positive electrode using lead dioxide as the positive electrode active material, a negative electrode using sponge-like lead as the negative electrode active material, and a separator made of matte glass fiber, the percentage of lead in the positive electrode active material is A paste made by kneading lead powder containing 90% or less of lead oxide, water, and dilute sulfuric acid as the main components is used, and a Ca-
A sealed lead acid battery characterized by using a Sn-Pb alloy.
(2)鉛丹化率90%以下の鉛酸化物中の鉛丹重量が全
鉛粉重量に対し10%以上50%以下であることを特徴
とする特許請求の範囲第1項記載の密閉型鉛蓄電池。
(2) A closed type according to claim 1, characterized in that the weight of red lead in the lead oxide with a red lead ratio of 90% or less is 10% or more and 50% or less based on the weight of the total lead powder. Lead acid battery.
(3)セパレータとしてマット状ガラス繊維セパレータ
を用い、その繊維密度が0.12〜0.2g/cm^3
であることを特徴とする特許請求の範囲第1項記載の密
閉型鉛蓄電池。
(3) A matte glass fiber separator is used as the separator, and its fiber density is 0.12 to 0.2 g/cm^3
The sealed lead-acid battery according to claim 1, characterized in that:
JP01021398A 1989-01-31 1989-01-31 Sealed lead-acid battery Expired - Lifetime JP3087275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01021398A JP3087275B2 (en) 1989-01-31 1989-01-31 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01021398A JP3087275B2 (en) 1989-01-31 1989-01-31 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH02201871A true JPH02201871A (en) 1990-08-10
JP3087275B2 JP3087275B2 (en) 2000-09-11

Family

ID=12053948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01021398A Expired - Lifetime JP3087275B2 (en) 1989-01-31 1989-01-31 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP3087275B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123205A (en) * 2005-10-31 2007-05-17 Furukawa Battery Co Ltd:The Control valve type lead-acid storage battery
JP2008311051A (en) * 2007-06-14 2008-12-25 Gs Yuasa Corporation:Kk Lead storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123205A (en) * 2005-10-31 2007-05-17 Furukawa Battery Co Ltd:The Control valve type lead-acid storage battery
JP2008311051A (en) * 2007-06-14 2008-12-25 Gs Yuasa Corporation:Kk Lead storage battery

Also Published As

Publication number Publication date
JP3087275B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
JPH02201871A (en) Sealed lead-acid battery
JP2002100347A (en) Lead-acid battery
CN1314721A (en) Akaline accumulator and positive pole for akaline accumulator
US6608465B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JPH01128367A (en) Sealed type lead storage battery
JPS58197662A (en) Pasted positive electrode for lead storage battery
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JPS59173961A (en) Organic electrolyte secondary battery
JPH11162456A (en) Lead-acid battery
JPS62160659A (en) Lead storage battery
JPS63190252A (en) Lead storage battery
JPS5854570A (en) Sealed alkaline storage battery
JPS62193060A (en) Sealed lead storage battery
JPS63148546A (en) Sealed lead acid battery
JPH08321302A (en) Hydrogen storage electrode
JPH02201872A (en) Plate for lead-acid battery
JPH01186572A (en) Sealed type lead-acid battery
JPH01186560A (en) Sealed type lead-acid battery
JP2004199949A (en) Manufacturing method of electrode plate for lead-acid storage battery
JPH01232663A (en) Non-sintered cadmium negative electrode for alkaline storage battery
JPS63148538A (en) Separator for enclosed lead storage battery
JPH04206476A (en) Organic electrolyte battery
JPS60121673A (en) Active substance of positive pole for lead storage battery
JPS61104563A (en) Silver oxide battery
JPH01197966A (en) Lead-acid battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070714

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154