JPH02201440A - Composition for display by radiation exposure - Google Patents

Composition for display by radiation exposure

Info

Publication number
JPH02201440A
JPH02201440A JP2199989A JP2199989A JPH02201440A JP H02201440 A JPH02201440 A JP H02201440A JP 2199989 A JP2199989 A JP 2199989A JP 2199989 A JP2199989 A JP 2199989A JP H02201440 A JPH02201440 A JP H02201440A
Authority
JP
Japan
Prior art keywords
doping
irradiation
radiation
single crystal
compsn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2199989A
Other languages
Japanese (ja)
Other versions
JPH0545935B2 (en
Inventor
Hiroshi Uchiyama
博 内山
Norimasa Kamezawa
亀澤 範正
Teruaki Kobayashi
映章 小林
Shiro Sakuragi
桜木 史郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUGAWARA KOGYO KK
UNION MATERIAL KK
Original Assignee
SUGAWARA KOGYO KK
UNION MATERIAL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUGAWARA KOGYO KK, UNION MATERIAL KK filed Critical SUGAWARA KOGYO KK
Priority to JP2199989A priority Critical patent/JPH02201440A/en
Publication of JPH02201440A publication Critical patent/JPH02201440A/en
Publication of JPH0545935B2 publication Critical patent/JPH0545935B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To clearly color a compsn. by irradiation with a medium dose of radiation and to keep the colored state for ordinary handling time by using a compsn. consisting of a single crystal or polycrystal of KCl or NaCl doped with a divalent metallic element, especially Ca. CONSTITUTION:The dependency of the coloring life of a compsn. for display by radiation exposure on doping weight is largely varied in accordance with the kind of alkali halide and the kind of doping element used in combination. A compsn. consisting of a single crystal or polycrystal of KCl or NaCl blended with 1X10<-2>-1mol% Ca as a doping element is used as the compsn. for display. This compsn. is colored by irradiation with a medium dose of radiation to such a degree that the colored state can be recognized at first glance without requiring special post-treatment such as development and the colored state can be kept for ordinary handling time.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、X線や電子線などの放射線が被照射体に照射
されたことを無色からの着色によって表示する表示用組
成物に係り、特に、低放射線量゛の照射で着色し、しか
も、その着色状態を長時間にわたって保持することがで
きる放射線照射表示用組成物に関する。 〔従来の技術〕 近年、医療器具の滅菌1食品の殺菌、たまねぎ馬鈴薯な
どの発芽抑制、高分子化合物の架橋、表面処理5人体内
部の診断、材料内部の非破壊検査など広範囲にわたる産
業分野でX線や電子線の利用が進められており、これら
の利用に際して、それが被照射体を意図的に照射する場
合であれあるいはX線・電子線応用装置からの何等から
原因による漏洩を検知する場合であれ、照射線による照
射処理が完了していることあるいは漏洩が生じているこ
とを一目して認知することのできる簡便な手段が、作業
効率上および安全上、望まれている。 これまで、 1O−3rad−10−”rad程度の微
量の放射線量に対しては、X線・電子線取扱い者が着用
するフィルムバッジのような銀塩写真法が用いられてき
ている。しかし、この方法は現像処理を行ってはじめて
顕在化する色の変化をwt察する方法であり、照射後直
ちに色変化をi察することはできない。 また、医療器具の滅菌や馬鈴薯の発芽抑制などの場合に
は10’rad前後の多量のX線や電子線が照射される
が、このように照射線量が多量の場合には、色変化を起
す組成物が数多く知られている。 例えば、ハロゲン化有機化合物と感酸性色素とを主成分
とする組成物で、X線や電子線の照射によってハロゲン
化有機化合物が脱ハロゲン化水素を起し、生成したハロ
ゲン化水素が感酸性色素に作用して該色素に色変化を起
させることを利用したものがある。しかし、このような
有機化合物からなる色変化利用の組成物はl 05ra
d以下の放射線照射量に対して極めて低感度であり、1
03〜IO’rad程度の照射量の場合には実用に耐え
る色変化は詔められない。 103〜lO’radという中程度の放射線照射量で一
目して認知できる程度の呈色を示す代表的な材料として
は塩化ナトリウム(NaCIl)、臭化カリウム(KB
r)などのアルカリハライドを挙げることができる。こ
れらの材料は、単結晶相であるか多結晶相であるかある
いは粉末であるかという相の状態の如何を問わず、10
”〜lo’rad程度の放射線照射量で無色透明からオ
レンジ色あるいは青色などへの呈色の変化を示す、しか
し、103〜10’rad程度の照射量による着色は、
常温、常圧、自然光下曝露の条件で放置した場合、1〜
4分程度で退色して、無色透明の状態に戻る。 〔発明が解決しようとする課題〕 以上述べてきたように、従来技術においては。 10’〜10’rad程度の中間的な照射量で効果的な
色変化を示し、かつ、その着色状態を通常の取扱いに耐
えるだけの時間(少なくとも1時間以上)の間保持し得
る材料は得られていなかった。 本発明の目的は、上記従来技術の有していた課題を解決
して、上記中程度の放射線照射量において、現像などの
ような特別な後処理を必要とすることなく、−目して認
知することのできる着色を示し、かつ、その着色状態を
通常の取扱いに耐える時間の間保持することのできる放
射線照射表示用組成物を提供することにある。 〔a題を解決するための手段〕 上記目的は、ドーピング元素としてカルシウム(Ca)
を1×10’″1mo1%から1 mo 0%の範囲で
配合した塩化カリウム(K(J)あるいは塩化ナトリウ
ム(NaCα)の単結晶あるいは多結晶からなる組成物
を放射線照射表示用組成物とすること、あるいは、ドー
ピング成分としてCaと他の2価金属元素との組合わせ
を用いる配合において、ドーピング成分の全配合量がl
 X 10””mo (1%から1moQ%の範囲で、
かつ、Caを少なくともl X 10−”no Q%以
上含むように配合したKCQあるいはNaCl1の単結
晶あるいは多結晶からなる組成物を放射線照射表示用組
成物とすること、によって達成することができる。 〔作用〕 発明者等は、NaCl単結晶に異種元素を微量ドープす
ることによって放射線照射後の着色濃度が向上するとい
う知見(“Co1or Center Formati
onin sodium Chloride” : H
,V、Etzal & J、G、A11ard;Phy
s、 Rev、 Lett、 2 pp、452〜45
4 (1959))に着目し、各種のアルカリハライド
と種々のドーピング元素との組合せについて、ドーピン
グ量を最適化することによって着色状態の長時間保持を
図ることを考え、実験的に検討した。 まず、アルカリハライドの種類としては、放射線照射に
よって種々の色相の材料を得ることを目的として、アル
カリ金属としてLi、Na、K。 Cs、の4種と、ハロゲン元素としてF、Cjl、Br
、■の4種との組合せによって得られるアルカリハライ
ドを対象とした。一方、ドーピング元素の種類としては
、ドーピング量による制約の比較的小さいもの、すなわ
ち結晶構造内の1価のアルカリ金属イオンとの置換が比
較的容易に行われるもの、として、2価のイオンを形成
する金属元素を選ぶこととし、該当元素としてMg、C
a、Baおよびpbを選定した。 また、放射線照射後の着色状態の保持(以下。 着色寿命と略称する)を支配する因子として、上記アル
カリハライドおよびドーピング元素の種類の他に、得ら
れた組成物が単結晶であるか多結晶であるかあるいは粉
末状であるかという相状態の相違も考えられるので、ア
ルカリハライドにドーピング元素のハロゲン化物を添加
、溶融した後。 長時間をかけて徐冷することによって得た単結晶と、溶
融後に急冷して得た多結晶と、該単結晶あるいは多結晶
を一旦粉砕した後に錠剤成形器で錠剤化した試料とにつ
いて、比較評価を行った。 (なお、単結晶か多結晶かの判別は剪開面の顕微鏡観察
によって行った)。その結果、例えば、Caを5XIO
−”履oQ%ドープしたにKCllについて、単結晶と
多結晶とでは、放射線照射後の紫色の着色寿命にほとん
ど差が認められなかった。すなわち、タングステン(W
)をターゲツト材とする管球型X線発生装置を用いて、
管電圧150kV、管電流20mAで3000radの
X線を照射した場合1両者とも、自然光下に曝した室内
放置状態で、完全退色までに約45時間を要した。これ
に対し、150kg/c■2の加圧下で錠剤化した粉砕
試料の場合、上記と同一条件でx1m照射および自然光
下放置をしたとき。 僅か2分間で完全に退色した。このことから、結晶状態
にある場合と粉砕粉末状態にある場合とでは着色寿命が
大幅に異なり、結晶状態にあるものの方が着色寿命の長
いことが知られた。この関係は、種々のアルカリハライ
ドとドーピング元素との組合せについて、全く同様に認
められた。 ドーピング元素の種類およびドーピング量と着色寿命と
の関係については、後出実施例において詳記するが、例
えばCa元素をドープしたKCAの場合1着色寿命はド
ーピング量に大きく依存し。 かつ、最適ドープ量が存在する。また、Ca元素をドー
プしたNa(Jの場合、ドーピングによる着色寿命改善
の効果はあるが、そのドーピング量依存性は極めて小さ
い、このことから、アルカリハライドの種類とドーピン
グ元素の種類との組合せによって、着色寿命のドーピン
グ量依存性が大きく異なることがわかる。 なお、放射線照射後、着色した試料を1例えばAa箔で
包み込み、遮光した状態で常温・常圧下に放置した場合
、自然光下に直接曝露した場合に比較し、着色寿命をさ
らに長期化することができた。
[Industrial Field of Application] The present invention relates to a display composition that indicates that an irradiated object has been irradiated with radiation such as X-rays or electron beams, and particularly relates to a display composition that changes from colorless to colored. The present invention relates to a radiation irradiation display composition that can be colored by irradiation and can maintain its colored state for a long period of time. [Conventional technology] In recent years, X has been used in a wide range of industrial fields, including sterilization of medical instruments, sterilization of foods, suppression of germination of onions and potatoes, crosslinking of polymeric compounds, surface treatment, diagnosis of the inside of the human body, and non-destructive testing of the inside of materials. The use of rays and electron beams is progressing, and when using these, whether it is to intentionally irradiate an irradiated object or to detect leakage due to some reason from X-ray or electron beam application equipment. However, from the viewpoint of work efficiency and safety, a simple means is desired that allows one to recognize at a glance that the irradiation process with irradiation has been completed or that a leak has occurred. Up until now, silver halide photography has been used, such as the film badges worn by X-ray and electron beam handlers, for small doses of radiation on the order of 10-3 rad-10-" rad. However, This method is a method that detects color changes that become apparent only after the development process, and it is not possible to detect color changes immediately after irradiation.In addition, in cases such as sterilizing medical instruments or suppressing the germination of potatoes, A large amount of X-rays and electron beams of around 10'rad are irradiated, and many compositions are known that cause color changes when the irradiation dose is large.For example, halogenated organic compounds and A composition whose main component is an acid-sensitive dye, in which the halogenated organic compound undergoes dehydrohalogenation by irradiation with X-rays or electron beams, and the generated hydrogen halide acts on the acid-sensitive dye, causing the dye to undergo dehydrohalination. There are some compositions that utilize color change.However, compositions made of such organic compounds that utilize color change are
It has extremely low sensitivity to radiation doses below 1.
In the case of an irradiation dose of about 0.03 to IO'rad, no color change can be expected for practical use. Typical materials that exhibit coloration that can be recognized at a glance with a moderate radiation dose of 103 to 1 O'rad include sodium chloride (NaCIl) and potassium bromide (KB).
Examples include alkali halides such as r). These materials have 10
``It shows a change in color from colorless and transparent to orange or blue at a radiation dose of about 103 to 10'rad.
When left at room temperature, normal pressure, and exposed to natural light,
The color fades in about 4 minutes and returns to a colorless and transparent state. [Problem to be solved by the invention] As described above, in the prior art. Materials that exhibit an effective color change at an intermediate irradiation dose of about 10' to 10' rad and that can maintain the colored state for a sufficient period of time (at least 1 hour) to withstand normal handling are available. It wasn't. An object of the present invention is to solve the problems of the above-mentioned prior art, and to achieve visual recognition at the above-mentioned medium dose of radiation without requiring any special post-processing such as development. It is an object of the present invention to provide a radiation exposure display composition that can exhibit coloration that can be applied to the radiation exposure display and that can maintain the coloring state for a time that can withstand normal handling. [Means for solving problem a] The above purpose is to use calcium (Ca) as a doping element.
A composition consisting of a single crystal or polycrystal of potassium chloride (K(J)) or sodium chloride (NaCα) containing 1×10'''1 mo 1% to 1 mo 0% is used as a composition for radiation irradiation display. Alternatively, in a formulation using a combination of Ca and other divalent metal elements as a doping component, the total amount of the doping component is l
X 10””mo (in the range of 1% to 1moQ%,
This can also be achieved by using a composition for radiation irradiation display comprising a single crystal or polycrystal of KCQ or NaCl blended to contain at least 1 x 10-''no Q% of Ca. [Function] The inventors have discovered that the color density after radiation irradiation is improved by doping a small amount of a different element into a NaCl single crystal (“Co1or Center Formati
onin sodium chloride”: H
, V, Etzal & J, G, A11ard; Phy
s, Rev, Lett, 2 pp, 452-45
4 (1959)), we experimentally investigated combinations of various alkali halides and various doping elements with the aim of maintaining the colored state for a long time by optimizing the doping amount. First, regarding the types of alkali halides, Li, Na, and K are used as alkali metals for the purpose of obtaining materials with various hues by radiation irradiation. Cs, and F, Cjl, Br as halogen elements
The target was alkali halides obtained in combination with the four types listed below. On the other hand, as for the type of doping element, there are relatively few restrictions on the amount of doping, that is, it is relatively easy to replace monovalent alkali metal ions in the crystal structure, and forms divalent ions. We decided to select the metal elements that will
a, Ba and pb were selected. In addition to the types of alkali halides and doping elements mentioned above, factors governing the maintenance of the colored state after radiation irradiation (hereinafter referred to as coloring life) include whether the resulting composition is single crystal or polycrystalline. After adding and melting the doping element halide to the alkali halide, there may be a difference in the phase state, such as whether it is solid or powdery. A comparison was made of a single crystal obtained by slow cooling over a long period of time, a polycrystal obtained by rapid cooling after melting, and a sample obtained by crushing the single crystal or polycrystal and then tableting it with a tablet machine. We conducted an evaluation. (In addition, discrimination between single crystal and polycrystal was performed by microscopic observation of the sheared plane). As a result, for example, Ca is 5XIO
Regarding KCLL doped with OQ%, there was almost no difference in the lifespan of purple coloration after radiation irradiation between single crystal and polycrystal.
) using a tube-type X-ray generator as a target material,
When irradiated with 3000 rad of X-rays at a tube voltage of 150 kV and a tube current of 20 mA, it took about 45 hours for both to completely fade when left indoors under natural light. On the other hand, in the case of a crushed sample tableted under a pressure of 150 kg/c2, when irradiated at x1 m and left under natural light under the same conditions as above. The color completely faded in just 2 minutes. From this, it has been found that the coloring life is significantly different between the crystalline state and the pulverized powder state, and that the coloring lifespan is longer in the crystalline state. This relationship was similarly observed for various combinations of alkali halides and doping elements. The relationship between the type of doping element and the amount of doping and the coloring life will be described in detail in the Examples below, but for example, in the case of KCA doped with Ca element, the one coloring life largely depends on the amount of doping. Moreover, there is an optimum doping amount. In addition, in the case of Na (J) doped with Ca element, doping has the effect of improving the coloring life, but the dependence on the doping amount is extremely small. It can be seen that the dependence of the coloring life on the doping amount is significantly different.It should be noted that if the colored sample is wrapped in, for example, Aa foil after irradiation and left at room temperature and pressure in a light-shielded state, it will not be exposed directly to natural light. The lifespan of coloring could be further extended compared to the case where

【実施例] 以下1本発明の内容について、実施例によって、さらに
具体的に説明する。 ここで、以下の説明において、ドーピング量を示すmo
Q%の数字はアルカリハライドとドーピング元素との合
計v*oQ、e数に対するドーピング元素の1oQe数
の割合をパーセント(%)表示で示したものである。 また、実施例に用いた単結晶あるいは多結晶は、−旦高
温で溶融した各組成体を、それぞれ、7日間にわたって
常温まで徐冷、あるいは、1品夜で急冷して得たもので
ある。 また、X線の照射については、X線源としてWをターゲ
ツト材・とする管球型X線発生装置を用いて、管電圧1
50kV、管電流201IAの条件でX線を発生させ、
長波長成分をカットする目的で発生源と被照射試料との
間に厚さ1膳−のAll板を挿入し、線量が3000r
adに達するまで照射を行った。以下、上記条件でX線
照射を行った場合を管球X線照射と称する。なお、照射
線量の計測には、予め照射線量と発生イオン量との関係
について校正した空気電離型発生イオン量計測器を用い
た。 なお、第1表は各種結晶試料に管球X線照射を施した後
自然光下に放置し、た時の着色寿命をまとめて示したも
ので、着色寿命は下記のようにして計測した。すなわち
、照射済みの試料を自然光の入射する室内に8時から1
6時まで放置し、その後は試料をM箔に包み遮光して保
管し、翌日再び包みを解いて試料を自然光に曝すという
操作を繰返して、完全に退色するまで自然光下に曝した
時間の合計を以て示したものである。 実施例 I KCaおよびKCQに2価の金属元素をドープした結晶
試料についての管球X線照射後の着色寿命の結果を第1
表の試料Nα】〜11に示す。 この結果から、KCfiに2価金属元素をドープするこ
とによって着色寿命の改善が得られること、特に、Ca
元素ドープの場合著しいドープ量依存性があること、そ
の中でも、Ca元素ドープ量をI X 10−’mo 
9%とじた場合に14400分(10日間)という長寿
命を示すことが知られている。なお、該試料を遮光下で
保管した場合、120日を経過してもなお完全には退色
しないという結果が得られている。なお、Ca元素のド
ープ量を5mo12%とした場合には、ドーピング剤の
均一な分散が得られず、白濁状態の結晶となった。この
結果から、Ca元素ドーピングの好適範囲は1×10−
”〜1vroQ%の範囲にあるものと判断される。 一方、Ca元素とMg元素との組合せドーピングKCa
試料について、それぞれをI X 10””so 9%
、9 X 10−”no 9%となるように配合した場
合、その着色寿命は試料Ha 3の場合と同等の結果が
得られた。また、上記組合せドーピングにおいて、Ca
元素とMg元素とをそれぞれ5 X 10−”ago 
9%ずつ配合した場合、その着色寿命は試料Nα5とほ
ぼ同等であった。この結果は、2価金属の組合せドープ
の場合、着色寿命に対してはドーピング元素の中の長寿
命化に有効な成分元素の効果がより支配的であり、他の
2価金属元素の添加が妨害的な影響を与えることがほと
んどないことを示すものである。 なお、前出のCa元素ドープ量I X 10−”so 
9%のKCa試料について加速電圧2MV、ビーム電流
5mAの電子線を3000rad照射した場合、遮光下
の室内放置における着色寿命は、X線照射試料の場合と
同じ<、120日以上の結果を示した。 実施例 2 NaCQおよびNaCnに2価の金属元素をドープした
結晶試料についての管球xg照射後の着色寿命の結果を
第1表の試料Nα12〜21に示す。 この結果から、実施例1に示したKCIIの場合と同様
に、2価金属元素のドープによる着色寿命改善の効果が
認められる。しかし、試料Nα13〜17の結果にみら
れるように、Ca元素ドープについて、そのドーピング
量依存性は小さく、寿命時間も最大4時間程度に止まる
。Ca元素ドープの場合の好適範囲は、実施例1の場合
と同様に、lX10−”〜I l1lo 9%の範囲に
あるものと判断される。 なお、2価金属の組合せドーピングについて実施例1の
場合と同様にして検討し、実施例1の場合と同様な結果
が得られている。 実施例 3 NaBrおよびNaBrに2価の金属元素をドープした
結晶試料についての管球X線照射後の着色寿命の結果を
第1表の試料&22〜26に示す。 この結果から、NaBrの場合、2価金属元素ドーピン
グによる着色寿命改善の効果は概して小さく、BaをI
 X 10−”so 0%ドープした場合にのみ若干の
改善が認められるにすぎない。 比較例 I Ca元素をI X 10”” vao 0%ドープした
KCfl単結晶に管球X線よりも約10’倍高強度のX
線を発生するシンクロトロン放射光を約1分間照射した
場合、試料の表面のみが紫色に着色(管球X線の場合は
試料内部まで着色)したが、この着色は自然光下に曝し
て放置しても、6ケ月以上退色は全く認められなかった
。 比較例 2 LiFおよびLiC11の単結晶に管球X線照射を行っ
た場合の結果は第1表試料&27.28に示す通りで、
着色は全く認められなかった。これは、管球X線源の発
生X線波長域に対する上記試料の感度が小さいためと思
われる。ちなみに、LiF単結晶にシンクロトロン放射
光を2分間照射したところ、結晶内部まで黄色に着色し
、この着色は自然光下曝露放置で6ケ月経過後も不変で
あった。これは、照射X線の波長域および強度が管球X
線源とシンクロトロン放射光とで異なることによるもの
と考えられる。 比較例 3 KBrの単結晶に管球X線照射を行った場合の結果は第
1表試料−29に示す通りで、照射により濃い青色の着
色を示したが、着色寿命は極めて短く、また、2価金属
元素のドーピングによっても着色寿命の改善は認められ
なかった。 比較例 4 KIの単結晶に管球X線照射を施した場合(試料&3G
)、淡緑色の着色が認められた。この着色は約4分で退
色するが、あとに淡褐色の着色が残留した。この着色は
自然光下に3ケ月間曝露しても退色しなかった。この着
色はX線照射によりKlが分解して生じた遊離ヨウ素に
よるものと思われる。 比較例 5 CsBrの単結晶に管球X線照射を施した場合(試料虱
31)、淡水色の着色が認められたが、この着色は淡く
、また、着色寿命も極めて短かかった。 以下余白 第 表 〔発明の効果〕 以上述べてきたように、放射線照射表示用組成物を本発
明組成の組成物とすること、すなわち適切な範囲の量の
2価金属元素、特にCa、をドープしたKCfiあるい
はNaC1の単結晶あるいは多結晶からなる組成物とす
ること、によって、10’〜10’radという中程度
の放射線量の照射によって明瞭に着色し、しかも、通常
の取扱い時間に耐える着色寿命を示す優れた性能の放射
線照射表示用組成物を提供することができた。該組成物
を用いることによって、放射線被照射体について、放射
線が照射されたものであることを一目して容易に認知す
ることができる。 なお、放射線照射後試料を遮光状態で保管することによ
って着色状態をより長時間にわたって保持することがで
きるので、該組成物の広範囲な分野への応用が期待でき
る。 代理人弁理士  中・村 純之助
[Examples] The content of the present invention will be explained in more detail below using Examples. Here, in the following explanation, mo indicating the doping amount is
The number Q% indicates the ratio of the 1oQe number of the doping element to the total v*oQ,e number of the alkali halide and doping element in percentage (%). The single crystals or polycrystals used in the Examples were obtained by first melting each composition at a high temperature, then slowly cooling it to room temperature over a period of 7 days, or rapidly cooling one product overnight. Regarding X-ray irradiation, a tube-type X-ray generator with W as the target material is used as the X-ray source, and a tube voltage of 1
Generate X-rays under the conditions of 50kV and tube current of 201IA,
For the purpose of cutting long wavelength components, a 1-thick aluminum plate was inserted between the source and the irradiated sample, and the dose was 3000 r.
Irradiation was continued until ad. Hereinafter, the case where X-ray irradiation is performed under the above conditions will be referred to as tube X-ray irradiation. Note that to measure the irradiation dose, an air ionization-type generated ion amount measuring instrument was used that had been calibrated in advance for the relationship between the irradiation dose and the amount of generated ions. Table 1 shows the lifespan of coloring when various crystal samples were exposed to natural light after being irradiated with tube X-rays, and the lifespan of coloring was measured as follows. In other words, the irradiated sample was placed in a room with natural light from 8:00 am until 1:00 pm.
The sample was left until 6 o'clock, after which the sample was wrapped in M foil and stored to protect it from light.The next day, the sample was unwrapped again and exposed to natural light.The operation was repeated until the color completely faded.The total time of exposure to natural light was repeated. This is shown below. Example I First, the results of the coloring life after tube X-ray irradiation for crystal samples of KCa and KCQ doped with divalent metal elements are shown.
Samples Nα] to 11 in the table are shown. These results show that the color life can be improved by doping KCfi with divalent metal elements, especially Ca
In the case of elemental doping, there is a remarkable dependence on the doping amount, especially when the Ca element doping amount is I
It is known that it has a long life of 14,400 minutes (10 days) when it is closed at 9%. In addition, when the sample was stored under light-shielding conditions, it was found that the color did not completely fade even after 120 days. Note that when the doping amount of Ca element was 5 mo12%, uniform dispersion of the doping agent was not obtained, resulting in cloudy crystals. From this result, the preferred range for Ca element doping is 1 x 10-
”~1vroQ%. On the other hand, the combination doping of Ca element and Mg element KCa
For each sample, I x 10""so 9%
, 9 x 10-"no 9%, the coloring life was equivalent to that of sample Ha 3. In addition, in the above combination doping, Ca
element and Mg element each in 5 x 10-”ago
When 9% each was added, the coloring life was almost the same as that of sample Nα5. This result shows that in the case of doping with a combination of divalent metals, the effect of the component elements effective in prolonging the lifespan among the doping elements is more dominant on the coloring life, and the addition of other divalent metal elements is more dominant. This indicates that there is almost no disturbing influence. In addition, the above-mentioned Ca element doping amount I
When a 9% KCa sample was irradiated with an electron beam of 3000 rad at an acceleration voltage of 2 MV and a beam current of 5 mA, the coloring life when left indoors under light shielding was the same as that of the X-ray irradiated sample, and the result was 120 days or more. . Example 2 Samples Nα12 to Nα21 in Table 1 show the results of coloring life after irradiation with xg tube for crystal samples in which NaCQ and NaCn were doped with a divalent metal element. From this result, as in the case of KCII shown in Example 1, the effect of improving the coloring life by doping with a divalent metal element is recognized. However, as seen in the results of samples Nα13 to Nα17, when doping with Ca element, the dependence on the doping amount is small, and the life time is limited to about 4 hours at maximum. The preferred range for Ca element doping is judged to be in the range of 1X10-'' to I1109%, as in Example 1. Regarding the combined doping of divalent metals, the preferred range in Example 1 is as follows. The same results as in Example 1 were obtained.Example 3 Coloring of NaBr and crystal samples of NaBr doped with divalent metal elements after tube X-ray irradiation The life results are shown in samples &22 to 26 in Table 1. From these results, in the case of NaBr, the effect of improving the coloring life by doping with divalent metal elements is generally small;
Only a slight improvement is observed when doping I X 10-"so 0%. Comparative Example I X 10""vao 0% doped KCfl single crystal with ICa element is about 10 'X of double strength
When irradiated with synchrotron radiation, which generates radiation, for about 1 minute, only the surface of the sample was colored purple (in the case of tube X-rays, the inside of the sample was also colored), but this coloring could be removed by leaving it exposed to natural light. However, no discoloration was observed for more than 6 months. Comparative Example 2 When single crystals of LiF and LiC11 were irradiated with tube X-rays, the results were as shown in Table 1 Sample &27.28.
No coloration was observed. This is thought to be due to the small sensitivity of the sample to the X-ray wavelength range generated by the tube X-ray source. Incidentally, when a LiF single crystal was irradiated with synchrotron radiation for 2 minutes, the inside of the crystal was colored yellow, and this coloring remained unchanged even after 6 months of exposure under natural light. This means that the wavelength range and intensity of the irradiated X-rays are
This is thought to be due to the difference between the radiation source and the synchrotron radiation. Comparative Example 3 When a single crystal of KBr was irradiated with tube X-rays, the results were as shown in Table 1, Sample-29. Although the irradiation showed deep blue coloring, the coloring life was extremely short, and No improvement in coloring life was observed even by doping with divalent metal elements. Comparative Example 4 When tube X-ray irradiation is applied to a single crystal of KI (sample & 3G
), pale green coloration was observed. This coloring faded in about 4 minutes, but a light brown color remained behind. This color did not fade even after being exposed to natural light for 3 months. This coloring is thought to be due to free iodine generated by decomposition of Kl by X-ray irradiation. Comparative Example 5 When CsBr single crystal was subjected to tube X-ray irradiation (sample #31), freshwater coloration was observed, but this coloration was pale and the coloring life was extremely short. The following is a blank table [Effects of the Invention] As described above, the composition for radiation irradiation display is made into a composition of the present invention, that is, it is doped with a divalent metal element, particularly Ca, in an amount within an appropriate range. By creating a composition consisting of a single crystal or polycrystal of KCfi or NaC1, it is clearly colored by irradiation with a moderate radiation dose of 10' to 10' rad, and has a coloring life that can withstand normal handling time. It was possible to provide a radiation irradiation display composition exhibiting excellent performance. By using the composition, it is possible to easily recognize at a glance that a radiation irradiated object has been irradiated with radiation. Note that by storing the sample in a light-shielded state after irradiation, the colored state can be maintained for a longer period of time, so the composition can be expected to be applied in a wide range of fields. Representative Patent Attorney Junnosuke Nakamura

Claims (1)

【特許請求の範囲】 1、ドーピング元素としてカルシウム(Ca)を1×1
0^−^2mol%から1mol%の範囲で配合した塩
化カリウム(KCl)の単結晶あるいは多結晶からなる
ことを特徴とする放射線照射表示用組成物。 2、ドーピング元素としてCaを1×10^−^2mo
l%から1mol%の範囲で配合した塩化ナトリウム(
NaCl)の単結晶あるいは多結晶からなることを特徴
とする放射線照射表示用組成物。 3、ドーピング成分としてCaと他の2価金属元素との
組合せを用いる配合において、ドーピング成分の全配合
量が1×10^−^2mol%から1mol%の範囲で
、かつ、Caを少なくとも1×10^−^2%以上含む
ように配合したにKClの単結晶あるいは多結晶からな
ることを特徴とする放射線照射表示用組成物。 4、ドーピング成分としてCaと他の2価金属元素との
組合せを用いる配合において、ドーピング成分の全配合
量が1×10^−^2mol%から1mol%の範囲で
、かつ、Caを少なくとも1×10^−^2mol%以
上含むように配合したNaClの単結晶あるいは多結晶
からなることを特徴とする放射線照射表示用組成物。
[Claims] 1. Calcium (Ca) as a doping element 1×1
A radiation irradiation display composition characterized by comprising a single crystal or polycrystal of potassium chloride (KCl) blended in a range of 0^-^2 mol% to 1 mol%. 2. 1×10^-^2mo of Ca as a doping element
Sodium chloride blended in the range of 1% to 1mol% (
1. A radiation irradiation display composition comprising a single crystal or polycrystal of NaCl. 3. In a formulation using a combination of Ca and other divalent metal elements as a doping component, the total blending amount of the doping component is in the range of 1×10^-^2 mol% to 1 mol%, and Ca is at least 1× 1. A radiation irradiation display composition comprising a single crystal or polycrystalline KCl containing 10^-^2% or more. 4. In a formulation using a combination of Ca and other divalent metal elements as a doping component, the total blending amount of the doping component is in the range of 1×10^-^2 mol% to 1 mol%, and Ca is at least 1× A radiation irradiation display composition comprising a single crystal or polycrystal of NaCl blended to contain 10^-^2 mol% or more.
JP2199989A 1989-01-31 1989-01-31 Composition for display by radiation exposure Granted JPH02201440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2199989A JPH02201440A (en) 1989-01-31 1989-01-31 Composition for display by radiation exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199989A JPH02201440A (en) 1989-01-31 1989-01-31 Composition for display by radiation exposure

Publications (2)

Publication Number Publication Date
JPH02201440A true JPH02201440A (en) 1990-08-09
JPH0545935B2 JPH0545935B2 (en) 1993-07-12

Family

ID=12070718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199989A Granted JPH02201440A (en) 1989-01-31 1989-01-31 Composition for display by radiation exposure

Country Status (1)

Country Link
JP (1) JPH02201440A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406914B1 (en) 1999-03-31 2002-06-18 Nichiyu Giken Kogyo Co., Ltd. Radiation exposure dose-history indicator
JP2011157457A (en) * 2010-01-29 2011-08-18 Chichibu Fuji Co Ltd Neutron beam-detecting material, method of manufacturing the same, and neutron beam detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031450A (en) * 1973-07-20 1975-03-27
JPS5031824A (en) * 1973-07-19 1975-03-28
JPS543610A (en) * 1977-06-09 1979-01-11 Honda Motor Co Ltd Pre.treatment of plasma jet of cylinder for internal combustion engine
JPS58171033A (en) * 1982-02-11 1983-10-07 エブレカ・インコ−ポレイテツド Photosensitive composition and manufacture thereof
JPS62112020A (en) * 1985-11-11 1987-05-23 Shiseido Co Ltd Ultraviolet ray sensitive composition and element for measuring ultraviolet ray dose

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031824A (en) * 1973-07-19 1975-03-28
JPS5031450A (en) * 1973-07-20 1975-03-27
JPS543610A (en) * 1977-06-09 1979-01-11 Honda Motor Co Ltd Pre.treatment of plasma jet of cylinder for internal combustion engine
JPS58171033A (en) * 1982-02-11 1983-10-07 エブレカ・インコ−ポレイテツド Photosensitive composition and manufacture thereof
JPS62112020A (en) * 1985-11-11 1987-05-23 Shiseido Co Ltd Ultraviolet ray sensitive composition and element for measuring ultraviolet ray dose

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406914B1 (en) 1999-03-31 2002-06-18 Nichiyu Giken Kogyo Co., Ltd. Radiation exposure dose-history indicator
JP2011157457A (en) * 2010-01-29 2011-08-18 Chichibu Fuji Co Ltd Neutron beam-detecting material, method of manufacturing the same, and neutron beam detector

Also Published As

Publication number Publication date
JPH0545935B2 (en) 1993-07-12

Similar Documents

Publication Publication Date Title
Merz et al. Charge conversion of irradiated rare-earth ions in calcium fluoride. I
Kwiatos et al. Tetrazolium salts-Pluronic F-127 gels for 3D radiotherapy dosimetry
KR20190005896A (en) Synthetic materials for detecting ultraviolet radiation and / or X-ray radiation
Daniel et al. Irradiation effect on luminescence properties of fluoroperovskite single crystal (LiBaF3: Eu2+)
Crawford et al. Photostimulable phosphors for X-ray imaging: applications and mechanism
Depci et al. The thermoluminescent properties of lithium triborate (LiB3O5) activated by aluminium
Oliveira et al. A new luminescent material based on CaB6O10: Pb to detect radiation
Yang et al. Fiber optic plate coupled Pb-free perovskite x-ray camera featuring low-dose-rate imaging toward dental diagnosis
JPH02201440A (en) Composition for display by radiation exposure
Atari et al. Lyoluminescence as a possible basis of radiation dosimetry
Hersh Studies of color centers in polycrystalline compressed pellets of alkali halides
US3294700A (en) Phosphate glass for the dosimetry of x-and gamma-rays
CA2457868A1 (en) Stable radiochromic dosimetry film and process
Arnikar et al. Aquoluminescence from γ‐Irradiated Alkali Halides. II. Spectral Analysis and Effect of p H of the Medium
Ovechkina et al. Multiple doping of CsI: Tl crystals and its effect on afterglow
Davidson et al. Defect clusters and thermoluminescence in LiF crystals
CA3223398A1 (en) A method for determining an amount of radiation
Jain et al. Optical and thermoluminescence studies in X-irradiated additively coloured KCl crystals
Ravikumar et al. Spectral and thermoluminescence characteristics of high gamma dose irradiated Dy: LiKB4O7 single crystals
JPH0512672B2 (en)
Muthe et al. Melt processing of alumina in graphite ambient for dosimetric applications
US3714057A (en) Iodide activated thallium chloride scintillator
Torardi et al. Structure and luminescence of Ba2WO3F4
Gedam et al. Luminescence and evaluation of trapping parameters in NaMgSO4Cl: X (X= Cu or Ce) phosphor
Kalkar Lyoluminescence from gamma-irradiated NaCl

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees