JPH02201227A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH02201227A
JPH02201227A JP1021137A JP2113789A JPH02201227A JP H02201227 A JPH02201227 A JP H02201227A JP 1021137 A JP1021137 A JP 1021137A JP 2113789 A JP2113789 A JP 2113789A JP H02201227 A JPH02201227 A JP H02201227A
Authority
JP
Japan
Prior art keywords
input
gas
infrared detector
output pin
dewar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1021137A
Other languages
Japanese (ja)
Inventor
Hiroyasu Otani
大谷 博康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1021137A priority Critical patent/JPH02201227A/en
Publication of JPH02201227A publication Critical patent/JPH02201227A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To achieve a smaller size of the apparatus by mounting a heat radiation fin on an input/output pin mounted on a Dewar vessel to cool the heat radiation fin by a cooling means. CONSTITUTION:A high pressure gas 8 with the same temperature as atm. is supplied to a mini cooler 7 and released from an orifice 9 at the tip thereof, when the gas lowers to a liquefaction temperature by a Joule Thomson effect to be liquefied. The liquefied gas 10 deprive heat of an inner top to be vaporized and as a result, an infrared detector 3 mounted on the inner top is cooled. The gas vaporized passes between radiation fins 12 mount on an input/output pin 5 and jetted out behind an inner Dewar vessel 2 in heat exchange with a high pressure gas 8 coming anew to be released into atmospheric air. This allows an input/output pin 5 to approach the infrared detector 3 thereby achieving a smaller size of the apparatus.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、赤外線検知器の冷却手段を備えた赤外線検知
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared detection device equipped with cooling means for the infrared detector.

[従来の技術] 従来から、赤外線検知装置として第2図に示すものが知
られている。
[Prior Art] Conventionally, an infrared detection device shown in FIG. 2 has been known.

即ち、一端が開口された有底筒状のアウタデユワ1及び
インナデユワ2は、同軸的に配置されて両者の間に真空
断熱層を形成している。この真空断熱層の内部の前記イ
ンナデユワ2の底面(インナトップ2a)には、赤外線
検知器3が固定されている。この赤外線検知器3の赤外
線検知面と対向するアウタデユワ1の底部には、赤外線
入射窓4が取り付けられている。インナデユワ2の開口
側は、外側に折り返した構造を有し、この折り返し部分
には、一端が前記真空断熱層に位置し他端が前記インナ
デユワ2の外部に位置するように複数の入出力ピン5が
装着されている。これら入出力ピン5の一端と赤外線検
知器3とは、リード線6によって電気的に接続されてい
る。また、インナデユワ2には、その開口部側からミニ
クーラ7が装着されている。
That is, the outer deflector 1 and the inner deflector 2, each having a cylindrical shape with an open end and a bottom, are arranged coaxially to form a vacuum heat insulating layer therebetween. An infrared detector 3 is fixed to the bottom surface (inner top 2a) of the inner tube 2 inside the vacuum heat insulating layer. An infrared entrance window 4 is attached to the bottom of the outer duplex 1 facing the infrared detection surface of the infrared detector 3. The opening side of the inner deck 2 has a structure that is folded back to the outside, and this folded portion has a plurality of input/output pins 5 such that one end is located in the vacuum insulation layer and the other end is located outside the inner deck 2. is installed. One end of these input/output pins 5 and the infrared detector 3 are electrically connected by a lead wire 6. Further, a mini-cooler 7 is attached to the inner deck 2 from the opening side thereof.

このように構成された赤外線検知装置では、アウタデユ
ワ1とインナデユワ2とで構成された真空断熱層で赤外
線検知器3への外部からの熱侵入が防止される。更に、
高圧ガス8をミニクーラ7の後部から導入し、ミニクー
ラ7の先端に設けられたオリフィス9から吐出させるこ
とにより、ジュール・トムソン効果でガスを液化し、こ
の液化ガス10をインナデユワ2の底部に吹き付けるこ
とによりインナデユワ2を介して赤外線検知器3を冷却
する。そして、赤外線検知器3と熱交換された液化ガス
10は、噴出ガス11としてインナデユワ2の開口部か
ら外部に排出される。
In the infrared detector configured in this manner, the vacuum heat insulating layer composed of the outer deflector 1 and the inner deflector 2 prevents heat from entering the infrared detector 3 from the outside. Furthermore,
High-pressure gas 8 is introduced from the rear of the mini-cooler 7 and discharged from an orifice 9 provided at the tip of the mini-cooler 7 to liquefy the gas by the Joule-Thomson effect, and this liquefied gas 10 is sprayed onto the bottom of the inner deck 2. The infrared detector 3 is cooled via the inner dew 2. The liquefied gas 10 that has undergone heat exchange with the infrared detector 3 is discharged to the outside from the opening of the inner tube 2 as a blown gas 11.

[発明が解決しようとする課題] しかしながら、上述した従来の赤外線検知装置では、装
置の超小型化を図った場合、インナデユワ2に取付られ
な入出力ピン5と赤外線検知器3との距離が短くなり、
入出力ピン5から流入する熱が無視できなくなるという
問題点があった。特に、画像用の赤外線検知器の場合、
入出力ピンの数が極めて多いため、上記の熱侵入はより
深刻な問題であった。
[Problems to be Solved by the Invention] However, in the conventional infrared detection device described above, when the device is miniaturized, the distance between the input/output pin 5, which is not attached to the inner duplexer 2, and the infrared detector 3 is short. Become,
There was a problem in that the heat flowing in from the input/output pin 5 could no longer be ignored. Especially for infrared detectors for imaging.
Due to the extremely large number of input/output pins, the above heat intrusion was a more serious problem.

本発明はかかる問題点に鑑みてなされたものであって、
入出力ピンからの熱侵入を防止して超小型化を図ること
が可能な赤外線検知装置を提供することを目的とする。
The present invention has been made in view of such problems, and includes:
It is an object of the present invention to provide an infrared detection device that can be miniaturized by preventing heat from entering through input/output pins.

[課題を解決するための手段] 本発明に係る赤外線検知装置は、一端が開口された有底
筒状の外側部材及び内部部材を同軸的に配置して両者の
間に真空断熱層を形成するデユワと、前記真空断熱層の
内部の前記内側部材に接触する位置に配置された赤外線
検知器と、前記デユワに挿着され一端が前記真空断熱層
に位置し他端が前記デユワの外部に位置する複数の入出
力ピンと、これら入出力ピンの前記一端と前記赤外線検
知器とを接続するリード線と、前記デユワに挿入されて
前記内側部材を冷却する冷却装置とを備えた赤外線検知
装置において、前記入出力ピンに装着され一部が前記冷
却装置によって冷却される放熱フィンを備えたことを特
徴とする。
[Means for Solving the Problems] An infrared detection device according to the present invention has an outer member and an inner member that are shaped like a bottomed cylinder with an open end and are coaxially disposed to form a vacuum heat insulating layer between the two. a deyuwa; an infrared detector disposed inside the vacuum insulation layer at a position in contact with the inner member; and an infrared detector inserted into the deyuwa so that one end is located in the vacuum insulation layer and the other end is located outside the deyuwa. an infrared detection device comprising a plurality of input/output pins, a lead wire connecting the one end of these input/output pins to the infrared detector, and a cooling device inserted into the dewar to cool the inner member, The invention is characterized in that it includes a radiation fin attached to the input/output pin and a part of which is cooled by the cooling device.

[作用] 本発明によれば、入出力ピンに放熱フィンが装着され、
この放熱フィンの一部が冷却装置によって冷却されるの
で、入出力ピンの熱は、この放熱フィンを介して放出さ
れる。従って、入出力ピンと赤外線検知器との距離を近
付けることができ、装置の超小型化を図ることが可能に
なる。
[Function] According to the present invention, a radiation fin is attached to the input/output pin,
Since a portion of this radiation fin is cooled by the cooling device, the heat of the input/output pin is radiated through this radiation fin. Therefore, the distance between the input/output pin and the infrared detector can be reduced, and the device can be miniaturized.

[実施例] 以下、添付の図面を参照して本発明の実施例について説
明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の実施例に係る赤外線検知装置の構成を
示す図である。なお、第1図において第2図と同一物に
は同一符号を付し、重複する部分の説明は省略する。
FIG. 1 is a diagram showing the configuration of an infrared detection device according to an embodiment of the present invention. In FIG. 1, the same parts as in FIG. 2 are designated by the same reference numerals, and explanations of overlapping parts will be omitted.

この装置が第2図に示した従来の装置と異なる点は、入
出力ピン5に放熱フィン12が装着されている点である
。この放熱フィン12は、一端がインナデユワ2のミニ
クーラ7の挿入口近傍まで延びており、この一端が噴出
ガス11によって冷却されるものとなっている。
This device differs from the conventional device shown in FIG. 2 in that a radiation fin 12 is attached to the input/output pin 5. One end of the heat radiation fin 12 extends to the vicinity of the insertion opening of the mini-cooler 7 in the inner deck 2, and this one end is cooled by the ejected gas 11.

次に、このように構成された赤外線検知装置の動作につ
いて説明する。
Next, the operation of the infrared detection device configured as described above will be explained.

大気圧と同じ温度T^の高圧ガス8はミニクーラ7に供
給され、その先端にあるオリフィス9から放出される。
High-pressure gas 8 having the same temperature T^ as the atmospheric pressure is supplied to the mini-cooler 7, and is discharged from an orifice 9 at the tip of the mini-cooler 7.

このとき、ジュール・トムソン効果により、ガスが液化
温度TLまで低下して液化される。ガスが窒素の場合に
は、この液化温度TLは774にである。この液化ガス
10はインナトップ2aから熱を奪い、気化される。こ
の結果、インナトップ2aに実装されている赤外線検知
器3が冷却される。気化したガスは、ミニクーラ7につ
いては放熱フィンの間を通り、新たに入ってくる高圧ガ
ス8を熱交換しながらインナデユワ2の後方に噴出され
て大気に放出される。このとき、気化したガスと高圧ガ
ス8との間で100%の熱交換が行われれば、放出され
るガス温度はT^となるが、一般には熱交換率は約98
%のため、噴出ガス11は大気温度T^より十分に低い
ガス温度のまま大気に放出される。それ故、この噴出ガ
ス11を入出力ピン5に取り付けた放熱フィン12に吹
き付けるようにすれば、入出力ピン5からインナトップ
2bへの熱流入が低減される。
At this time, due to the Joule-Thomson effect, the gas is lowered to the liquefaction temperature TL and liquefied. If the gas is nitrogen, this liquefaction temperature TL is 774. This liquefied gas 10 removes heat from the inner top 2a and is vaporized. As a result, the infrared detector 3 mounted on the inner top 2a is cooled. The vaporized gas passes between the radiating fins of the mini-cooler 7, and while exchanging heat with the newly incoming high-pressure gas 8, is ejected to the rear of the inner tank 2 and released into the atmosphere. At this time, if 100% heat exchange is performed between the vaporized gas and the high pressure gas 8, the temperature of the released gas will be T^, but generally the heat exchange rate is about 98
%, the ejected gas 11 is released into the atmosphere at a gas temperature that is sufficiently lower than the atmospheric temperature T^. Therefore, by blowing this ejected gas 11 onto the radiation fins 12 attached to the input/output pins 5, the heat flow from the input/output pins 5 to the inner top 2b is reduced.

[発明の効果] 以上説明したように、本発明はデユワに取り付けられた
入出力ピンに放熱フィンを取り付け、この放熱フィンを
冷却手段で冷却することにより、入出力ピンから赤外線
検知器への熱流入を低減することができる。この結果、
画像用に多数の入出力ピンを備えた赤外線検知装置の超
小型化を図ることができる。
[Effects of the Invention] As explained above, the present invention attaches heat radiation fins to the input/output pins attached to the dewar, and cools the radiation fins with a cooling means, thereby reducing heat from the input/output pins to the infrared detector. Inflow can be reduced. As a result,
An infrared detection device equipped with a large number of input/output pins for images can be miniaturized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る赤外線検知装置の縦断面
図、第2図は従来の赤外線検知装置の縦断面図である。 1;アウタデユワ、2;インナデユワ、3;赤外線検知
器、4;赤外線入射窓、5;入出力ピン、6;リード線
、7;ミニクーラ、8;高圧ガス、9;オリフィス、1
0;液化ガス、11;噴出ガス、12;放熱フィン
FIG. 1 is a longitudinal sectional view of an infrared detection device according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a conventional infrared detection device. 1; Outer valve, 2; Inner valve, 3; Infrared detector, 4; Infrared incidence window, 5; Input/output pin, 6; Lead wire, 7; Mini cooler, 8; High pressure gas, 9; Orifice, 1
0; Liquefied gas, 11; Blowing gas, 12; Radiation fin

Claims (1)

【特許請求の範囲】[Claims] (1)一端が開口された有底筒状の外側部材及び内部部
材を同軸的に配置して両者の間に真空断熱層を形成する
デュワと、前記真空断熱層の内部の前記内側部材に接触
する位置に配置された赤外線検知器と、前記デュワに挿
着され一端が前記真空断熱層に位置し他端が前記デュワ
の外部に位置する複数の入出力ピンと、これら入出力ピ
ンの前記一端と前記赤外線検知器とを接続するリード線
と、前記デュワに挿入されて前記内側部材を冷却する冷
却装置とを備えた赤外線検知装置において、前記入出力
ピンに装着され一部が前記冷却装置によって冷却される
放熱フィンを備えたことを特徴とする赤外線検知装置。
(1) A dewar in which a bottomed cylindrical outer member with an open end and an inner member are arranged coaxially to form a vacuum heat insulating layer between the two, and a dewar contacts the inner member inside the vacuum heat insulating layer. a plurality of input/output pins inserted into the dewar and having one end located in the vacuum insulation layer and the other end located outside the dewar; and the one end of the input/output pins An infrared detection device comprising a lead wire connecting the infrared detector and a cooling device inserted into the dewar to cool the inner member, the infrared detection device being attached to the input/output pin and partially cooled by the cooling device. An infrared detection device characterized by being equipped with a heat dissipation fin.
JP1021137A 1989-01-31 1989-01-31 Infrared detector Pending JPH02201227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1021137A JPH02201227A (en) 1989-01-31 1989-01-31 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1021137A JPH02201227A (en) 1989-01-31 1989-01-31 Infrared detector

Publications (1)

Publication Number Publication Date
JPH02201227A true JPH02201227A (en) 1990-08-09

Family

ID=12046511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1021137A Pending JPH02201227A (en) 1989-01-31 1989-01-31 Infrared detector

Country Status (1)

Country Link
JP (1) JPH02201227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090241591A1 (en) * 2005-09-26 2009-10-01 Takao Hara Heat converter for condensation and refrigeration system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090241591A1 (en) * 2005-09-26 2009-10-01 Takao Hara Heat converter for condensation and refrigeration system using the same
US8746007B2 (en) * 2005-09-26 2014-06-10 Takao Hara Heat converter for condensation and refrigeration system using the same

Similar Documents

Publication Publication Date Title
US5371369A (en) Conformal cold baffle for optical imaging systems
AU636812B2 (en) Rapid cooldown dewar
JPH02201227A (en) Infrared detector
JPH08330350A (en) Wire bonding device
US20070000260A1 (en) Cooling apparatus
JPH0760118B2 (en) Infrared detector
JP2001147161A (en) Ir detector device
US5598711A (en) Fluid deflection method using a skirt
US7253396B2 (en) Cooled photodetector
JPH08101062A (en) Infrared detector
US5592822A (en) Fluid deflection skirt apparatus
US4810888A (en) Electrostatic shield for cryostat dewar
JPH0749266A (en) Infrared detector
US20240118132A1 (en) System for detecting electromagnetic radiation and cooling method
US20060061996A1 (en) Air flow channel
TWI826886B (en) Heat exchange device and cooling system thereof
JP2811890B2 (en) MIP cooling system
JPH0648361Y2 (en) Infrared detector
JP2630009B2 (en) Diffusion processing equipment
JPH05102361A (en) Cooling structure for semiconductor device
JPH079957B2 (en) Semiconductor element cooling device
JPH0514857U (en) Infrared detector
JPH02260446A (en) Cooling apparatus
JPH0618256Y2 (en) Infrared detector
JPH03101155A (en) Cooling apparatus for semiconductor element