JPH02200755A - Metallic material for hydrogen occlusion - Google Patents

Metallic material for hydrogen occlusion

Info

Publication number
JPH02200755A
JPH02200755A JP1969389A JP1969389A JPH02200755A JP H02200755 A JPH02200755 A JP H02200755A JP 1969389 A JP1969389 A JP 1969389A JP 1969389 A JP1969389 A JP 1969389A JP H02200755 A JPH02200755 A JP H02200755A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen storage
pressure
rem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1969389A
Other languages
Japanese (ja)
Inventor
Taichi Saito
太一 齋藤
Ryoichi Suzuki
良一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1969389A priority Critical patent/JPH02200755A/en
Publication of JPH02200755A publication Critical patent/JPH02200755A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate activating operation and to increase the amount of hydrogen occlusion by incorporating large amounts of rare earth elements to an Fe-Ti alloy and also adding Cu to the above alloy. CONSTITUTION:A metallic material has a composition represented by Fe1-xTiyREMz Cux, where the symbols (x), (y), and (z) stand for, by atomic ratio, 0.01-0.1, 0.90-1.05, and 0.015-0.1, respectively. Further, one or more elements among La, Ce, Pr, Nd, Sm, and Y are used as REM. This metallic material for hydrogen occlusion has superior plateau characteristic and can rapidly occlude hydrogen at <= about 10kg/cm hydrogen pressure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水素を高密度かつ安全に吸蔵・放出しうる水
素吸蔵用金属材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a metal material for hydrogen storage that can store and release hydrogen at high density and safely.

(従来の技術) 近年、水素をある種の金属あるいは合金に吸蔵させて金
属水素化物という形で貯蔵、輸送したり、水素の分離、
精製に利用したり、ヒートポンプ、熱の貯蔵などに利用
する方法が提案されている。
(Prior art) In recent years, hydrogen has been absorbed into certain metals or alloys to be stored and transported in the form of metal hydrides, hydrogen separation,
Methods have been proposed for its use in purification, heat pumps, and heat storage.

この金属水素化物をつくる合金としてはLaNi   
CaNi5.Mg2Ni、FeTiなどが代表的である
。そのなかで、FeTi合金は安価で水素吸蔵量も多く
、最も大きな期待が寄せられている。
The alloy that makes this metal hydride is LaNi.
CaNi5. Typical examples include Mg2Ni and FeTi. Among these, FeTi alloy is inexpensive and has a large hydrogen storage capacity, and has the highest expectations.

しかし、FeTi合金は活性化処理(水素を最初に合金
に吸わせる操作)に高温(400℃)、高圧(an気圧
)、長時間(1週間程度)を要することが知られていた
However, it has been known that activation treatment (operation of first absorbing hydrogen into the alloy) for FeTi alloys requires high temperature (400° C.), high pressure (an atmospheric pressure), and long time (about one week).

本発明者らは、先に活性化処理を容易にしたFeTiM
rn系水素吸蔵用全水素吸蔵用金属材料特公昭61−0
4.7216号公報)。Manとは、希土類元素を表し
、La、Co、Pr、Nd、S*、Yなどの単体で用い
られることもあるが、多くは混合物で、一般的にCeが
約50%、Laが約30%、Ndが約15%、Prが約
4%、他約1%の混合物(ミツシュメタル)であり、前
述の混合物とじて合金に添加さイ・することが多い。
The present inventors previously demonstrated that FeTiM, which facilitated the activation process,
Special Publication of Metal Materials for Total Hydrogen Storage for RN-based Hydrogen Storage 1986-0
4.7216). Man stands for a rare earth element, and is sometimes used alone, such as La, Co, Pr, Nd, S*, Y, etc., but is often used as a mixture, generally containing about 50% Ce and about 30% La. %, about 15% Nd, about 4% Pr, and about 1% other substances (mitshu metal), and is often added to the alloy as the aforementioned mixture.

前記F e T I Mrn系水素吸蔵用金属材料は、
T1をFaに対して原子数比でl)、9〜i、05、M
IG F eに対し、て原子数比で0.015〜O」か
らなる組成である。
The F e T I Mrn-based hydrogen storage metal material is
The atomic ratio of T1 to Fa is l), 9~i, 05, M
The composition has an atomic ratio of 0.015 to 0 with respect to IG Fe.

この合金は、室温で2.5〜7時間と非常に迅速に活性
化でき、さらに水素吸蔵量、プラトー性も良好である。
This alloy can be activated very quickly in 2.5 to 7 hours at room temperature, and also has good hydrogen storage capacity and plateau properties.

一方で、FeTi合金と同じく、常温では10kg/e
−程度の水素吸蔵平衡圧であるため、常温で10kg/
e−程度の水素圧で迅速に水素吸蔵を行うのは困難であ
った。
On the other hand, like the FeTi alloy, the weight is 10 kg/e at room temperature.
Since the hydrogen storage equilibrium pressure is about -, 10kg/
It was difficult to rapidly store hydrogen at a hydrogen pressure of about e-.

水素吸蔵合金を用いた水素貯蔵容器にかかる水素圧力が
10kg/cd以上となると、法律的に種々の制約があ
り、II)kg/c−未満の水素圧力で使用される容器
及びそれを用いたシステムでは、制約が少なくなる。こ
のため、より低い水素圧力で迅速な水素吸蔵が可能であ
るFeTiMrr+系水素吸蔵合金が求められていた。
When the hydrogen pressure applied to a hydrogen storage container using a hydrogen storage alloy exceeds 10 kg/cd, there are various legal restrictions. The system has fewer constraints. For this reason, there has been a demand for a FeTiMrr+ hydrogen storage alloy that is capable of quickly storing hydrogen at lower hydrogen pressures.

(発明が解決しようとする課題) 本発明は、上記の点に鑑みてなされたもので、その目的
は、活性化操作が容易で、安価であり、水素吸蔵量が大
きく、プラトー性に優れ、常温で10kl(/eシ以下
の水素圧で迅速に水素吸蔵が可能な、水素吸蔵用金属材
料を提供するものである。
(Problems to be Solved by the Invention) The present invention has been made in view of the above points, and its objectives are to provide an easy activation operation, low cost, large hydrogen storage capacity, excellent plateau property, and The present invention provides a metal material for hydrogen storage that is capable of rapidly storing hydrogen at a hydrogen pressure of 10 kl (/e) or less at room temperature.

(課題を解決するための手段) 本発明は、FeTt合金にLa、Ce、Pr。(Means for solving problems) In the present invention, La, Ce, and Pr are added to the FeTt alloy.

Nd、S膳、Yなどの希土類元素(REM)を多量含有
させたうえに、Cuを添加することが、水素吸蔵時の水
素圧をFげることに有効であることを見いだし、これを
もとに開発された水素吸蔵用金属材料である。
We found that adding Cu in addition to containing a large amount of rare earth elements (REM) such as Nd, S, and Y was effective in increasing the hydrogen pressure during hydrogen storage, and we also This is a metal material for hydrogen storage developed in

すなわち本発明は、F e 1−xT j yRE M
 z Cu 。
That is, the present invention provides F e 1-xT j yRE M
zCu.

(式中、x、  y、  zは何れも原子数比で、0、
旧≦x≦0.1.0.90≦y≦1.05、REMは希
土類元素で0.01015≦z≦0.1である。)で表
わされる組成の水素吸蔵用金属材料である。
(In the formula, x, y, z are all atomic ratios, 0,
Old≦x≦0.1.0.90≦y≦1.05, REM is a rare earth element and 0.01015≦z≦0.1. ) is a hydrogen storage metal material with a composition represented by:

本発明の水素吸蔵用金属材料は、活性化操作が容易で、
安価であり、lokg/c−以下の水素圧で迅速に水素
吸蔵が可能であるうえに、更に水素吸蔵量が大きく、プ
ラトー性にも優れている。
The hydrogen storage metal material of the present invention is easy to activate,
In addition to being inexpensive and capable of rapidly storing hydrogen at a hydrogen pressure of 100 kg/c- or lower, it also has a large hydrogen storage capacity and excellent plateau properties.

本発明の水素吸蔵用金属材料におけるREM含有量、2
と活性化性能との関係を第1図に示す。
REM content in the metal material for hydrogen storage of the present invention, 2
Figure 1 shows the relationship between the activation performance and the activation performance.

縦軸は、水素圧10kg/c−で24時間以内に活性化
できるための処理温度、横軸は2の値(REM/(Fe
+Cu)の原子数比)である。
The vertical axis is the processing temperature for activation within 24 hours at a hydrogen pressure of 10 kg/c-, and the horizontal axis is the value of 2 (REM/(Fe
+Cu) atomic ratio).

尚第1図では、基本的な合金の成分としては、Fe[)
、9g” ’ 1.OQREMz cuQ、02を用い
た・zの値が0.02以上ではいずれも室温で活性化で
きるのに対して、0.侃5では50℃、0.(112で
は80℃以上を必要とした。
In Figure 1, the basic alloy components are Fe[)
,9g''' 1.OQREMz cuQ,02 can be activated at room temperature when the value of z is 0.02 or higher, whereas it can be activated at 50℃ for 0.5 and 80℃ for 0.(112). More than that was required.

このことから、実用化を考慮した場合には、室温近傍で
活性化できることが望ましいので、2の値は0.015
以上とした。また、2の値が増加するに連れて活性化に
必要な時間は短くなり、活性化性能は向」−するが、0
゜■を超えると、はとんどそれ以上の性能向りが認めら
れないことから上限を0.1 とした。
From this, when considering practical use, it is desirable to be able to activate near room temperature, so the value of 2 is 0.015
That's all. Also, as the value of 2 increases, the time required for activation becomes shorter, and the activation performance improves, but 0
If it exceeds ゜■, no further improvement in performance will be observed, so the upper limit was set at 0.1.

REMとしては、La、Ce、Pr、Nd。REM includes La, Ce, Pr, and Nd.

Ss、Yなどの希土類元素の1種または2種以上を添加
すればよく、希土類元素単体の1種もしくは2種以上を
同時に添加しても、混合物であるミツシュメタル(Ms
)でもよい。特に得られた合金がCeを含む場合は効果
的である。
It is sufficient to add one or more types of rare earth elements such as Ss and Y, and even if one or more types of rare earth elements are added at the same time, it is possible to add Mitsushi metal (Ms) which is a mixture.
) is also fine. This is particularly effective when the obtained alloy contains Ce.

FeTi合金において、Cuを添加することにより、R
EMを添加しなくても活性化性能は多少向上するが、1
0kg/e−の水素圧下においては活性化が起こらない
。活性化を行うためには、30kg/C−程度の水素圧
が必要である。この水素圧下においても、Cu添加m0
.1で、活性化温度は80℃を必要とする。
In FeTi alloy, by adding Cu, R
Although the activation performance is improved somewhat without adding EM, 1
No activation occurs under a hydrogen pressure of 0 kg/e-. For activation, a hydrogen pressure of about 30 kg/C- is required. Even under this hydrogen pressure, Cu addition m0
.. 1, the activation temperature requires 80°C.

これを第2図に示す。This is shown in FIG.

第3図は、TIの含有量すなわぢyの値が、プラトー性
及びプラトーを示す水素吸蔵領域に与える影響を示した
ものである。プラトー性は、以下の式(1)で定義した
FIG. 3 shows the influence of the TI content, i.e., the value of y, on the plateau property and the hydrogen storage region exhibiting the plateau. The plateau property was defined by the following formula (1).

dfIn(Pd)/d(H/M)     (1)P’
 dはプラトー・を示す部分の水素解離圧、(H/M)
は水素吸蔵量を示し、Hは水素原Tの個数、Mは合金原
子の個数を示す。yの値が1.0の場合(FeO,98
” ’ 1.00REMO,05CuO,02)では、
プラトー性が非常に良いのに対して、1.05では幾分
悪くなり、1.10の場合では更に悪化する。
dfIn(Pd)/d(H/M) (1) P'
d is the hydrogen dissociation pressure at the plateau point, (H/M)
represents the hydrogen storage amount, H represents the number of hydrogen atoms T, and M represents the number of alloy atoms. When the value of y is 1.0 (FeO, 98
” ' 1.00REMO, 05CuO, 02),
While the plateau property is very good, it becomes somewhat worse at 1.05 and even worse at 1.10.

この範囲を超えると更に悪くなり、遂にはプラトーが認
められなくなる。
If this range is exceeded, the condition becomes worse, and finally a plateau is no longer observed.

また、yの値が0.90より小さくなると、プラトーを
示す水素吸蔵領域が小さくなる。REMの含有量及びC
uの含有量によって、yの値のプラトー性に及ぼす影響
は多少異なるが、大きな差異は認められなかった。この
ため、yは0.90〜1.05の範囲とした。
Moreover, when the value of y becomes smaller than 0.90, the hydrogen storage region exhibiting a plateau becomes smaller. REM content and C
Although the influence on the plateau property of the y value differed somewhat depending on the content of u, no major difference was observed. Therefore, y was set in the range of 0.90 to 1.05.

Cuの含有ff1xは、水素解離平衡圧力を大きく変化
させる。これを第4図に示す。
The Cu content ff1x greatly changes the hydrogen dissociation equilibrium pressure. This is shown in FIG.

水素解離平衡圧力は、Cu量を原子数比で0.1程度添
加することによって、添加しない場合の115程度に低
下させることができる。常温近傍で10kg/eシ以下
の水素圧で迅速に吸蔵させるためには、合金の水素吸蔵
領域圧がlOttg/c−以下であることが必要である
。このためCu添加量は(Fe+Cu)に対して、原子
数比でo、oi以上必要である。
The hydrogen dissociation equilibrium pressure can be lowered to about 115 when Cu is not added by adding Cu in an atomic ratio of about 0.1. In order to rapidly absorb hydrogen at a hydrogen pressure of 10 kg/e or less at around room temperature, it is necessary that the hydrogen storage region pressure of the alloy is less than 1 Ottg/c. For this reason, the amount of Cu added needs to be at least o, oi in terms of atomic ratio relative to (Fe+Cu).

迅速に水素放出が可能であるためには、5kg/C−程
度の水素平衡放出圧が望まし、く、このためには、合金
を加熱する必要がある。80℃以下の容易に得られる温
度において、5kg/cd程度の水素放出圧を得るため
には、このCu添加量は(Fe→Cu)に対して、原子
数比で0.1以下が望ましい。
In order to be able to rapidly release hydrogen, a hydrogen equilibrium release pressure of about 5 kg/C is desirable, and for this purpose it is necessary to heat the alloy. In order to obtain a hydrogen release pressure of about 5 kg/cd at an easily obtainable temperature of 80° C. or lower, the amount of Cu added is desirably 0.1 or less in terms of atomic ratio with respect to (Fe→Cu).

以上の水素吸蔵、放出の両者の観点から、Xは0.01
以上o、i以下とした。
From the above viewpoints of both hydrogen storage and release, X is 0.01
The minimum value was o, and the minimum value was i.

(実 施 例) 合金溶製の原料としては、純度99.9%の電解鉄、9
9.7〜99.8%のスポンジチタン、98%のREM
(Cc:約50%、La:約30%、 Nd:約15%
、Pr+約4%、他;約1%)、99%程度のCuを用
いた。
(Example) As raw materials for alloy melting, electrolytic iron with a purity of 99.9%,
9.7-99.8% sponge titanium, 98% REM
(Cc: approx. 50%, La: approx. 30%, Nd: approx. 15%
, Pr + about 4%, others: about 1%), and about 99% Cu were used.

原子数比でFeを(1,−x)、TIをy値として0.
90〜1.05、Mlを0.015〜0.1 、 Cu
をX値として0.I以下となるように秤量し、水冷銅ル
・ツボを一有′する′ア゛・ル゛ゴンア一り・炉で溶解
し、Fe   Ti  REM  Cu  を溶製した
The atomic ratio of Fe is (1, -x) and the y value of TI is 0.
90-1.05, Ml 0.015-0.1, Cu
is 0. It was weighed so that it was less than I, and melted in a furnace equipped with a water-cooled copper crucible to produce FeTi REM Cu.

1−X   y    Z   X ボタン状の合金試料は空気雰囲気下で、振動ミルで粉砕
し、60〜1.50メツシユの粒度のものを特性試験に
供した。
1-X y Z

第1表に製造したF e i−x T 1 、 REM
z C’ x合金の分析値、室温10kg/e−の水素
圧力下での活性化に必要な時間、及び活性化後の合金の
30℃における水素圧)Okg/cd以下での水素吸蔵
量、プラトー性、水素解離平衡圧力を示した。
Fe i-x T 1 , REM manufactured in Table 1
Analysis value of z C' It exhibited plateau characteristics and hydrogen dissociation equilibrium pressure.

この第1表から本発明の合金は、活性化操作が容易で、
水素吸蔵】が多く、プラトー性に優れ、水素吸蔵時の水
素圧力が十分に減少していることがわかる。
From this Table 1, the alloy of the present invention is easy to activate,
It can be seen that the hydrogen absorption rate is high, the plateau property is excellent, and the hydrogen pressure during hydrogen absorption is sufficiently reduced.

/ (発明の効果) 上記のように、本発明の水素吸蔵用金属H料は、。/ (Effect of the invention) As mentioned above, the hydrogen storage metal H material of the present invention is:

活性化操作が8昌で、安価であり、水素吸蔵量が多く、
プラトー性に優れ、10kg/e−以下の水素圧で迅速
に水素吸蔵が可能であることにより、実用性、経済性の
而で多大な効果をもたらすものであるから、産業界に寄
与するところが極めて大である。
It requires 8 activation operations, is inexpensive, and has a large hydrogen storage capacity.
It has excellent plateau properties and can quickly absorb hydrogen at a hydrogen pressure of 10 kg/e- or less, which brings great benefits in terms of practicality and economy, so it will greatly contribute to industry. It's large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Fe、、T t、REM、!、Cux合金の
REMfi、z値と活性化温度の関係図表、第2図はC
u量、X値と活性化温度の関係図表、第3図はTiff
1、y値とプラトー性、プラトーを示す水素吸蔵領域と
の関係図表、第4図はCu量5、X値と水素平衡圧の関
係図表である。 代 理 人  弁理士  茶野木 立 火弟2図 0.02 QO40,060,OB   O,IO諌、C帽1第1
1−t、r;す尺υ量(り第1図 0.02 DI)4 、Z、   REM/(FeすCLt)0/2 第3図 ’7i/(Fe+Cは)
Figure 1 shows Fe,,T t,REM,! , REMfi of Cux alloy, relationship diagram of z value and activation temperature, Figure 2 is C
Relationship diagram between u amount, X value and activation temperature, Figure 3 is Tiff
1. A graph showing the relationship between the y value, plateau property, and the hydrogen storage region showing the plateau. FIG. 4 is a graph showing the relationship between the Cu amount 5, the X value, and the hydrogen equilibrium pressure. Agent Patent Attorney Tate Chanoki Kazuo 2 Figure 0.02 QO 40,060, OB O, IO Isao, C Cap 1 1st
1-t, r; Quantity of scale υ (Fig. 1 0.02 DI) 4, Z, REM/(FeCLt) 0/2 Fig. 3 '7i/(Fe+C is)

Claims (1)

【特許請求の範囲】[Claims] Fe_1_−_xTi_yREM_zCu_x(式中、
x、y、zは何れも原子数比で、0.01≦x≦0.1
、0.90≦y≦1.05、REMは希土類元素で0.
015≦z≦0.1である。)で表される組成の水素吸
蔵用金属材料。
Fe_1_−_xTi_yREM_zCu_x (in the formula,
x, y, z are all atomic ratios, 0.01≦x≦0.1
, 0.90≦y≦1.05, REM is a rare earth element and 0.
015≦z≦0.1. ) A metal material for hydrogen storage with a composition represented by:
JP1969389A 1989-01-31 1989-01-31 Metallic material for hydrogen occlusion Pending JPH02200755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1969389A JPH02200755A (en) 1989-01-31 1989-01-31 Metallic material for hydrogen occlusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1969389A JPH02200755A (en) 1989-01-31 1989-01-31 Metallic material for hydrogen occlusion

Publications (1)

Publication Number Publication Date
JPH02200755A true JPH02200755A (en) 1990-08-09

Family

ID=12006333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1969389A Pending JPH02200755A (en) 1989-01-31 1989-01-31 Metallic material for hydrogen occlusion

Country Status (1)

Country Link
JP (1) JPH02200755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671403A (en) * 2022-04-06 2022-06-28 中国科学院长春应用化学研究所 Ti-Mn-Fe hydrogen storage material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116848A (en) * 1980-02-15 1981-09-12 Matsushita Electric Ind Co Ltd Alloy for storing hydrogen
JPS60234933A (en) * 1984-05-02 1985-11-21 Suzuki Shiyoukan:Kk Material for storing hydrogen
JPS61124545A (en) * 1984-11-21 1986-06-12 Nippon Steel Corp Hydrogen occluding metallic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116848A (en) * 1980-02-15 1981-09-12 Matsushita Electric Ind Co Ltd Alloy for storing hydrogen
JPS60234933A (en) * 1984-05-02 1985-11-21 Suzuki Shiyoukan:Kk Material for storing hydrogen
JPS61124545A (en) * 1984-11-21 1986-06-12 Nippon Steel Corp Hydrogen occluding metallic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671403A (en) * 2022-04-06 2022-06-28 中国科学院长春应用化学研究所 Ti-Mn-Fe hydrogen storage material and preparation method thereof
CN114671403B (en) * 2022-04-06 2024-01-30 中国科学院长春应用化学研究所 Ti-Mn-Fe hydrogen storage material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3677220B2 (en) Magnesium-based hydrogen storage alloy
US4370163A (en) Hydrogen storage alloy and process for making same
US4096639A (en) Nickel-mischmetal-calcium alloys for hydrogen storage
US4744946A (en) Materials for storage of hydrogen
JP2935806B2 (en) Hydrogen storage material
JPH02200755A (en) Metallic material for hydrogen occlusion
Pourarian et al. Hydride formation in Zr1− xCexMn2 (x= 0.2, 0.3)
Rajalakshmi et al. Hydrogen solubility properties of Ti0. 42Zr0. 08Fe0. 50 alloy
JP2743123B2 (en) Materials for hydrogen storage
US4576639A (en) Hydrogen storage metal material
US4249940A (en) Mischmetal-nickel-iron hydrogen storage compound
US4421718A (en) Alloy for occlusion of hydrogen
JPS5848481B2 (en) Hydrogen storage materials
US4406874A (en) ZrMn2 -Type alloy partially substituted with cerium/praseodymium/neodymium and characterized by AB2 stoichiometry
JPS6256939B2 (en)
KR100361908B1 (en) Titanium-zirconium-based Laves phase alloy for hydrogen storage
JPH0471985B2 (en)
JPS58157943A (en) Alloy for storing hydrogen
KR100350956B1 (en) Hydrogen storage alloy
JPS60215724A (en) Hydrogen occluding material
JP3338176B2 (en) Hydrogen storage material
JPS60155641A (en) Hydrogen occluding alloy containing iron and rare earth element
JP4766414B2 (en) Hydrogen storage alloy
Lynch et al. Hysteresis in the Nb-VH system
JPS63430A (en) Titanium-zirconium-chromium-iron metallic alloy for hydrogen storage