JPH02200688A - Organic complex and electrically conductive ultrathin film - Google Patents

Organic complex and electrically conductive ultrathin film

Info

Publication number
JPH02200688A
JPH02200688A JP1869689A JP1869689A JPH02200688A JP H02200688 A JPH02200688 A JP H02200688A JP 1869689 A JP1869689 A JP 1869689A JP 1869689 A JP1869689 A JP 1869689A JP H02200688 A JPH02200688 A JP H02200688A
Authority
JP
Japan
Prior art keywords
film
organic complex
long
complex
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1869689A
Other languages
Japanese (ja)
Other versions
JPH0465077B2 (en
Inventor
Kojiro Kawabata
川端 康治郎
Takayoshi Nakamura
貴義 中村
Mutsuyoshi Matsumoto
睦良 松本
Hiroaki Tachibana
浩昭 橘
Kunihiko Kojima
小島 邦彦
Takeo Onda
恩田 剛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Toyo Gosei Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Toyo Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toyo Gosei Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP1869689A priority Critical patent/JPH02200688A/en
Publication of JPH02200688A publication Critical patent/JPH02200688A/en
Publication of JPH0465077B2 publication Critical patent/JPH0465077B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

NEW MATERIAL:The electrically conductive charge-transfer organic complex having hydrocarbon group and expressed by formula (R<1> to R<3> are long-chain alkyl or aryl; Me is methyl). EXAMPLE:Tri-n-decylmethylumonium-bis[(4,5-dimercapto)-1,3-dithiol-2-on e]gold complex. USE:A display element, information memory device, ultrathin film switching element, wiring material for ultra-high-density LSI. PREPARATION:The organic complex of formula can be produced e.g. by reacting a methanol solution of 4,5-bis(benzoylthio)-1,3-dithiol-2-thione with metallic sodium, adding and reacting sodium tetrachloroaurate(III) dihydrate to the reaction product and reacting the product with tri-n- decylmethylammonium bromide. An electrically conductive ultrathin film is produced by forming an ultrathin film of the complex by Langmuir Blodgett method and oxidizing the film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は導電性超薄膜の形成を可能とする有機錯体及び
それを含む導電性超薄膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an organic complex that enables the formation of an electrically conductive ultra-thin film and an electrically conductive ultra-thin film containing the same.

(従来の技術) ラングミュア・プロジェット法を用いて固体基板に有機
化合物の薄膜を形成させることは周知の事実である。こ
のようにして製造される薄膜は、多くの用途、特にエレ
クトロニクス及び生物学の分野において興味深いもので
ある。特開昭58−141246号公報においては、ラ
ングミュア・プロジェット法による超薄膜〔ラングミュ
ア・プロジェット膜(LB膜)〕をデバイスに応用する
例がいくつか記載されている。
(Prior Art) It is a well-known fact that a thin film of an organic compound is formed on a solid substrate using the Langmuir-Prodgett method. Thin films produced in this way are of interest in many applications, especially in the fields of electronics and biology. JP-A-58-141246 describes several examples in which an ultra-thin film formed by the Langmuir-Prodgett method [Langmuir-Prodgett film (LB film)] is applied to devices.

LB膜は水面上に有機分子の単分子膜を作成し、これを
固体基板上に累積することによって得られる超薄膜であ
る。現在の種々の電子デバイスをこのような有機物の超
薄膜で作成することが出来ればより高い機能を達成でき
るものと期待されている。
LB film is an ultra-thin film obtained by creating a monomolecular film of organic molecules on a water surface and accumulating this on a solid substrate. It is expected that if various current electronic devices can be made from ultra-thin films of such organic materials, higher functionality will be achieved.

しかしながら、このような有機化合物を用いて導電性デ
バイスを構築する場合において、LB膜としては良導体
としての物性を持つ素材が必要である。これまでのしB
膜は長鎖ピリジニウムとテトラシアノキシジメタン(T
CNQ)の1=1錯体を■2蒸気で処理することにより
0.01シ一メンス/センチメートル(S/cm)の値
が得られている(A、Ruaudel−Teixier
等:Mo1.Cryst、Liq、Cryet、、12
0319(1985))。
However, when constructing a conductive device using such an organic compound, a material having physical properties as a good conductor is required for the LB film. Past B
The membrane consists of long-chain pyridinium and tetracyanoxydimethane (T
A value of 0.01 siemens per centimeter (S/cm) has been obtained by treating the 1=1 complex of CNQ) with 2 steam (A, Ruaudel-Teixier
etc.: Mo1. Cryst, Liq, Cryet, 12
0319 (1985)).

本発明者らも長鎖ピリジニウムとTCNQの1:2錯体
でI2処理することなしに0.015/cmの導電率を
得ている(M、Nakamura等:Chem、Let
t、、709(1986)、M。
The present inventors also obtained a conductivity of 0.015/cm without I2 treatment with a 1:2 complex of long-chain pyridinium and TCNQ (M, Nakamura et al.: Chem, Let
t, 709 (1986), M.

Matsumoto等:5ynthetic Meta
ls、19675(1987))。
Matsumoto et al.: 5ynthetic Meta
ls, 19675 (1987)).

また、本発明者らは、テトラメチルテトラチアフルバレ
ン(TMTTF)と長鎖TCNQ錯体の単分子膜及びL
B膜を作成し0.43/cmという導電率を得ている(
T、Nakamura等:Chem、1ett、、32
3(1986)、Y、Kavabata等:5ynth
eric Metals、19663(1987)、T
、Nakaaura等:5ynthetic Meta
ls、19681(1987)、M、Matsumot
o等:3rd Int’l Conf、 LB Fil
ms、AbstractNo  OF2、 K、Ike
gami  等:5ynthetic  Metals
、19 669(1987))。
The present inventors also developed a monomolecular film of tetramethyltetrathiafulvalene (TMTTF) and a long-chain TCNQ complex, and L
B film was created and a conductivity of 0.43/cm was obtained (
T. Nakamura et al.: Chem, 1ett, 32
3 (1986), Y. Kavabata et al.: 5ynth
eric Metals, 19663 (1987), T
, Nakaaura et al.: 5ynthetic Meta
ls, 19681 (1987), M, Matsumot
o etc.: 3rd Int'l Conf, LB File
ms, Abstract No OF2, K, Ike
gami etc.: 5ynthetic Metals
, 19 669 (1987)).

さらに、本発明者らはジアルキルジメチルアンモニウム
−Ni(dmit)2の1:l錯体を合成し、臭素酸化
あるいは電解酸化することにより0.IS/cmの感電
率を得ている(T、Nakamura等:Chem 1
ett、、1667(1988))。
Furthermore, the present inventors synthesized a 1:1 complex of dialkyldimethylammonium-Ni(dmit)2, and subjected it to bromine oxidation or electrolytic oxidation. An electric shock rate of IS/cm has been obtained (T, Nakamura et al.: Chem 1
ett, 1667 (1988)).

一方、原木等は、テトラチアフルバレン(TTF)とT
CNQ錯体を水面上に展開し固体基板上に累積すること
により5.53/cmの導電率を報告している(M。
On the other hand, logs etc. are tetrathiafulvalene (TTF) and T
reported a conductivity of 5.53/cm by spreading the CNQ complex on the water surface and accumulating it on a solid substrate (M.

Fujiki  等:5ynthetic  Meta
ls、18 815(1987))。
Fujiki et al.: 5ynthetic Meta
ls, 18 815 (1987)).

このように、LB膜を電子工学分野における分子レベル
のエレクトロニクスに応用可能な物質にするためには、
未だ導電率が低いため、さらに高い導電性電荷移動用有
機錯体が望まれている。
In this way, in order to make the LB film a material that can be applied to molecular-level electronics in the field of electronic engineering,
Since the conductivity is still low, an organic complex for charge transfer with even higher conductivity is desired.

(発明の課題) 本発明は高導電性LB膜及びそのための導電性電荷移動
用有機錯体を提供することをその課題とする。
(Problem of the Invention) An object of the present invention is to provide a highly conductive LB film and a conductive charge transfer organic complex therefor.

(課題を解決するための手段) 本発明者らは前記課題を解決すべく鋭意努力した結果、
これまで単結晶などによって導電性が調べられてきた導
電性電荷移動用有機錯体を親水性基とし、長鎖の炭化水
素基を疎水性基とする分子を合成し、水面上でこれらの
分子の単分子膜を作成し、その単分子膜を基板上に累積
した後、化学的酸化あるいは電解質水溶液中での電解酸
化をすることで高い導電率をもつ超薄膜を作成すること
ができることを見出し、本発明を完成するに至った。
(Means for Solving the Problems) As a result of the inventors' earnest efforts to solve the above problems,
We synthesized molecules with a hydrophilic group in a conductive charge transfer organic complex whose conductivity has been investigated using single crystals and a hydrophobic group in a long-chain hydrocarbon group. We discovered that it is possible to create an ultra-thin film with high conductivity by creating a monomolecular film, accumulating the monomolecular film on a substrate, and then subjecting it to chemical oxidation or electrolytic oxidation in an aqueous electrolyte solution. The present invention has now been completed.

本発明によれば、導電性超薄膜素材として、式 (式中、R1,R2,R3は長鎖アルキル基又はアリー
ル基、 Meはメチル基である) で表わされる導電性電荷移動用有機錯体が提供される。
According to the present invention, a conductive charge transfer organic complex represented by the formula (wherein R1, R2, and R3 are long-chain alkyl groups or aryl groups, and Me is a methyl group) is used as a conductive ultra-thin film material. provided.

前記一般式(1)中の陽イオンは、トリアルキルメチル
アンモニウムのような第4級アンモニウム基から成る。
The cation in the general formula (1) consists of a quaternary ammonium group such as trialkylmethylammonium.

この場合、R1,R2、R2は、長鎖アルキル基又はア
リール基であるが、これらは同−又は異なったものであ
ることができる。長鎖アルキル基としては、炭素数10
以上、特に10〜24の直鎖状のものが良く、具体的に
はデシル、ランデシル、ドデシル、トリデシル、テトラ
デシル、ペンタデシル、ヘキサデシル、ヘプタデシル、
オクタデシル、ノナデシル、エイコシル、ランエイコシ
ル、ドエイコシル、トリエイコシル及びテトラエイコシ
ル基などがある。又アリール基としては、フェニル、ト
リル、キシリル又はビフェニル基等が挙げられる。陽イ
オンを形成する第4級アンモニウム基の具体例としては
、後で述べる長鎖脂肪酸及び/又は長鎖脂肪族炭化水素
と混合した系で、水面上に安定な単分子膜が形成できか
つ高い導電性のLB膜を与える点から、トリデシルメチ
ルアンモニウム、トリウンデシルメチルアンモニウム、
トリドデシルメチルアンモニウム、ジテトラデシルメチ
ルフェニルアンモニウム及びジヘキサデシルメチルビフ
ェニルアンモニウム基等を挙げることができる。
In this case, R1, R2, R2 are long-chain alkyl groups or aryl groups, but they can be the same or different. As a long chain alkyl group, carbon number is 10
Of the above, linear ones with 10 to 24 atoms are particularly preferable, specifically decyl, randecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl,
Examples include octadecyl, nonadecyl, eicosyl, oreicosyl, doeicosyl, trieicosyl, and tetraeicosyl groups. Examples of the aryl group include phenyl, tolyl, xylyl, and biphenyl groups. Specific examples of quaternary ammonium groups that form cations include systems mixed with long-chain fatty acids and/or long-chain aliphatic hydrocarbons, which will be described later. From the point of view of providing a conductive LB film, tridecylmethylammonium, triundecylmethylammonium,
Examples include tridodecylmethylammonium, ditetradecylmethylphenylammonium, and dihexadecylmethylbiphenylammonium groups.

本発明の前記一般式(1)で表わされる導電性電荷移動
用有機錯体はこれをアセトニトリルとベンゼンの混合溶
媒に溶解してラングミュア・トラフ上に単分子膜として
展開する。水面上により安定な単分子膜を作成するため
には、長鎖脂肪酸及び/又は長鎖脂肪族炭化水素と混合
した系で用いるのが好ましく、特に長鎖脂肪酸及び/又
は長鎖脂肪族炭化水素を前記導電性化合物(1)の0.
3〜5.0モル倍添加することが望ましい。なおここで
用いられる長鎖脂肪酸及び長鎖脂肪族炭化水素は、本発
明の導電性電荷移用有機錯体と混合した場合、水面上に
安定な単分子膜が展開できること及び高い導電性を得る
ための適当な強さをもっことなどの特徴をもつことが重
要であり、長鎖脂肪酸としては、−船人 %式%) (式中、nは8〜22の整数) で表わされる直鎖状の長鎖脂肪酸がよい。具体的には、
カプリル酸、ウンデシル酸、トリデシル酸、ミリスチン
酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、
ステアリン酸、ノナデカン酸及びアラキン酸等が挙げら
れる。長鎖脂肪族炭化水素としては、炭素数8以上の直
鎖状のものが望ましい。具体的には、オクタン、ノナン
、デカン、ウンデカン、ドデカン、トリデカン、テトラ
デカン、ペンタデカン、ヘキサデカン、ヘプタデカン、
オクタデカン、ノナデカン、エイコサン、ヘンエイコサ
ン及びトコサン等が挙げられる。前記のように長鎖脂肪
酸及び/又は長鎖脂肪族炭化水素の混入割合は、導電性
電荷移動用有機錯体の0.3〜5゜0モル倍の添加が望
ましく、この範囲であれば長鎖脂肪酸あるいは長鎖脂肪
族炭化水素を単独で添加しても混合物として添加しても
良いが、充分な安定性及び強度を得るためには、単独使
用の方が好ましい。また最適添加比は導電性化合物の種
類や長鎖化合物の種類によって変動するので明確ではな
いが、−船釣には1:1付近が良く、導電性電荷移動用
有機錯体としてトリーローデシルメチルアンモニウム−
Au(dmit)2(1:1)錯体及び長鎖脂肪酸とし
てアラキン酸を用いた場合の最適比は2:1〜4:1で
あった。
The conductive charge transfer organic complex represented by the general formula (1) of the present invention is dissolved in a mixed solvent of acetonitrile and benzene and spread as a monomolecular film on a Langmuir trough. In order to create a more stable monomolecular film on the water surface, it is preferable to use a system mixed with long-chain fatty acids and/or long-chain aliphatic hydrocarbons, especially long-chain fatty acids and/or long-chain aliphatic hydrocarbons. 0.0 of the conductive compound (1).
It is desirable to add 3 to 5.0 moles. Note that the long-chain fatty acids and long-chain aliphatic hydrocarbons used here are such that when mixed with the conductive charge transfer organic complex of the present invention, a stable monomolecular film can be developed on the water surface and high conductivity can be obtained. It is important to have characteristics such as having appropriate strength and long-chain fatty acids. Long chain fatty acids are good. in particular,
Caprylic acid, undecylic acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid,
Examples include stearic acid, nonadecanoic acid and arachidic acid. As long-chain aliphatic hydrocarbons, linear ones having 8 or more carbon atoms are desirable. Specifically, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane,
Examples include octadecane, nonadecane, eicosane, heneicosane, and tocosane. As mentioned above, the mixing ratio of long-chain fatty acids and/or long-chain aliphatic hydrocarbons is preferably 0.3 to 5.0 times the amount of the conductive charge transfer organic complex. Fatty acids or long-chain aliphatic hydrocarbons may be added singly or as a mixture, but in order to obtain sufficient stability and strength, it is preferable to use them alone. The optimal addition ratio is not clear as it varies depending on the type of conductive compound and the type of long-chain compound, but - around 1:1 is good for boat fishing. −
The optimal ratio when using Au(dmit)2(1:1) complex and arachidic acid as the long chain fatty acid was 2:1 to 4:1.

水溶液の表面上に有機化合物の薄膜を形成する一般的な
方法は、特開昭58−141246号公報などの先行文
献に記載されており、普通は水に不溶の揮発性有機溶媒
に溶解した有機化合物の溶液を適量水面上に展開し、そ
の溶剤を蒸発させることによって行われる。さらに導電
性電荷移動用有機錯体は、クロロホルム等の有機溶剤中
で分解する場合もあるので、好ましくい溶媒としては、
電荷移動用有機錯体の作成時の溶媒として一般に用いら
れるアセトニトリルなどが挙げられるが、この場合アセ
トニトリルが水に可溶なため、アセトニトリルは、ベン
ゼンとの混合溶媒の形で用いられる。
A general method for forming a thin film of an organic compound on the surface of an aqueous solution is described in prior literature such as Japanese Patent Application Laid-open No. 58-141246. It is carried out by spreading an appropriate amount of a solution of the compound on the water surface and evaporating the solvent. Furthermore, since conductive charge transfer organic complexes may decompose in organic solvents such as chloroform, preferred solvents include:
Acetonitrile and the like are commonly used as a solvent when preparing an organic complex for charge transfer. In this case, since acetonitrile is soluble in water, acetonitrile is used in the form of a mixed solvent with benzene.

ベンゼンの代わりに他の水に不溶な有機溶媒を用いても
よい。
Other water-insoluble organic solvents may be used instead of benzene.

ラングミュア・プロジェット法により累積した導電性電
荷移動用有機錯体のLB膜はそのままでは絶縁体であり
、化学的酸化あるいは電解酸化することで高い導電性L
B膜として得ることができる。
The LB film of a conductive charge transfer organic complex accumulated by the Langmuir-Prodgett method is an insulator as it is, but it can be made to have high conductivity by chemical oxidation or electrolytic oxidation.
It can be obtained as a B film.

化学的酸化の中では、特にハロゲンガス(塩素、臭素及
び沃素)を使用した方法が簡略で、あらかじめ金ペース
トを用いて電極を付けた基板を窒素雰囲気中に固定し、
ハロゲンガスの入った注射筒を用いて少量づつ注入する
方法でドープを行ない、導電性超薄膜を作成することが
できる。電解酸化は、LB膜累積基板を陽極とする電解
酸化反応で、電解質を含有する水溶液中で行なう。電解
質は、水に溶は電気を通す作用があり、基板に累積した
LB膜と反応しないものであればよく、特にLiCQO
いR′4NCQO4,R′4NBF4及びR’4NCF
、SO,(R’はメチル、エチル、プロピル及びブチル
基である)が好適である。電解質濃度は特に限定される
ものではないが、電解反応が室温で十分行われればよい
。電解酸化は定電流電源装置を用いて反応を行ない、0
.1M#l電解質を用いた場合、0.5μAの定電流で
2〜5時間の反応でLB膜の酸化は十分であった。ここ
で用いた電流値は特に限定されるものではなく、固体基
板上のLB膜の酸化反応が順調に行われる電流値であれ
ばよい。
Among chemical oxidation methods, the method using halogen gas (chlorine, bromine, and iodine) is particularly simple, and involves fixing a substrate to which electrodes have been attached using gold paste in a nitrogen atmosphere.
A conductive ultra-thin film can be created by doping by injecting halogen gas in small quantities using a syringe. Electrolytic oxidation is an electrolytic oxidation reaction using the LB film accumulation substrate as an anode, and is carried out in an aqueous solution containing an electrolyte. The electrolyte may be any material as long as it dissolves in water, has the effect of conducting electricity, and does not react with the LB film accumulated on the substrate, especially LiCQO.
R'4NCQO4, R'4NBF4 and R'4NCF
, SO, (R' being methyl, ethyl, propyl and butyl groups) are preferred. The electrolyte concentration is not particularly limited as long as the electrolytic reaction is sufficiently carried out at room temperature. Electrolytic oxidation uses a constant current power supply to carry out the reaction, and
.. When a 1M #l electrolyte was used, the oxidation of the LB film was sufficient for 2 to 5 hours of reaction at a constant current of 0.5 μA. The current value used here is not particularly limited, and may be any current value that allows the oxidation reaction of the LB film on the solid substrate to proceed smoothly.

(発明の効果) 本発明によって得られた導電性超薄膜の応用可能なデバ
イスとしては、表示素子、情報記憶デバイス、化学感受
性半導体デバイス、ショットキーバリヤーを含む半導体
などを含むとともに、その超薄膜導電体としての特徴か
ら新しい超薄膜スイッチング素子の構成要件や、厚みが
分子レベルで制御された超薄膜であるためであるためリ
ソグラフィによって超微細加工が出来るため超高密度L
SIでの微細な配線材料、超薄膜の構造から容易に推定
出来るようにその平面方向と縦方向の非常に大きな電導
度の異方性から上記配線において3次元化による高密度
化が可能になる。しかも、有機物からなるためバイオ素
子とのインターフェース機能を持たせることも可能にな
る。
(Effects of the Invention) Devices to which the conductive ultra-thin film obtained by the present invention can be applied include display elements, information storage devices, chemically sensitive semiconductor devices, semiconductors including Schottky barriers, etc. The structural requirements for new ultra-thin film switching elements are based on their physical characteristics, and because they are ultra-thin films whose thickness is controlled at the molecular level, ultra-high density L can be fabricated using lithography.
As can be easily estimated from the fine wiring material used in SI and the structure of ultra-thin films, the extremely large anisotropy of conductivity in the plane and vertical directions makes it possible to increase the density of the wiring by making it three-dimensional. . Moreover, since it is made of organic matter, it can also be provided with an interface function with bio-elements.

上記のものの如きデバイスにおいて、本発明における導
電性電荷移動有機錯体は、他の同様な性質の化合物と比
較して一分子層の単分子膜を一層づつ累積させて作成す
ることができる上、その膜厚を正確に制御し得るという
利点があり、さらに従来品と比べより高い導電性が得ら
れるため細部にわたる微細なパターンが可能であること
、再現性が大きいこと及びその安定性が高いことが特に
注目される。
In devices such as those described above, the conductive charge-transfer organic complex of the present invention can be produced by accumulating a monomolecular layer one layer at a time, compared to other compounds with similar properties; It has the advantage of being able to accurately control the film thickness, and also has higher conductivity compared to conventional products, making it possible to form detailed and fine patterns, as well as high reproducibility and stability. Particularly noteworthy.

(実施例) 次に本発明を実施例によりさらに詳細に説明するが、本
発明はこれに限定されるものではない。
(Example) Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

参考例1 トリーローデシルメチルアンモニウムブロマイドの合成 トリーn−デシルアミン16.7g(0,038モル)
及びメチルブロマイド5.4g(0,057モル)をエ
タノール200IIIll (158g)に溶解し、I
Qのガラス製オートクレーブに仕込み19〜20℃(圧
力0 、3kg/ rre )に保ちながら80時間よ
く撹拌して反応させた。反応終了後ロータリーエバポレ
ーターを用いエタノールを留去し酢酸エチル10−で再
結晶を行った。−夜放置後濾過し乾燥することによりト
リーローデシルメチルアンモニウムブロマイドの白色結
晶1g、2g(純度99.02%)を収率89.47%
で得た。
Reference Example 1 Synthesis of tri-rhodecylmethylammonium bromide tri-n-decylamine 16.7 g (0,038 mol)
and 5.4 g (0,057 mol) of methyl bromide were dissolved in 200 IIIll (158 g) of ethanol,
The mixture was charged into a glass autoclave (No. Q) and stirred well for 80 hours to react while maintaining the temperature at 19 to 20°C (pressure 0, 3 kg/rre). After the reaction was completed, ethanol was distilled off using a rotary evaporator, and recrystallization was performed with 10-ethyl acetate. - 1 g and 2 g of white crystals of tri-rhodecylmethylammonium bromide (purity 99.02%) are obtained in a yield of 89.47% by filtering and drying after leaving overnight.
I got it.

実施例1 トリーローデシルメチルアンモニウム−Au(dmit
)2の合成 200威のナスフラスコに4,5−ビス(ベンゾイルチ
オ)−1,3−ジチオール−2−チオン920mg(2
,25mmoQ)の−1,1 メタノール溶液7或を入れ、それに金属ナトリウム11
5mg(5mmoQ)を溶解したメタノール溶液2o−
を徐々に滴下すると溶液は均一となり赤紫色の4,5−
ビス(ナトリウムチオ)−1,3−ジチオール−2−チ
オンが生成した。さらにテトラクロ口金(m)ナトリウ
ム2水和物398mg(1,0mmoQ)を含むメタノ
ール溶液20mQを加えると黒色のナトリウム−Au(
dmit)2[4,5ビス(メルカプト)−1,3−ジ
チオール−2−チオンの白金化合物〕が生成し、ついで
トリーn−デシルメチルアンモニウムブロマイド639
mg(1,2mmon)を含むメタノール溶液22較を
徐々に滴下するとトリーローデシルメチルアンモニウム
=Au(dmit)、の黄土色の結晶が析出した。反応
をさらに2時間行った後濾過することによりトリーn−
デシルメチルアンモニウム−Au (dmit)2の黄
土色結晶0.99gを収率95.0%で得た。
Example 1 Tri-rhodecylmethylammonium-Au (dmit
) Synthesis of 2 920 mg of 4,5-bis(benzoylthio)-1,3-dithiol-2-thione (2
, 25mmoQ) in -1,1 methanol solution 7, and metallic sodium 11
A methanol solution containing 5mg (5mmoQ) of 2o-
When gradually added dropwise, the solution becomes uniform and a reddish-purple 4,5-
Bis(sodiumthio)-1,3-dithiol-2-thione was produced. Furthermore, when 20 mQ of a methanol solution containing 398 mg (1,0 mmoQ) of sodium dihydrate was added to the tetrachrome cap (m), a black sodium-Au (
dmit) 2 [platinum compound of 4,5 bis(mercapto)-1,3-dithiol-2-thione] is formed, and then tri-n-decylmethylammonium bromide 639
When 22 methanol solutions containing mg (1.2 mmon) were gradually added dropwise, ocher-colored crystals of tri-rhodecylmethylammonium=Au (dmit) were precipitated. The reaction was allowed to proceed for an additional 2 hours and then filtered to obtain tri-n-
0.99 g of ocher crystals of decylmethylammonium-Au (dmit)2 were obtained in a yield of 95.0%.

実施例2 実施例1で合成したトリーn−デシルメチルアンモニウ
ム−Au(dmit)2(1:1)錯体とアラキン酸と
を1=1のモル比でアセトニトリル−ベンゼン(1:1
)の混合溶媒に溶かし、担持用液体として純水を用い通
常の方法によってラングミュア・トラフに単分子膜を生
成し、その表面圧−面積曲線(π−八凹曲線を求めたと
ころ、極限占有面積が約3 、5℃m2の安定な単分子
膜を形成することがわかった。この単分子膜をガラス板
にあらかじめヘキサメチルジシラザンで疎水化処理した
上に25mNm−”の表面圧で20層累積した。この累
積膜は十分安定な単分子膜を形成することがわかった。
Example 2 The tri-n-decylmethylammonium-Au(dmit)2 (1:1) complex synthesized in Example 1 and arachidic acid were mixed in acetonitrile-benzene (1:1) in a molar ratio of 1=1.
) was dissolved in a mixed solvent of It was found that a stable monomolecular film was formed at a temperature of about 3.5°C m2.This monomolecular film was preliminarily treated with hexamethyldisilazane to make it hydrophobic on a glass plate, and then 20 layers were formed at a surface pressure of 25 mNm-2. This cumulative film was found to form a sufficiently stable monolayer.

実施例3 実施例2で累積したLB膜に金ペーストを用いて電極を
作り窒素の出入口を備え付けた1℃の広口びん中の支持
台に固定し、窒素を流しながら保存する。臭素蒸気の入
った注射筒を窒素気流とともに少量づつ基板を固定した
広口びんに注入する方法で臭素ドープを行なった後、2
端子法で導電率を測定すると、13.05/cmの導電
率が得られた。
Example 3 Electrodes were made using gold paste on the LB film accumulated in Example 2, fixed on a support in a wide mouth bottle at 1° C. equipped with a nitrogen inlet and outlet, and stored while flowing nitrogen. After doping with bromine by injecting a syringe containing bromine vapor into a wide mouth bottle with a fixed substrate in small quantities along with a nitrogen stream,
When the conductivity was measured by the terminal method, a conductivity of 13.05/cm was obtained.

実施例4 実施例2の方法で累積したLB膜に金ペーストを用いて
電極を作り、0.1M/Qの過塩素酸リチウム水溶液中
で陰極に白金線を用い、0.5μへの定電流で5時間陽
極酸化して、4端子法により導電率を測定すると約25
5/Cmの値が得られた。この値は今までに報告された
導電率の中で最高の値である。しかも導電率の温度依存
性を調べると、第1図に示す結果が得られ、室温〜20
0に付近では弱いながらも金属的な挙動を示すことがわ
かった。このようなマクロスコピツクに金属的な挙動は
導電性LB膜では初めて観察されたものである(図2)
Example 4 Electrodes were made using gold paste on the LB film accumulated by the method of Example 2, and a constant current of 0.5 μ was applied using a platinum wire as the cathode in a 0.1 M/Q lithium perchlorate aqueous solution. When anodized for 5 hours and measured by the 4-probe method, the conductivity was approximately 25
A value of 5/Cm was obtained. This value is the highest value of conductivity ever reported. Moreover, when we investigated the temperature dependence of electrical conductivity, we obtained the results shown in Figure 1.
It was found that near zero, it exhibits metallic behavior, albeit weakly. This macroscopic metallic behavior was observed for the first time in a conductive LB film (Figure 2).
.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は導電率の温度依存性を示すグラフである。 特許出願人 工業技術院長 飯塚幸三 復代理人弁理士池浦敏明 FIG. 1 is a graph showing the temperature dependence of conductivity. Patent applicant Kozo Iizuka, Director of the Agency of Industrial Science and Technology Sub-Agent Patent Attorney Toshiaki Ikeura

Claims (3)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼ (式中R^1、R^2、R^3は長鎖アルキル基又はア
リール基、Meはメチル基である) で表わされる炭化水素基を有する導電性電荷移動用有機
錯体。
(1) Hydrocarbon represented by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. A conductive charge transfer organic complex having a group.
(2)固体基板上に形成した請求項(1)の有機錯体か
らなる超薄膜を化学的酸化あるいは電解酸化してなる超
薄膜。
(2) An ultra-thin film formed by chemically oxidizing or electrolytically oxidizing an ultra-thin film made of the organic complex of claim (1) formed on a solid substrate.
(3)該有機錯体が長鎖脂肪酸及び/又は長鎖脂肪族炭
化水素を含有する請求項2の超薄膜。
(3) The ultra-thin film according to claim 2, wherein the organic complex contains a long-chain fatty acid and/or a long-chain aliphatic hydrocarbon.
JP1869689A 1989-01-27 1989-01-27 Organic complex and electrically conductive ultrathin film Granted JPH02200688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1869689A JPH02200688A (en) 1989-01-27 1989-01-27 Organic complex and electrically conductive ultrathin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1869689A JPH02200688A (en) 1989-01-27 1989-01-27 Organic complex and electrically conductive ultrathin film

Publications (2)

Publication Number Publication Date
JPH02200688A true JPH02200688A (en) 1990-08-08
JPH0465077B2 JPH0465077B2 (en) 1992-10-16

Family

ID=11978792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1869689A Granted JPH02200688A (en) 1989-01-27 1989-01-27 Organic complex and electrically conductive ultrathin film

Country Status (1)

Country Link
JP (1) JPH02200688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212883A (en) * 2007-03-07 2008-09-18 National Institute Of Advanced Industrial & Technology Manufacturing method of conductive organic ultra-thin membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212883A (en) * 2007-03-07 2008-09-18 National Institute Of Advanced Industrial & Technology Manufacturing method of conductive organic ultra-thin membrane

Also Published As

Publication number Publication date
JPH0465077B2 (en) 1992-10-16

Similar Documents

Publication Publication Date Title
Cordes et al. Molecular semiconductors from bifunctional dithia-and diselenadiazolyl radicals. Preparation and solid-state structural and electronic properties of 1, 4-[(E2N2C) C6H4 (CN2E2)](E= sulfur, selenium)
Buey et al. Three‐strand conducting ladder polymers: two‐step electropolymerization of metallorotaxanes
Kar Doping in conjugated polymers
Penneau et al. An imide anion radical that dimerizes and assembles into. pi.-stacks in solution
US20080182388A1 (en) Production device and production method for conductive nano-wire
Braun et al. Thermodynamic aspects of redox reactions on electrodes coated with thin, ion exchanging polymer films
Jaeger et al. Electrochemical behavior of donor-tetracyanoquinodimethane electrodes in aqueous media
Zhao et al. Photoinduced oxidation of water to oxygen in the ionic liquid BMIMBF4 as the counter reaction in the fabrication of exceptionally long semiconducting silver-tetracyanoquinodimethane nanowires
Browall et al. Studies of Intermolecular Interactions in Planar Metal Complexes III1 Bis (ethylene-1, 2-Dithiolene) Complexes of Nickel, Palladium, and Platinum
Pullen et al. Extensively conjugated dianionic tetrathiooxalate-bridged copper (II) complexes for synthetic metals
Khidekel et al. Organic metals
Bian et al. Chiral Van Der Waals Superlattices for Enhanced Spin‐Selective Transport and Spin‐Dependent Electrocatalytic Performance
Savy et al. Nanowires of molecule-based charge-transfer salts
Yamamoto et al. Structural and electrical properties of (BEDT-TTF) 2 X (diiodoacetylene)(X= Cl, Br): the novel self-assembly of neutral Lewis-acidic molecules and halide anions in a molecular metal
Lerstrup et al. Dibenzotetratellurafulvalene (DBTTeF)
JPH02200688A (en) Organic complex and electrically conductive ultrathin film
Kobayashi et al. The crystal and electronic structures of a new molecular conductor,(HMTTeF) 2 [Pt (dmit) 2]
de Caro et al. Adjusting the cation and anion nature in ionic liquids used for the growth control of nanoparticles of organic conductors
Matsubayashi et al. X-ray crystal structure of [Fe (C5Me5) 2][Au (C3S5) 2] and properties of partially oxidized [Au (C3S5) 2] anion complexes
Yamashita et al. 4, 7-Bis (1, 3-dithiol-2-ylidene)-4, 7-dihydro-2, 1, 3-benzothiadiazoles. A novel type of electron donors affording organic metals
Starodub et al. Isotrithionedithiolate transition metal complexes
Barraud Supermolecular engineering by the Langmuir-Blodgett method
Ishiguro et al. Preparation and Property of 2-(3′, 5′-Di-Tert-Butylphenyl-4′-Oxyl)-4, 4, 5, 5-Tetramethyl-4, 5,-Dihydro-1h-Imidazole-3-Oxide-1-Oxyl
JP4853922B2 (en) Manufacturing method of conductive organic ultrathin film
JPH053687B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term