JPH02200303A - Cold rolling method for extremely thin titanium alloy sheet - Google Patents

Cold rolling method for extremely thin titanium alloy sheet

Info

Publication number
JPH02200303A
JPH02200303A JP1990389A JP1990389A JPH02200303A JP H02200303 A JPH02200303 A JP H02200303A JP 1990389 A JP1990389 A JP 1990389A JP 1990389 A JP1990389 A JP 1990389A JP H02200303 A JPH02200303 A JP H02200303A
Authority
JP
Japan
Prior art keywords
titanium alloy
cold
cold rolling
leader
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1990389A
Other languages
Japanese (ja)
Other versions
JPH0525563B2 (en
Inventor
Taiji Hase
泰治 長谷
Tadao Ogawa
忠雄 小川
Seiichi Soeda
添田 精一
Masayoshi Kondo
正義 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1990389A priority Critical patent/JPH02200303A/en
Publication of JPH02200303A publication Critical patent/JPH02200303A/en
Publication of JPH0525563B2 publication Critical patent/JPH0525563B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce the extremely thin cold rolled sheet of a high-strength titanium alloy which has excellent dimensional accuracy and is thin in thickness by applying tension to a titanium alloy sheet via leader coils, passing and rolling the sheet and subjecting the sheet to cold rolling at a specific total cold draft. CONSTITUTION:The pure titanium sheets TR35C for the leader are butted against the front and rear parts of the titanium alloy sheet A and are TIG- welded W to coil the sheet. The leader coils are respectively wound on tension reels provided on the front and rear surfaces of a cold rolling mill and the tension is applied via the leader coils to the titanium A, then the sheet is passed and rolled. The titanium alloy has poor plastic workability and is liable to generate edge cracks at the time of the cold rolling and, therefore, the total cold draft is limited to <=40% in the cold rolling. The treatment to restore the cold rollability is executed after the cold rolling. As a result, the thin cold rolled sheet of the high-strength titanium alloy which has beautiful surfaces and the excellent dimensional accuracy and is thin in thickness is efficiently produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はチタン合金冷延極薄板の製造方法に関する。チ
タン合金は軽量でかつ優れた耐食性や強度を有するため
、航空宇宙産業や海洋産業上の利用分野で使用されてい
る1本発明はこのチタン合金の冷延極薄板の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a cold-rolled ultra-thin titanium alloy plate. Titanium alloys are lightweight and have excellent corrosion resistance and strength, so they are used in the aerospace and marine industries. The present invention relates to a method for manufacturing ultrathin cold-rolled plates of titanium alloys.

[従来の技vIi] 本明細書でチタン合金とは、例えばTi−6AQ−2S
n−4No−2Zr合金、Ti−6A Q−4V合金等
のα−βチタン合金をいう。
[Conventional technique vIi] In this specification, titanium alloy is, for example, Ti-6AQ-2S.
Refers to α-β titanium alloys such as n-4No-2Zr alloy and Ti-6A Q-4V alloy.

チタン合金は、優れた耐食性や強度を有するが、塑性加
工性が悪い難加工材である。従って通常の熱間圧延では
厚さが6mm以下の板は製造が困難である。更に薄いチ
タン合金の板は、熱間圧延で製造した板を数枚重ね合せ
て特殊なスラブを形成して、更に熱間圧延する。いわゆ
るパック圧延で製造するが、この方法でも厚さが0.4
 am以下の薄板の圧延は困難であり、またこの方法で
圧延したチタン薄板は板厚のばらつきが大きく表面の平
滑度も悪い。
Titanium alloy has excellent corrosion resistance and strength, but is a difficult-to-work material with poor plastic workability. Therefore, it is difficult to produce a plate with a thickness of 6 mm or less using normal hot rolling. For thinner titanium alloy plates, several hot-rolled plates are stacked together to form a special slab, which is then further hot-rolled. It is manufactured by so-called pack rolling, but even with this method the thickness is 0.4
It is difficult to roll a thin plate having a thickness of less than am, and titanium thin plates rolled by this method have large variations in plate thickness and poor surface smoothness.

更に薄いチタン合金の極薄板は、通常は熱間圧延で製造
した板の表面を研削あるいは溶剤して製造するが、表面
を均一な厚さに研削あるいは溶剤する事は技術上不安定
であり、又能率的ではない。
Ultra-thin plates of titanium alloy are usually produced by grinding or applying solvent to the surface of hot-rolled plates, but it is technically unstable to grind or apply solvent to the surface to a uniform thickness. It's also not efficient.

特開昭63−177905号はα+βチタン合金板の冷
間圧延方法に関する。この公報にはチタン合金の例えば
板厚が5s+m〜10m+mの切板を、通常の冷間圧延
法で、総圧下率30%以下で冷間圧延し、以後焼鈍する
方法が記載されている。
JP-A-63-177905 relates to a method for cold rolling α+β titanium alloy plates. This publication describes a method in which a cut plate of a titanium alloy having a thickness of, for example, 5 s+m to 10 m+m is cold rolled by a normal cold rolling method at a total reduction of 30% or less, and then annealed.

しかし切板の冷延では1巻き取り機がないため、板厚の
薄い極薄板を形状よく製造する事は困難であるし、得ら
れる板厚には限界がある。また板厚が5〜10m−の材
料を総圧下率を30%以下に制限した冷間圧延では、中
間焼鈍の回数が増えて、板厚の薄いチタン合金の極薄板
の製造は極めて煩瑣となる。
However, in the cold rolling of cut plates, there is no single winder, so it is difficult to produce very thin plates with good shape, and there is a limit to the thickness that can be obtained. In addition, when cold rolling materials with a thickness of 5 to 10 m with a total reduction rate limited to 30% or less, the number of intermediate annealing increases, making the production of ultra-thin titanium alloy plates extremely complicated. .

[発明が解決しようとする課題] 本発明はチタン合金の極薄板を、冷間圧延で、高能率に
製造し、かつ形状の優れた極薄板とする方法を提供する
ものである。
[Problems to be Solved by the Invention] The present invention provides a method for manufacturing an ultra-thin plate of titanium alloy by cold rolling with high efficiency and making the ultra-thin plate with an excellent shape.

[課題を解決するための手段および作用]請求項(1)
の発明を先ず説明する。チタン合金板を1例えばゼンジ
ミア冷間圧延機を用いて、板に張力を与え小径ロールで
圧延できると、−バス当りの圧下率を大きくして能率よ
く冷間圧延する事ができる。板に張力を与えるには冷間
圧延機の前面と後面のテンションリールにチタン合金板
を巻きつける事が考えられる。しかしこの冷間圧延に供
するチタン合金板は、例えばTi−6A Q −2Sn
−4No−2Zr合金では引張強さが約110kgf/
in+”で高強度であるため、テンションリールへ巻き
つけ難い。
[Means and effects for solving the problem] Claim (1)
First, the invention will be explained. If a titanium alloy plate can be rolled with small-diameter rolls while applying tension to the plate using, for example, a Sendzimir cold rolling mill, it is possible to increase the rolling reduction per bath and efficiently cold-roll the plate. One possible way to apply tension to the plate is to wrap the titanium alloy plate around tension reels at the front and rear sides of the cold rolling mill. However, the titanium alloy plate subjected to this cold rolling is, for example, Ti-6A Q-2Sn
-4No-2Zr alloy has a tensile strength of approximately 110 kgf/
In+” and has high strength, making it difficult to wind onto a tension reel.

チタン合金板の前部と後部とに炭素鋼やステンレス鋼の
リーダーコイルを接合して、リーダーコイルを介してテ
ンションリールに巻きつける事が考えられるが、チタン
合金板と炭素鋼や、あるいはチタン合金板とステンレス
鋼を溶接すると、溶接部に脆弱な金属間化合物が生成し
て溶接部は著しく脆く、一般的な意味で溶接は不可能で
あるためチタン合金板に張力を与えて圧延する事ができ
ない。また、リベット等の機械的接合では、接合特性的
には満足されるが、薄板にドリルで穴をあけリベットで
接合するために、その接合部が巻取りロールに接触した
際にリベットのドリル穴が大きくなり、リベットがはず
れたり、又ドリル穴より切断するために満足な接合法と
はいえない。
It is conceivable to join a carbon steel or stainless steel leader coil to the front and rear parts of a titanium alloy plate and wind it around a tension reel via the leader coil, but it is possible to connect a titanium alloy plate and carbon steel or a titanium alloy When a plate and stainless steel are welded together, a fragile intermetallic compound is generated in the weld, making the weld extremely brittle.Welding is impossible in a general sense, so it is not possible to roll the titanium alloy plate under tension. Can not. In addition, mechanical joining such as rivets is satisfactory in terms of joining properties, but since holes are drilled into thin plates and joined with rivets, when the joint comes into contact with the take-up roll, the rivet's drilled hole This is not a satisfactory joining method because the rivet becomes large, the rivet comes off, and the rivet is cut from the drilled hole.

本発明者等は、チタン合金板の前部と後部とに純チタン
のリーダーコイルを溶接し、冷間圧延機の前面と後面に
設けたテンションリールに該リーダーコイルをそれぞれ
巻きつけて、リーダーコイルを介してチタン合金板に張
力を加えて通板圧延したが、純チタンは引張り強さが約
45kgf/■膳2で軟質であるために、テンションリ
ールへの巻きつけが容易であった。またチタン合金と純
チタンのリーダーコイルとは溶接による接合部は十分な
延性が確保できて、チタン合金板に所望のテンションを
与えて冷間圧延する事ができた。
The present inventors welded pure titanium leader coils to the front and rear parts of a titanium alloy plate, and wound the leader coils around tension reels provided at the front and rear sides of a cold rolling mill. Tension was applied to the titanium alloy plate through the plate and the plate was rolled, but since pure titanium has a tensile strength of about 45 kgf/2 and is soft, it was easy to wind it around a tension reel. In addition, sufficient ductility was ensured at the welded joint between the titanium alloy and pure titanium leader coils, making it possible to cold-roll the titanium alloy plate while applying the desired tension.

チタン合金板と純チタンのリーダーコイルとの溶接は、
例えばTIG溶接や抵抗溶接やMIG溶接で行うと、安
定した接合部が得られる。
Welding of titanium alloy plate and pure titanium leader coil is
For example, a stable joint can be obtained by TIG welding, resistance welding, or MIG welding.

本発明者等は板厚が0.4〜3mmのチタン合金板を用
いて、この方法によって冷間圧延したが、lパス当りの
圧下率も大きく、かつ合計冷間圧延率で40%以下の冷
間圧延が達成できた。
The present inventors cold-rolled titanium alloy plates with a thickness of 0.4 to 3 mm using this method, but the reduction rate per pass was large, and the total cold rolling rate was 40% or less. Cold rolling was achieved.

第1図は、 Ti−6次1m−4V合金板(厚さ:0.
4mm)ニ張力を加えて冷間圧延した際のエツジクラッ
クの発生状況に及ぼす圧延張力と合計冷間圧延率の関係
を示す図である。
Figure 1 shows a Ti-6 order 1m-4V alloy plate (thickness: 0.
4 mm) is a diagram showing the relationship between the rolling tension and the total cold rolling rate on the occurrence of edge cracks when cold rolling is performed with the addition of a tension of 4 mm).

40%以下の合計圧延率で冷間圧延したチタン合金材は
、熱処理、精整して冷延コイルとした。
The titanium alloy material cold rolled at a total rolling reduction of 40% or less was heat treated and refined to form a cold rolled coil.

従来は、0.4−■よりも薄い、チタン合金の冷間圧延
コイルは製造されていなかったが1本発明の方法を用い
ると能率よく製造する事ができる。更に薄い冷延板や箔
を製造する際は1次に述べる、請求項(2)に記載の処
理を行う。
Conventionally, cold-rolled titanium alloy coils with a thickness of less than 0.4 mm have not been manufactured, but they can be manufactured efficiently using the method of the present invention. When manufacturing thinner cold-rolled sheets or foils, the treatment described in the first aspect and described in claim (2) is performed.

既に述べた如く、チタン合金は塑性加工性が悪く、冷間
圧延に際してエツジクラックを発生させ易いために、請
求項(1)の冷間圧延で合計冷間圧延率を40%以下に
制限し、冷間圧延後は冷間圧延性を回復させる処理を行
う。
As already mentioned, titanium alloy has poor plastic workability and tends to cause edge cracks during cold rolling. After cold rolling, a treatment is performed to restore cold rolling properties.

チタン合金の冷間圧延性を回復させる処理としては、冷
間圧延材を600℃〜950℃で中間焼鈍(熱処理)す
る。この熱処理によって金属組織は再結晶し、また冷間
圧延による加工歪が除去されて、冷延コイルの冷間圧延
性は回復するといわれている。
As a treatment for restoring the cold rollability of the titanium alloy, the cold rolled material is intermediately annealed (heat treated) at 600°C to 950°C. It is said that this heat treatment recrystallizes the metal structure, removes the working strain caused by cold rolling, and restores the cold rollability of the cold rolled coil.

しかし本発明者等の知見によると、冷延した冷延コイル
はこの熱処理によって、圧延組織や機械的性質は改善さ
れるが、エツジ部はこの熱処理のみでは冷間加工性の回
復が不十分で1次の冷間圧延でエツジクラックを発生さ
せ易い1本発明者等は、この熱処理に際してサイドトリ
ミングを施したが。
However, according to the findings of the present inventors, although the rolling structure and mechanical properties of cold-rolled coils are improved by this heat treatment, the cold workability of the edge portions is not sufficiently restored by this heat treatment alone. The inventors of the present invention, who tend to cause edge cracks during the first cold rolling, performed side trimming during this heat treatment.

このサイドトリミングによってエツジクラックが発生し
易い冷延コイルのエツジ部が除去されるため、次回の冷
間圧延でエツジクラックの発生を防止する事ができる。
This side trimming removes the edge portions of the cold-rolled coil where edge cracks are likely to occur, making it possible to prevent edge cracks from occurring during the next cold rolling.

第2図は、この効果の例を示す図で、エツジクラックの
発生に及ぼすトリミングの影響を示している。尚第2図
で圧延張力は10〜15kgf/−−2で板厚は0.4
7+ue→0.08+u+tである。本発明者等は、T
i−6A Q−2Sn−4No−2Zr合金板(板巾:
 380m5+)を、請求項(1)の方法で合計冷間圧
延率が40%になるように冷間圧延し、熱処理前に冷延
コイルの両サイドを31厳宛サイドトリムを行ったコイ
ルと行わなかった冷延コイルを製作した。これ等の冷延
コイルはいずれも、熱処理を行ない、その後、請求項(
1)に記載したと同様に、チタン合金コイルに張力を加
えながら過材して冷間圧延した。第2図にみられる如く
、サイドトリミングを行わなかったコイルは合計冷間圧
延率が約20%を超えるとサイドクラックが発生し易い
が、サイドトリミングを行ったコイルは、合計冷間圧延
率が40%に達してもサイドクラックの発生はなかった
。サイドトリミングは熱処理の後で行ってもよいが、熱
処理後の板は形状が悪くサイドトリミングを正確な寸法
で行う事は困難であるし、またサイドトリミングの応力
がエツジ部に残るため、サイドトリミングは熱処理前に
行う事が望ましい。請求項(2)の冷間圧延も、請求項
(1)と同様に、チタン合金の冷延材に張力を加えて通
板圧延する。
FIG. 2 is a diagram illustrating an example of this effect, showing the influence of trimming on the occurrence of edge cracks. In addition, in Fig. 2, the rolling tension is 10 to 15 kgf/--2 and the plate thickness is 0.4.
7+ue→0.08+u+t. The inventors are T
i-6A Q-2Sn-4No-2Zr alloy plate (plate width:
380m5+) was cold-rolled by the method of claim (1) so that the total cold-rolling ratio was 40%, and before heat treatment, both sides of the cold-rolled coil were subjected to side trimming of 31cm. We created a cold-rolled coil that was not available before. All of these cold-rolled coils are heat treated and then subjected to the claims (
In the same manner as described in 1), a titanium alloy coil was over-rolled and cold-rolled while applying tension. As shown in Figure 2, coils without side trimming tend to develop side cracks when the total cold rolling rate exceeds approximately 20%, but coils with side trimming tend to develop side cracks when the total cold rolling rate exceeds approximately 20%. Even when it reached 40%, no side cracks occurred. Side trimming may be performed after heat treatment, but the shape of the plate after heat treatment is poor and it is difficult to perform side trimming to accurate dimensions, and the stress from side trimming remains on the edges, so side trimming is not recommended. It is desirable to perform this before heat treatment. In the cold rolling according to claim (2), as in claim (1), tension is applied to the cold-rolled titanium alloy material and the material is passed through the sheet.

請求項(2)の工程を繰り返して行うと、所望の板厚の
高強度チタン合金の極薄板が得られるが、この方法では
圧延後の極薄板はコイル状に巻きとられるため5切板の
冷間圧延とは異なり、厚さの薄い長尺品の製造が可能で
また形状も優れている。
By repeating the process of claim (2), an ultra-thin plate of high-strength titanium alloy with a desired thickness can be obtained. However, in this method, the ultra-thin plate after rolling is wound into a coil shape, so there are only 5 cut plates. Unlike cold rolling, it is possible to manufacture long products with thin thickness, and the shape is also excellent.

[実施例コ 第1表に示すTi−6A Q −4V及びTi−6A 
Q −2No−4Zr−2Sn合金の薄板を38011
m幅に切断したものを素材とし、0.4++++++厚
みのJIS 2種(TP35C)冷延板を同幅に切断し
たものをリーダー材とし、端部をTIG溶接機により突
合せ溶接によりコイル化した。製造したコイルの概略構
成図を第3図に示す。
[Example: Ti-6A Q-4V and Ti-6A shown in Table 1]
Q-2No-4Zr-2Sn alloy thin plate 38011
The material was cut into m widths, the leader material was a JIS class 2 (TP35C) cold-rolled plate with a thickness of 0.4 ++++++ cut into the same width, and the ends were butt welded with a TIG welder to form a coil. A schematic diagram of the manufactured coil is shown in FIG. 3.

第3図(a)は供試合金薄板の前後にリーダー用の純チ
タン板を突合せTIG溶接によりコイル化したもので、
冷間圧延範囲は純チタン板と供試合金溶接部より供試合
金板側に約25mm入ったところのため、供試合金板長
さから50mm除いた範囲となる。
Figure 3 (a) shows a pure titanium plate for a leader on the front and back of a thin metal plate to be tested, which is made into a coil by TIG welding.
The cold rolling range is about 25 mm from the welded part of the pure titanium plate and the test metal plate toward the test metal plate, so it is the range that is removed by 50 mm from the length of the test metal plate.

また、(b)は供試合金板AとBを突合せTIG溶接に
よりまず接合し、その前後にリーダー用の純チタン板に
突合せ、 TIG溶接によりコイル化したもので、冷間
圧延範囲は(a)と同様に、純チタンと供試合金板の接
合部より供試合金側に約25鳳鵬入ったところとなり、
中間の供試合金板と供試合金板の溶接部は冷間圧延した
。本コイル化に当っての供試合金板AとBとは同一種類
とした。
In addition, in (b), test metal plates A and B are first joined by butt TIG welding, and then butted against a pure titanium plate for a leader before and after that, and made into a coil by TIG welding.The cold rolling range is (a ), it is about 25 mm from the joint between the pure titanium and the test gold plate to the test gold side,
The intermediate match metal plate and the welded part of the test metal plate were cold rolled. The test metal plates A and B used for making this coil were of the same type.

このようにして製造したコイルはゼンジミア圧延機のリ
ールへのセット性は非常に良好であった。
The coil produced in this manner had very good setability on the reel of a Sendzimir rolling mill.

冷間圧延はワークロール径5511膳φの合金ロールの
ゼンジミア圧延機を用い、初期張力を10kg/mis
”とし、総荷重20Tonで形状矯正し、荷重を5To
nきざみで増加させ圧延荷重まで増加させ1合計冷間圧
延率35%で圧延した。
Cold rolling was carried out using a Sendzimir rolling mill with alloy rolls with a work roll diameter of 5511mm, and the initial tension was set at 10 kg/mis.
”, the shape was corrected with a total load of 20 Ton, and the load was reduced to 5 Ton.
The rolling load was increased in n increments up to a total cold rolling rate of 35%.

荷重を5Tonきざみで増加させた理由は張力−荷重の
アンバランスに起因する形状悪化を防止すると共に、そ
れに伴う、絞り防止を防ぐためである7冷間圧延したコ
イルには耳割れ発生を防止するため、両耳部を3鳳−幅
7片側づつスリットし、圧延油等を溶媒洗浄した後、コ
イルをルーズ巻とし830℃XIHr保定の真空焼鈍し
た。
The reason why the load was increased in 5 ton increments is to prevent shape deterioration due to tension-load imbalance, and to prevent consequent squeezing. 7. To prevent edge cracking in cold-rolled coils. Therefore, both ears were slit on each side by 3 mm and 7 mm wide, and after washing the rolling oil etc. with a solvent, the coil was loosely wound and vacuum annealed at 830° C.XIHr.

ついで、合計冷間圧延率を35〜40%とし→スリット
→真空焼鈍のサイクルを2サイクル繰返し。
Then, the total cold rolling rate was set to 35 to 40%, and the cycle of → slitting → vacuum annealing was repeated for two cycles.

0、1ast X 375td X C(1)チタン合
金極薄板を製造した。製造したチタン合金極薄板の特性
を表2に示すが、AM34911Kを十分に満足すると
共に、形状的にも0.5m*1500mmの平坦度が確
保され、板厚バラツキも±5μm程度と非常に高精度の
チタン合金箔板を製造した。
0,1ast X 375td X C (1) An ultrathin titanium alloy plate was manufactured. Table 2 shows the properties of the manufactured ultra-thin titanium alloy plate, which fully satisfies AM34911K, has a flatness of 0.5m*1500mm, and has a very high plate thickness variation of approximately ±5μm. Manufactured precision titanium alloy foil plate.

製造した極薄板を航空機用のハニカム材へ適用した結果
も良好で、今後、活発な展開が予想される宇宙開発、海
洋開発等の高耐食、高比強度、非磁性等チタン合金の優
れた特性を利用もする分野に大きな貢献ができるものと
考えている。
The produced ultra-thin plates have been applied to honeycomb materials for aircraft, and the results have been good, and the excellent properties of titanium alloys such as high corrosion resistance, high specific strength, and non-magnetic properties are expected to be used in space and ocean exploration, which are expected to be actively developed in the future. We believe that this technology can make a significant contribution to fields that also utilize .

〔発明の効果] 本発明を実施する事により、表面美麗で寸法精度が優れ
、かつ厚さの薄い高強度チタン合金の冷延薄板を、能率
よく製造する事ができる。
[Effects of the Invention] By carrying out the present invention, it is possible to efficiently produce a cold-rolled sheet of high-strength titanium alloy that has a beautiful surface, excellent dimensional accuracy, and is thin in thickness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はチタン合金板の冷間圧延の際のエツジクラック
の発生状況と圧延張力と合計冷間圧延率の関係を示す図
、 第2図は、Ti−6A Q−4Mo−2Zr−2Sn合
金板のサイドトリミングの効果の例を示す図、 第3図は、実施例のコイルの構成の説明図。 である。 特許出願人  新日本製鐵株式会社
Figure 1 is a diagram showing the relationship between the occurrence of edge cracks, rolling tension, and total cold rolling reduction during cold rolling of titanium alloy sheets. A diagram showing an example of the effect of side trimming of a plate. FIG. 3 is an explanatory diagram of the configuration of a coil in an example. It is. Patent applicant Nippon Steel Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)チタン合金板の前部と後部とに純チタンのリーダ
ーコイルを溶接し、冷間圧延機の前面と後面に設けたテ
ンションリールに該リーダーコイルをそれぞれ巻きつけ
て、リーダーコイルを介してチタン合金板に張力を加え
て通板圧延して、40%以下の合計冷間圧延率で冷間圧
延する事を特徴とする、チタン合金極薄板の冷間圧延方
(1) Pure titanium leader coils are welded to the front and rear parts of the titanium alloy plate, and the leader coils are wound around tension reels provided at the front and rear sides of the cold rolling mill, and the leader coils are A method for cold rolling an ultra-thin titanium alloy plate, characterized by applying tension to a titanium alloy plate, rolling it through the plate, and cold rolling it at a total cold rolling rate of 40% or less.
(2)前部と後部とに純チタンのリーダーコイルを有す
る冷間圧延されたチタン合金材に、サイドトリミングと
焼鈍を施し、冷間圧延材の前面と後面に設けたテンショ
ンリールに該リーダーコイルをそれぞれ巻きつけて、リ
ーダーコイルを介してチタン合金板に張力を加えて通板
圧延して、40%以下の合計冷間圧延率で冷間圧延する
処理工程を、1回又は2回以上繰り返す事を特徴とする
、チタン合金極薄板の冷間圧延方法
(2) A cold-rolled titanium alloy material with pure titanium leader coils on the front and rear parts is subjected to side trimming and annealing, and the leader coils are attached to tension reels provided on the front and rear surfaces of the cold-rolled material. The process of winding each titanium alloy plate, applying tension to the titanium alloy plate through a leader coil, rolling it through the plate, and cold rolling it at a total cold rolling rate of 40% or less is repeated once or twice or more. A method for cold rolling ultra-thin titanium alloy plates, characterized by
JP1990389A 1989-01-31 1989-01-31 Cold rolling method for extremely thin titanium alloy sheet Granted JPH02200303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990389A JPH02200303A (en) 1989-01-31 1989-01-31 Cold rolling method for extremely thin titanium alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990389A JPH02200303A (en) 1989-01-31 1989-01-31 Cold rolling method for extremely thin titanium alloy sheet

Publications (2)

Publication Number Publication Date
JPH02200303A true JPH02200303A (en) 1990-08-08
JPH0525563B2 JPH0525563B2 (en) 1993-04-13

Family

ID=12012167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990389A Granted JPH02200303A (en) 1989-01-31 1989-01-31 Cold rolling method for extremely thin titanium alloy sheet

Country Status (1)

Country Link
JP (1) JPH02200303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873097A (en) * 2012-10-31 2013-01-16 西部钛业有限责任公司 Method for preventing cracking and slag falling of head and tail of titanium-alloy plate in cold rolling process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873097A (en) * 2012-10-31 2013-01-16 西部钛业有限责任公司 Method for preventing cracking and slag falling of head and tail of titanium-alloy plate in cold rolling process

Also Published As

Publication number Publication date
JPH0525563B2 (en) 1993-04-13

Similar Documents

Publication Publication Date Title
US3210840A (en) Stainless steel clad aluminum and methods of making same
WO2018181231A1 (en) Production method for resistance spot welded joint
US5552573A (en) Resistance welding process for aluminum and aluminum alloy materials
US3938723A (en) Method for rolling thin metal films
JPH02200303A (en) Cold rolling method for extremely thin titanium alloy sheet
WO2018181232A1 (en) Production method for resistance spot welded joint
JP3296271B2 (en) Titanium clad steel sheet and its manufacturing method
JP3197502B2 (en) Continuous hot rolling of steel sheet
JP2004306128A (en) Method for manufacturing b-containing stainless steel product
JPH0360804A (en) Continuous rolling method for material hard to weld
JPH01266981A (en) Manufacture of composite material consisting of aluminum or aluminum alloy and stainless steel
JPS63215389A (en) Manufacture of clad metal plate
JPS5942102A (en) Production of alpha+beta type hot rolled titanium alloy sheet having good suitability to cold rolling
JPS63303687A (en) Production of aluminum clad material
JPH10286681A (en) Production of titanium-clad steel sheet
JPS59104202A (en) Cold rolling method of ferritic stainless steel
JP6052782B2 (en) Manufacturing method of joining member
JPS6123867B2 (en)
JPH0675947B2 (en) Method for manufacturing damping metal plate
JP2000263295A (en) Method for weld-joining titanium materials
JPS5861978A (en) Copper wire for welding electrode wire for can making
JPS58164752A (en) Steel sheet for welded can with superior flanging workability
JPS63242478A (en) Manufacture of lead clad steel strip
JPH038587A (en) Production of stainless steel/al alloy clad material
JPS60206587A (en) Production of clad steel plate