JPH0219996A - Optical cable type heat sensor - Google Patents

Optical cable type heat sensor

Info

Publication number
JPH0219996A
JPH0219996A JP63169034A JP16903488A JPH0219996A JP H0219996 A JPH0219996 A JP H0219996A JP 63169034 A JP63169034 A JP 63169034A JP 16903488 A JP16903488 A JP 16903488A JP H0219996 A JPH0219996 A JP H0219996A
Authority
JP
Japan
Prior art keywords
press
winding tape
cable type
optical cable
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63169034A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Suetsugu
義行 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63169034A priority Critical patent/JPH0219996A/en
Publication of JPH0219996A publication Critical patent/JPH0219996A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To identify a heat detected place with a simple arrangement by using the local microbending loss of a covered optical fiber caused by the contraction of a press-winding tape composed of a thermo-contracting material. CONSTITUTION:Covered optical fibers 12 are twisted together around a center tensile strength wire 11 having protrusions 11a on its surface, a press-winding tape 13 composed of the thermo-contracting material is wound on the fibers 12, and a metallic conduit 14 having high heat conductivity is applied as a housing. Consequently, when the ambient temperature becomes high, and heat is transmitted to the press-winding tape 13, the press-winding tape 13 contracts in its longitudinal direction, the covered optical fibers 12 are pressed against the protrusions and meander, and optical transmission loss by microbending increases. Thus, time of day and the place where the ambient temperature rises can be accurately detected by continuously monitoring the longitudinal directional optical transmission loss distribution of the covered optical fibers 12 by a back scattering light measuring instrument.

Description

【発明の詳細な説明】 〈産業上の利用分針〉 本発明は、lim物の火災検知器、ガスタンク等の強撚
性物質貯蔵容器の温度センサ、加熱オイル輸送用のパイ
プラインからの油漏れ検出センサなどとして用いろこと
ができる光ケーブル型熱センサに関する。
[Detailed Description of the Invention] <Industrial Application Minute Hand> The present invention is applicable to fire detectors for lim materials, temperature sensors for storage containers of highly twisted substances such as gas tanks, and detection of oil leaks from pipelines for transporting heated oil. This invention relates to an optical cable type thermal sensor that can be used as a sensor, etc.

〈従来の技術〉 建築物等の火災検知器として従来より用いられているも
のとしては、例えば[機械の研究第38巻第1号(19
86)P234Jに示されている定温式スポット型熱セ
ンサがある。
<Prior art> Fire detectors conventionally used for buildings, etc. include, for example, [Machine Research Vol. 38 No. 1 (19
86) There is a constant temperature spot type thermal sensor shown in P234J.

この定温式スポット型熱センサの原理を第4図に示す。The principle of this constant temperature spot type thermal sensor is shown in FIG.

同図に示すようにこの熱センサは例えば黄銅とインバー
とのように膨張率の異なる2種の金属板をはり合せたバ
イメタル1を利用したものである。すなわち、センサ本
体2内にはバイメタル1の一端の接点aとともに、通常
状態では接点aと離れている接点すが設けられ′Cおり
、炎3などによりセンサ本体2が熱せられである温度に
達すると湾曲したバイメタル1の接点aと接点すとが接
触し・、火災ランプ4が点燈するとともに警報ベル5が
鳴るようになり一〇いる。なお、図中、6は電池を示す
As shown in the figure, this thermal sensor utilizes a bimetal 1 made by gluing together two metal plates having different coefficients of expansion, such as brass and invar. That is, the sensor body 2 is provided with a contact point a at one end of the bimetal 1, as well as a contact point that is separated from the contact point a in normal conditions. Then, the contact point a and the contact point of the curved bimetal 1 come into contact, and the fire lamp 4 lights up and the alarm bell 5 sounds. In addition, in the figure, 6 indicates a battery.

〈発明が解決しようとする課題〉 しかし、上述したように、定温式スポット型熱センサに
おいては、例えば火災等により高温状態になったときに
接点aと接点すとが接触することで火災ランプ4及び警
報ペル5に通電されるようになっているので、接点a。
<Problems to be Solved by the Invention> However, as described above, in the constant temperature spot type thermal sensor, when the temperature reaches a high temperature due to a fire, for example, when the contact point a and the contact point A come into contact, the fire lamp 4 And the alarm Pell 5 is energized, so the contact a.

b同士が接触する瞬間には必ずスパークが生じろという
問題がある。このため、この種の熱センサの用途は民家
やオフィスなどの火災報知器に限られ、例えばガスタン
ク等の強撚性物質貯蔵容器の温度センサには使用するこ
とができなかった。
There is a problem in that a spark must always occur the moment b come into contact with each other. For this reason, the use of this type of thermal sensor is limited to fire alarms in private houses and offices, and cannot be used as a temperature sensor for highly twisted material storage containers such as gas tanks.

また、この種の熱センサは電流のオン、オフによって情
報伝達を行うなめ、例えば火災場所を同定するシステム
とする場合には、一つのセンサに対して一本の銅ケーブ
ルなどの配線が必要となるという問題もある。例又は、
数百もの熱センサを必要とするような超高層ビルに火災
場所を同定する火災検知システムを導入する場合には、
数百本もの銅ケーブル等の配線が必要となり、経済的負
担が非常に大きくなる。
In addition, this type of thermal sensor transmits information by turning on and off electric current, so for example, when using a system to identify the location of a fire, wiring such as one copper cable is required for one sensor. There is also the issue of becoming. Example or
When implementing a fire detection system to identify the location of a fire in a skyscraper that requires hundreds of thermal sensors,
Hundreds of copper cables and other wiring are required, resulting in an extremely large economic burden.

本発明はこのような事情に鑑み、強撚性物質貯蔵容器の
温度センサなどにも使用できるとともに、単純な配設に
より検知場所の同定も行うことができる光ケーブル型熱
センサを提供することを目的とする。
In view of these circumstances, it is an object of the present invention to provide an optical cable type thermal sensor that can be used as a temperature sensor for storage containers for highly twisted substances, and can also identify the detection location with simple installation. shall be.

く課題を解決するための手段〉 前記目的を達成する本発明にかかる光ケーブル型熱セン
サは、表面に長さ方向に凹凸を形成する突起を有する中
心抗張力線と、該中心抗張力線の周囲に撚り合される被
覆光ファイバと、該被覆光ファイバ上に押え巻きされる
とともに熱収縮性材料からなる押え巻きテープとからな
る光ユニットを有することを特徴とする。
Means for Solving the Problems> An optical cable type thermal sensor according to the present invention that achieves the above-mentioned object has a central tensile strength line having protrusions forming unevenness in the longitudinal direction on the surface, and a wire twisted around the central tensile strength line. The present invention is characterized in that it has an optical unit comprising a coated optical fiber to be combined with the coated optical fiber, and a press-wrap tape made of a heat-shrinkable material and press-wound on the coated optical fiber.

く作   用〉 前記構成の光ケーブル型熱センサの周囲の温度が高温に
なって光ユニットを形成する押え巻きテープに熱が伝わ
ると、当該押え善きテープは長さ方向に収縮して当該光
ユニットの半径方向に強い締め付は力を与える。この際
、押え巻きテープと中心抗張力線との間に挾まれた被覆
光ファイバは当該中心抗張力線の表面の突起に押し付け
られて蛇行し、マイクロベンディングによる光伝送損失
が増加する。したがって、後方散乱光測定器により当該
被覆光ファイバの長さ方向の光伝送損失分布を連続的に
モニタずろことにより、当該光ケーブル型熱センサの周
囲の温度が上昇した時刻、場所を正確に検知することが
できろ。
Function> When the temperature around the optical cable type thermal sensor configured as described above becomes high and heat is transmitted to the presser tape that forms the optical unit, the presser tape contracts in the length direction and the optical unit is closed. Strong radial tightening provides force. At this time, the coated optical fiber sandwiched between the holding tape and the central tensile strength wire is pressed against the protrusion on the surface of the central tensile strength wire and twists, increasing optical transmission loss due to microbending. Therefore, by continuously monitoring the optical transmission loss distribution in the length direction of the coated optical fiber using a backscattered light measuring device, it is possible to accurately detect the time and place at which the temperature around the optical cable type thermal sensor increases. Be able to do that.

く実 施 例〉 以下、本発明を実施例に基づいて説明する。Practical example Hereinafter, the present invention will be explained based on examples.

第1図に示すように、本実施例の光ケーブル型熱センサ
10は、中心抗張力線11の周囲に8本の被覆光ファイ
バ12を撚り合せ、その上に熱収縮性材料からなる押え
巻きテープ13を巻回してなる光ユニットに、外被とし
て熱伝導性の高い金属11!!″14を施したものであ
る。さらに詳言ずろと、中心抗張力綿11は、直径0.
3鴎φの鋼線にポリエチレンを被覆して外径を0,4鴎
φとするとともにこのポリエチレンにより高さ0.1m
の半円球状の突起11aを約4個/ ff1m’の密度
で分布形成したものであり、被覆光ファイバ12はコア
径50μm、クラッド径125μm、比屈折率差1.0
%の通常のマルチモード光ファイバに紫外線硬化ウレタ
ンアクリレート樹脂を被覆し°C外径250μmとした
ものであり、また、押え巻きテープ13は厚み0.2m
、幅15閣であって、熱収縮開始温度が70℃、熱収縮
終了温度が90℃、最大収縮率40%の熱収縮テープで
ある。そして金属管14としては厚み0.1++w*の
ステンレス管を用い、外径1.6■φとなるようにした
。なお、本実施例の光ケーブル型熱センサ10の単長は
1 k+mとした。
As shown in FIG. 1, the optical cable type thermal sensor 10 of the present embodiment has eight coated optical fibers 12 twisted around a central tensile strength line 11, and a pressure-wrapping tape 13 made of a heat-shrinkable material placed on top of the eight coated optical fibers 12. A highly thermally conductive metal 11 is used as an outer covering for the optical unit formed by winding the . ! ''14.Moreover, in detail, the center tensile strength cotton 11 has a diameter of 0.
A steel wire with a diameter of 3 mm is coated with polyethylene to have an outer diameter of 0.4 mm, and the height is 0.1 m.
The coated optical fiber 12 has a core diameter of 50 μm, a cladding diameter of 125 μm, and a relative refractive index difference of 1.0.
% ordinary multi-mode optical fiber coated with ultraviolet curing urethane acrylate resin to have an outer diameter of 250 μm, and the pressure winding tape 13 has a thickness of 0.2 m.
It is a heat shrinkable tape with a width of 15 mm, a heat shrinkage start temperature of 70°C, a heat shrinkage end temperature of 90°C, and a maximum shrinkage rate of 40%. As the metal tube 14, a stainless steel tube with a thickness of 0.1++w* was used, and the outer diameter was 1.6 .phi. Note that the single length of the optical cable type thermal sensor 10 of this example was 1 km+m.

本実施例の光ケーブル型熱センサ10を用いて次の実醸
を行った。
The following experiment was conducted using the optical cable type thermal sensor 10 of this example.

まず、第3図に示すように、光ケーブル型熱センサ10
を1 km布設し、その一方の端末から1本の被覆光フ
ァイバ12を取り出して、波長1.3μmの後方散乱光
測定器15に接続し、光ケーブル型熱センサ10中の被
覆光ファイバ12の全長に亘っての光伝送損失分布を測
定した。このときの測定結果を第3図(alに示す。
First, as shown in FIG. 3, an optical cable type thermal sensor 10
One coated optical fiber 12 is taken out from one end of the coated optical fiber 12 and connected to a backscattered light measuring device 15 with a wavelength of 1.3 μm, and the total length of the coated optical fiber 12 in the optical cable type thermal sensor 10 is We measured the optical transmission loss distribution over The measurement results at this time are shown in FIG. 3 (al).

次に、光ケーブル型熱センサ10の中央部、すなわち両
端末から500mの地点を100℃で沸騰する湯中に浸
し、1分後に再度、被覆光ファイバ12の後方散乱光の
測定を行ったところ、第3図(blの結果となった。
Next, the central part of the optical cable type thermal sensor 10, that is, a point 500 m from both ends, was immersed in boiling water at 100°C, and after 1 minute, the backscattered light of the coated optical fiber 12 was measured again. The results are shown in Figure 3 (bl).

第3図(a)、(blより、光ケーブル型熱センサ10
はその中央部を100℃の渦中に浸されてから1分後に
は、その地点で約0.9dBの光伝送損失の増加が生じ
、熱センサとして有効であることが認められた。
From FIG. 3(a) and (bl), optical cable type thermal sensor 10
One minute after the central part of the specimen was immersed in a 100° C. vortex, an increase in optical transmission loss of approximately 0.9 dB occurred at that point, proving its effectiveness as a thermal sensor.

なお、上記実施例では中心抗張力線の表面に形成した突
起を半球形状としたがこれに限定されるものではなく、
要は押え巻きテープによりこの中心抗張力線の表面に長
さ方向に亘っての凹凸を形成して被覆光ファイバが押し
付けられた際に光ファイバにマイクロベンディングが生
じ易いような形状であればよく、例えばらせん状に形成
した突条物でもよい。
In addition, in the above embodiment, the protrusion formed on the surface of the central tensile force line was formed into a hemispherical shape, but it is not limited to this.
In short, it is sufficient to form irregularities in the longitudinal direction on the surface of the central tensile strength line using the pressure-wrapping tape so that micro-bending is likely to occur in the optical fiber when the coated optical fiber is pressed. For example, it may be a protrusion formed in a spiral shape.

また、上記実施例では光ユニツト1本を外被で覆って光
り・−プル状としたが、これに限定されず、複数本をま
とめてケーブル状としてもよいし、金属管などにルーズ
に収納したようなものであってもよい。
In addition, in the above embodiment, one optical unit is covered with an outer cover to form a light-pull shape, but the present invention is not limited to this, and multiple units may be formed into a cable-like structure, or they may be loosely stored in a metal tube or the like. It may be something like this.

〈発明の効果〉 以上説明したように、本発明の光ケーブル型熱センサは
、熱収縮材料で構成される押え巻きテープの収縮に起因
する被覆光ファイバの局所的なマイクロベンディング損
失を利用して後方散乱光により光伝送損失場所を同定で
きるので、例えば、従来においては数百側の熱センサと
数百本の銅ケーブル等の配線を必−要としていた、超高
層ビルの火災報知システムに応用する場合、−適長の光
ケーブル型熱センサを連続的にビル内に張りめぐらすt
!けでよいので、システムの構築コストを大幅に低減す
ることができる。
<Effects of the Invention> As explained above, the optical cable type thermal sensor of the present invention utilizes the local microbending loss of the coated optical fiber caused by the contraction of the pressure-wrapping tape made of a heat-shrinkable material. Since the location of optical transmission loss can be identified using scattered light, it can be applied, for example, to fire alarm systems in skyscrapers, which conventionally required hundreds of thermal sensors and hundreds of copper cables. In this case, - Optical cable type thermal sensors of appropriate length are continuously installed inside the building.
! Since only a few steps are required, the system construction cost can be significantly reduced.

また、従来の熱センサのように接点のオン。Also, like a traditional thermal sensor, the contacts are turned on.

オフによるスパークが発生する心配がないので、ガスタ
ンク等の強撚性物質貯蔵容器の温度センサや油の粘度を
下げろたために油を加熱しつつ輸送するオイル輸送用パ
イプラインからの油漏れを検知する油漏れセンサ等とし
ても有用である。
Since there is no need to worry about sparks caused by turning off, it can be used to detect oil leaks from temperature sensors in storage containers for highly twisted materials such as gas tanks, or oil transport pipelines that transport oil while heating it to lower the viscosity of the oil. It is also useful as an oil leak sensor, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1こかかる光ケーブル型熱セン
サの構成図、第2図はその光伝送損失測定例を概念的に
示す説明図、第3図(al、(blは光伝送損失測定結
果を示すグラフ、第4図は従来技術にかかる定温式スポ
ット型熱センサを示す構成図である。 図 面 中、 10は光ケーブル型熱センサ、 11は中心抗張力線、 11aは突起、 12は被覆光ファイバ、 13は押え巻きテープ、 14は金属管、 15は後方散乱光測定器である。 第 図 M2図
Figure 1 is a configuration diagram of an optical cable type thermal sensor according to Embodiment 1 of the present invention, Figure 2 is an explanatory diagram conceptually showing an example of optical transmission loss measurement, and Figure 3 (al, (bl is optical transmission loss). A graph showing the measurement results, and FIG. 4 is a configuration diagram showing a constant temperature spot type thermal sensor according to the conventional technology. A coated optical fiber, 13 a pressure tape, 14 a metal tube, and 15 a backscattered light measuring device. Fig. M2

Claims (1)

【特許請求の範囲】[Claims] 表面に長さ方向に凹凸を形成する突起を有する中心抗張
力線と、該中心抗張力線の周囲に撚り合される被覆光フ
ァイバと、該被覆光ファイバ上に押え巻きされるととも
に熱収縮性材料からなる押え巻きテープとからなる光ユ
ニットを有することを特徴とする光ケーブル型熱センサ
A central tensile strength wire having projections forming irregularities in the length direction on the surface, a coated optical fiber twisted around the central tensile strength wire, and a heat-shrinkable material wrapped around the coated optical fiber. 1. An optical cable type thermal sensor characterized by having an optical unit consisting of a presser wrapping tape.
JP63169034A 1988-07-08 1988-07-08 Optical cable type heat sensor Pending JPH0219996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63169034A JPH0219996A (en) 1988-07-08 1988-07-08 Optical cable type heat sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63169034A JPH0219996A (en) 1988-07-08 1988-07-08 Optical cable type heat sensor

Publications (1)

Publication Number Publication Date
JPH0219996A true JPH0219996A (en) 1990-01-23

Family

ID=15879095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63169034A Pending JPH0219996A (en) 1988-07-08 1988-07-08 Optical cable type heat sensor

Country Status (1)

Country Link
JP (1) JPH0219996A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021043327A (en) * 2019-09-11 2021-03-18 住友電気工業株式会社 Optical fiber unit and optical fiber cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021043327A (en) * 2019-09-11 2021-03-18 住友電気工業株式会社 Optical fiber unit and optical fiber cable

Similar Documents

Publication Publication Date Title
JP2000502438A (en) Sensor device
JPH049651A (en) Method for detecting liquid leakage from fluid transport pipe
JPH0219996A (en) Optical cable type heat sensor
JPH0219997A (en) Optical cable type heat sensor
JP3224762B2 (en) Fiber optic cable
JPH0219995A (en) Fiber type heat sensor
JPH0313831A (en) Sensor part of optical fiber temperature sensor, optical fiber temperature sensor and fire alarm apparatus
JPH05322690A (en) Optical fiber for detecting leaked liquid
JPH07280695A (en) Method for detecting leakage oil and water immersion of power cable
RU2340881C2 (en) Sensitive optical cable for systems of detecting product leakages
JPS5838469Y2 (en) fire alarm system
JPH07105749A (en) Optical fiber compound cable
JPS6038202Y2 (en) Temperature sensor using optical fiber
JPH02130438A (en) Optical fiber temperature sensor
JPH0128441Y2 (en)
TW202137157A (en) Optical fiber for temperature detection, disposing device of optical fiber for temperature detection and fire alarm system wherein the optical fiber for temperature detection includes an optical fiber and a protective material
JP2002048515A (en) Optical fiber cable
JPH02134524A (en) Optical-fiber temperature sensor
KR100441344B1 (en) Submerged optical fiber detection sensor using a side-polished fiber optic coupler
JPH0343619Y2 (en)
JPH07181086A (en) Optical fiber temperature sensor
JPH04184128A (en) Distribution type temperature sensor
JPH1073510A (en) Sensor and system for detection of liquid
Nakamura et al. Distributed oil sensing using eccentric core fibers
JPH02254596A (en) Fire detecting sensor