JPH0219954B2 - - Google Patents

Info

Publication number
JPH0219954B2
JPH0219954B2 JP54136839A JP13683979A JPH0219954B2 JP H0219954 B2 JPH0219954 B2 JP H0219954B2 JP 54136839 A JP54136839 A JP 54136839A JP 13683979 A JP13683979 A JP 13683979A JP H0219954 B2 JPH0219954 B2 JP H0219954B2
Authority
JP
Japan
Prior art keywords
magnification
copying
photoreceptor
speed
scanning means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54136839A
Other languages
Japanese (ja)
Other versions
JPS5660462A (en
Inventor
Hiroshi Ogawa
Shigehiro Komori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13683979A priority Critical patent/JPS5660462A/en
Priority to US06/141,922 priority patent/US4411514A/en
Priority to DE19803015820 priority patent/DE3015820A1/en
Publication of JPS5660462A publication Critical patent/JPS5660462A/en
Publication of JPH0219954B2 publication Critical patent/JPH0219954B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Variable Magnification In Projection-Type Copying Machines (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Description

【発明の詳細な説明】 本発明は、レンズを移動することにより原稿画
像を感光体に投影する倍率を変更するスリツト露
光式変倍複写機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a slit exposure type variable magnification copying machine that changes the magnification of projecting an original image onto a photoreceptor by moving a lens.

一般に等倍複写機においては原稿の種類、光源
のばらつき、または感光体の感度変化等に応じて
感光体への露光量を調整する場合、原稿照明ラン
プへの印加電圧を調整して光量を変化させる、レ
ンズ内の絞り量を変化させる、または原稿もしく
は感光体近傍に配設された露光スリツトの開口幅
を変化させる等の手段がとられている。
Generally, in a full-size copying machine, when adjusting the amount of exposure to the photoconductor depending on the type of document, variations in the light source, or changes in the sensitivity of the photoconductor, the light amount is changed by adjusting the voltage applied to the document illumination lamp. Measures such as changing the aperture amount in the lens or changing the aperture width of an exposure slit provided near the original or the photoreceptor have been taken.

等倍複写機においては、上記等倍複写機のよう
な露光量調整以外に更に変倍によつて感光体への
単位面積当りの光照射量が大きく変化するので、
操作者が変倍操作前に予め好みに応じて設定した
濃度での画像を得る為には、倍率を変化させるご
とに、大幅な露光量の調整を行わなければならな
い。
In a full-size copying machine, in addition to adjusting the exposure amount as in the above-mentioned full-size copying machine, the amount of light irradiated to the photoreceptor per unit area changes greatly by changing the magnification.
In order to obtain an image with a density that the operator has set in advance according to his/her preference before changing the magnification, the exposure amount must be adjusted significantly each time the magnification is changed.

従来、この種の調整装置としては、レンズ絞り
を用いて倍率変換ごとに絞り量を変化させる、露
光スリツトの開口幅を変化させて感光体へ照射さ
れる光量を調整する、または倍率変換に応じて原
稿照明ランプへの印加電圧を調整して光量を変化
させる等の手段がとられている。しかしながら上
記レンズ絞りまたは露光スリツト開口幅を変化さ
せる方式においては、操作者の手動によつて任意
に変え得るようにするとともに、選択倍率に応じ
てレンズ絞り等を自動的に変化させなければなら
ないので、駆動手段およびそれらの制御機構が複
雑となり、その上露光量調整が近似的になるため
正確さの点で問題がある。一方照明ランプ光量を
変化させる方式においては、感光体の照度が後述
するように変倍率の一次関数とはならないので、
予め設定された変倍率に対応するようにランプ光
量を設定することは極めて困難であり、且近似的
になるため前記同様に正確さの点で問題があり、
また色温度が変化するので好ましくない。特に拡
大変倍複写の場合には等倍複写に比べて感光体の
照度は減少するので、この場合にはランプ光量を
増大させなければならないが、通常の複写機の利
用面からみて等倍複写に比べて頻度の低い拡大変
倍複写に備えて高照明の照明用ランプを用意する
ことは省エネルギの見地より好ましくない。
Conventionally, this type of adjustment device uses a lens diaphragm to change the aperture amount for each magnification conversion, changes the aperture width of an exposure slit to adjust the amount of light irradiated to the photoreceptor, or adjusts the amount of light irradiated to the photoreceptor according to the magnification conversion. Measures have been taken to change the amount of light by adjusting the voltage applied to the document illumination lamp. However, in the method of changing the lens diaphragm or the exposure slit aperture width, the operator must be able to change it manually and also automatically change the lens diaphragm etc. according to the selected magnification. However, since the driving means and their control mechanism are complicated, and the exposure amount adjustment is approximate, there is a problem in terms of accuracy. On the other hand, in the method of changing the light intensity of the illumination lamp, the illuminance of the photoreceptor is not a linear function of the magnification ratio, as will be explained later.
It is extremely difficult to set the lamp light intensity to correspond to a preset magnification ratio, and as it becomes an approximation, there is a problem in terms of accuracy as described above.
Moreover, the color temperature changes, which is not preferable. In particular, in the case of enlarged and variable magnification copying, the illuminance of the photoreceptor is reduced compared to full-size copying, so in this case the amount of lamp light must be increased, but from the perspective of normal copying machine use, it is difficult to make full-size copies. From the standpoint of energy saving, it is undesirable to prepare a high illumination lamp in preparation for enlarged and variable magnification copying, which is less frequent than the conventional method.

本発明は上記従来の問題点に鑑みてなされたも
ので、特に等倍複写の他に拡大複写も選択できる
スリツト露光式変倍複写機に於いて、拡大複写に
備えた特別に高照度の原稿照明用ランプを使用し
なくとも、感光体への露光量を安定且つ正確に調
整し得るスリツト露光式変倍複写機を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and is particularly applicable to a slit exposure variable magnification copying machine that can select enlarged copying in addition to full-size copying. It is an object of the present invention to provide a slit exposure type variable magnification copying machine capable of stably and accurately adjusting the amount of exposure to a photoreceptor without using an illumination lamp.

即ち本発明は、 原稿を走査する走査手段と、この走査手段によ
り走査される原稿の画像を感光体に投影する、レ
ンズ及び感光体近傍に配設されたスリツトを有す
る光学系と、を備えており、レンズを移動するこ
とにより第1の倍率での複写と第1の倍率より大
きい第2の倍率での複写を選択可能としたスリツ
ト露光式変倍複写機に於いて、 第2の倍率での複写時には、第1の倍率での複
写時よりも感光体を低速で移動させ、且つ走査手
段も第1の倍率での複写時よりも低速で移動させ
ると共に、倍率mのときの感光体周速V(n)及び走
査手段の移動速度U(n)が、 V(n)=4/(1+m)2・V(1) U(n)=4/m(1+m)2・V(1) (ただし、V(1)は等倍複写時の感光体周速) を満たすことを特徴とするスリツト露光式変倍複
写機である。
That is, the present invention includes a scanning means for scanning an original, and an optical system having a lens and a slit disposed near the photoreceptor, which projects an image of the original scanned by the scanning means onto a photoreceptor. In a slit exposure type variable magnification copying machine that can select between copying at a first magnification and copying at a second magnification larger than the first magnification by moving the lens, When copying, the photoreceptor is moved at a slower speed than when copying at the first magnification, and the scanning means is also moved at a slower speed than when copying at the first magnification. The speed V (n) and the moving speed U (n) of the scanning means are V (n) = 4/(1+m) 2・V (1) U (n) = 4/m (1+m) 2・V (1) (However, V (1) is the circumferential speed of the photoreceptor when copying at the same magnification.) This is a slit exposure type variable magnification copying machine that satisfies the following.

また本発明は、 原稿を走査する走査手段と、この走査手段によ
り走査される原稿の画像を感光体に投影する、レ
ンズ及び原稿を載置する原稿載置手段近傍に配設
されたスリツトを有する光学系と、を備えてお
り、レンズを移動することにより第1の倍率での
複写と第1の倍率より大きい第2の倍率での複写
を選択可能としたスリツト露光式変倍複写機に於
いて、 第2の倍率での複写時には、第1の倍率での複
写時よりも感光体を低速で移動させ、且つ走査手
段も第1の倍率での複写時よりも低速で移動させ
ると共に、倍率mのときの感光体周速V(n)及び走
査手段の移動速度U(n)が、 V(n)=4m/(1+m)2・V(1) U(n)=4/(1+m)2・V(1) (ただし、V(1)は等倍複写時の感光体周速) を満たすことを特徴とするスリツト露光式変倍複
写機である。
Further, the present invention includes a scanning means for scanning an original, a lens for projecting an image of the original scanned by the scanning means onto a photoreceptor, and a slit disposed near the original placing means for placing the original. A slit exposure variable magnification copying machine is equipped with an optical system, and can select between copying at a first magnification and copying at a second magnification larger than the first magnification by moving the lens. When copying at the second magnification, the photoreceptor is moved at a slower speed than when copying at the first magnification, and the scanning means is also moved at a slower speed than when copying at the first magnification. The circumferential speed of the photoreceptor V (n) and the moving speed of the scanning means U (n) when m is V (n) = 4 m / (1 + m) 2・V (1) U (n) = 4 / (1 + m) This is a slit exposure type variable magnification copying machine that satisfies the following: 2.V (1) (where V (1) is the circumferential speed of the photoreceptor when copying at the same magnification).

以下図面により本発明の実施例について説明す
ると、第1図において1は透明な原稿台で、その
上面に原稿0が載置される。照明ランプ2と第1
ミラー3は1つの支持部材に取付けられており、
第1ミラー3と第2ミラー4は1:1/2の速度
比で矢示方向に移動して原稿0を下面より光学走
査する。原稿画像光は結像レンズ5および第3,
4ミラー6,7および露光スリツト8を介して矢
示方向に回動するドラム9の外周面に設けられた
感光体10上に露光される。上記露光スリツト8
は感光体10の近傍に配設されており、その開口
幅は複写倍率が変化しても常に一定である。ただ
し、操作者の好みの画像濃度を得る為に、濃度調
節ダイヤル等によつて随時開口幅を調節できるよ
うにしてもよい。ただし変倍操作によつてはこの
開口幅は変えられない。尚、このことは第2図の
スリツト8についても言える。なお感光体の周囲
には後述するように各種画像形成プロセス要素が
備えられている。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 1 denotes a transparent document table, on which a document 0 is placed. Lighting lamp 2 and 1st
The mirror 3 is attached to one support member,
The first mirror 3 and the second mirror 4 move in the direction of the arrow at a speed ratio of 1:1/2 to optically scan the document 0 from the bottom surface. The original image light is transmitted through the imaging lens 5 and the third lens.
The photoreceptor 10 provided on the outer peripheral surface of a drum 9 rotating in the direction of the arrow is exposed through the four mirrors 6 and 7 and the exposure slit 8. Above exposure slit 8
is arranged near the photoreceptor 10, and its aperture width is always constant even if the copying magnification changes. However, in order to obtain the image density desired by the operator, the aperture width may be adjusted at any time using a density adjustment dial or the like. However, this aperture width cannot be changed by changing the magnification. Incidentally, this also applies to the slit 8 in FIG. Note that various image forming process elements are provided around the photoreceptor, as will be described later.

上記光学系において結像レンズ5および第3,
4ミラー6,7を、等倍複写を行う実線示の位置
から鎖線示の位置に移動させることによつて変倍
複写が行われる。この場合第3,4ミラー6,7
を1つの支持部材に取付けて移動部材の点数の減
少および光学調整の容易化を図るものである。
In the above optical system, the imaging lens 5 and the third,
Variable-magnification copying is performed by moving the four mirrors 6 and 7 from the position shown by the solid line, where the same-sized copy is performed, to the position shown by the chain line. In this case, the third and fourth mirrors 6 and 7
is attached to one support member to reduce the number of movable members and facilitate optical adjustment.

結像レンズ5が5aの位置にあり、また第3,
4ミラー6,7がそれぞれ6a,7aの位置にあ
る場合は縮小変倍複写時、結像レンズ5が5bの
位置にあり、また第3,4ミラー6,7がそれぞ
れ6b,7bの位置にある場合は拡大変倍複写時
である。縮小率が拡大率の逆数であれば各レンズ
位置5a,5bは等倍時のレンズ位置に対して全
く等しい距離にあり、結像レンズ5を境として対
称位置にある。また各ミラー6,7についても同
様である。
The imaging lens 5 is located at the position 5a, and the third,
When the fourth mirrors 6 and 7 are at positions 6a and 7a, respectively, the imaging lens 5 is at position 5b during reduction/magnification copying, and the third and fourth mirrors 6 and 7 are at positions 6b and 7b, respectively. In some cases, this occurs when enlarging and changing the size of the copy. If the reduction ratio is the reciprocal of the enlargement ratio, each lens position 5a, 5b is at exactly the same distance from the lens position at the same magnification, and is at a symmetrical position with the imaging lens 5 as a boundary. The same applies to each of the mirrors 6 and 7.

上記光学系においては複写倍率が変化しても照
明ランプ光量および原稿に対するランプの照射角
度等は変化しないので原稿面の照度は一定であ
る。また露光スリツト8の開口量は常に一定であ
り、また操作者が所望の画像濃度を得る為に調整
する結像レンズ5の絞り量も変倍操作によつては
変化しないように設定されている。
In the above optical system, even if the copying magnification changes, the light intensity of the illumination lamp and the illumination angle of the lamp relative to the document do not change, so the illuminance on the surface of the document remains constant. Further, the opening amount of the exposure slit 8 is always constant, and the aperture amount of the imaging lens 5, which is adjusted by the operator to obtain the desired image density, is also set so as not to change due to the magnification changing operation. .

ここで倍率がm(但し、m=1は等倍、m<1
は縮小、m>1は拡大)の時感光体上の照度E(n)
は、 E(n)=A/(1+m)2 ……(1) で表わされる。Aランプの明るさ、原稿の種類、
結像レンズの透過率等により決定される定数であ
る。
Here, the magnification is m (however, m = 1 is the same magnification, m < 1
is the reduction, m > 1 is the expansion), the illuminance E (n) on the photoconductor
is expressed as E (n) = A/(1+m) 2 ...(1). A lamp brightness, document type,
This is a constant determined by the transmittance of the imaging lens, etc.

等倍複写時の感光体上の照度をE(1)とすると、 E(n)/E(1)=A/(1+m)2/A/(1+m)2 =4/(1+m)2 ……(2) の関係が成立する。 If the illuminance on the photoconductor during copying at the same size is E (1) , then E (n) /E (1) =A/(1+m) 2 /A/(1+m) 2 =4/(1+m) 2 ... The relationship (2) holds true.

一方感光体上への露光量は等倍、変倍複写時と
も一定にする必要があるので、感光体上への光照
射幅を変倍複写時をW(n)、等倍複写時をW(1)
し、感光体の周速を変倍複写時をV(n)、等倍複写
時をV(1)とすると、 E(n)・W(n)/V(n)=E(1)・W(1)/V(1) ……(3) の関係が成立する。
On the other hand, since the amount of light exposure on the photoreceptor needs to be constant during both full-size and variable-magnification copying, the width of light irradiation onto the photoconductor is W (n) for variable-magnification copying and W (n) for full-size copying. (1) , and the circumferential speed of the photoreceptor is V (n) during variable-magnification copying and V (1) during full-size copying, then E (n)・W (n) /V (n) = E ( The relationship 1)・W (1) /V (1) ...(3) holds true.

ところで、上記光学系においては、露光スリツ
ト8が感光体近傍に配設され、その開口量は常に
一定であるから、 W(n)=W(1) ……(4) であり、式(2),(4)を(3)に代入し、変倍複写時にお
ける感光体の周速V(n)を求めると、 V(n)=E(n)/E(1)・W(n)/W(1)・V(1) =4/(1+m)2・V(1) ……(5) となる。即ち、倍率mの時には等倍複写時の感光
体周速の4/(1+m)2倍の周速で感光体を回動させ れば等倍複写時と同一の露光量が得られるもので
ある。
By the way, in the above optical system, the exposure slit 8 is arranged near the photoreceptor, and its opening amount is always constant, so W (n) = W (1) ...(4), and formula (2) ), (4) into (3) to find the circumferential speed V (n) of the photoreceptor during variable magnification copying, V (n) = E (n) / E (1)・W (n) /W (1)・V (1) =4/(1+m) 2・V (1) ...(5) That is, when the magnification is m, if the photoreceptor is rotated at a circumferential speed that is 4/(1+m) twice the circumferential speed of the photoreceptor during full-size copying, the same amount of exposure as during full-size copying can be obtained. .

感光体の回転方向についての像の倍率をmとす
るには、第1ミラー3は倍率mの変倍複写時には
感光体の周速の1/mの速度で移動しなければなら いので、第1ミラーの移動速度(換言すれば原稿
の走査速度)をU(n)とすると、 U(n)=1/m・V(n) =4/m(1+m)2・V(1) ……(6) となる。
In order to set the magnification of the image in the rotational direction of the photoreceptor to m, the first mirror 3 must move at a speed of 1/m of the circumferential speed of the photoreceptor during variable-magnification copying with a magnification of m. If the moving speed of the mirror (in other words, the scanning speed of the document) is U (n) , then U (n) = 1/m・V (n) = 4/m (1+m) 2・V (1) ……( 6) becomes.

上記式(5),(6)から明らからように、感光体の周
速を変化させるという簡単な手段によつて変倍複
写時の露光量を等倍複写時のそれと同一に制御す
るようにすると、近似的な要素が全くなく、正確
な露光量の調整を行うことができる。特にm≧1
の等倍,拡大変倍複写の両方を行うことのできる
複写機においては効果が著しい。即ち、通常複写
機は等倍複写を行う場合が圧倒的に多いので、等
倍複写時に最適条件となるように照明ランプの光
量、感光体の周速、その他帯電条件等が設定され
ている。しかし一般的には帯電,現像条件等のプ
ロセス条件は感光体の周速が遅くなればそれだけ
余裕度が増加するので、多少プロセス条件が変動
しても画質に対しては殆んど影響しない。従つて
拡大変倍複写時には式(5)から明らかなようにV(n)
<V(1)となつて等倍複写時に比べて感光体の周速
は遅くなるので、拡大変倍複写時には非常に安定
した画質を得ることができる。この場合後述する
電位制御手段を併用すると拡大変倍複写時の画質
を等倍複写時のそれと略同一に制御し得るもので
ある。
As is clear from equations (5) and (6) above, the exposure amount during variable-magnification copying can be controlled to be the same as that during full-size copying by simply changing the circumferential speed of the photoreceptor. Then, there are no approximation factors at all, and the exposure amount can be adjusted accurately. Especially m≧1
The effect is remarkable in a copying machine that can perform both full-size and enlarged variable-size copies. That is, since copying machines normally perform copying at the same size in overwhelmingly many cases, the light intensity of the illumination lamp, the circumferential speed of the photoreceptor, and other charging conditions are set to provide optimal conditions for copying at the same size. However, in general, the slower the circumferential speed of the photoreceptor, the greater the margin of process conditions such as charging and developing conditions, so even if the process conditions vary slightly, the image quality is hardly affected. Therefore, as is clear from equation (5), V (n)
<V (1) , and the circumferential speed of the photoreceptor is slower than that during full-size copying, so that very stable image quality can be obtained during enlarged and variable-magnification copying. In this case, if a potential control means, which will be described later, is used in combination, the image quality during enlarging and variable-magnification copying can be controlled to be substantially the same as that during full-size copying.

第2図は第1図と同一の露光スリツト8を原稿
0の近傍に配設した(従つてレンズによつてスリ
ツト8の像が感光体に投影される)他の実施例で
ある。露光スリツト8は第1ミラー3と同一の支
持部材に取付けられ、それと同一方向に移動する
ものでである。
FIG. 2 shows another embodiment in which the same exposure slit 8 as in FIG. 1 is disposed near the original 0 (therefore, the image of the slit 8 is projected onto the photoreceptor by the lens). The exposure slit 8 is attached to the same support member as the first mirror 3, and moves in the same direction as the first mirror 3.

本実施例において、倍率をm、感光体上の照度
E(n)とすると、前記式(1)と同様に E(n)=A/(1+m)2 ……(1′) の関係が成立する。Aは前記と同一の定数であ
る。
In this example, the magnification is m, and the illuminance on the photoreceptor is
Assuming E (n) , the following relationship holds true as in Equation (1) above: E (n) = A/(1+m) 2 ... (1'). A is the same constant as above.

また等倍時の感光体上の照度をE(1)とすると、
前記式(2)と同様に E(n)/E(1)=4/(1+m)2 ……(2′) の関係が成立する。
Also, if the illuminance on the photoconductor at the same magnification is E (1) ,
Similar to equation (2) above, the following relationship holds: E (n) /E (1) = 4/(1+m) 2 ... (2').

本実施例においては、露光スリツト8が原稿近
傍に配設されているため、感光体上の光照射幅は
倍率mによつて変化する。
In this embodiment, since the exposure slit 8 is arranged near the original, the width of light irradiation on the photoreceptor changes depending on the magnification m.

即ち、第3図に示すように、倍率mの値に関係
なく露光スリツト8の開口量は一定であるため、
原稿に対する光照射域は等倍,変倍複写時とも一
定であり、結像レンズ5が等倍複写位置にある場
合には感光体の光照射域Aと原稿のそれとは鎖線
示A′のように一致するが、結像レンズが変倍複
写位置にある場合には両光照射域A″,Aに差を
生じることになる。
That is, as shown in FIG. 3, since the opening amount of the exposure slit 8 is constant regardless of the value of the magnification m,
The light irradiation area for the original is constant during both 1x and variable magnification copying, and when the imaging lens 5 is at the 1x copying position, the light irradiation area A of the photoreceptor and that of the original are as shown by the chain line A'. However, when the imaging lens is at the variable magnification copying position, there will be a difference between the two light irradiation areas A'' and A.

ここで倍率mのときの原稿の光照射幅をW(1)
感光体のそれをW(n)とすると、 W(n)=m・W(1) ……(3′) となる。
Here, the light irradiation width of the original when the magnification is m is W (1) ,
Letting that of the photoreceptor be W (n) , W (n) = m・W (1) ... (3').

一方感光体上への露光量は等倍,変倍複写時と
も一定にする必要があるので、変倍複写時の感光
体の周速をV(n)、等倍複写時のそれをV(1)とする
と、 E(n)・W(n)/V(n)=E(1)・W(1)/V(1) ……(4′) の関係が成立する。
On the other hand, since the amount of exposure onto the photoreceptor needs to be constant during both full-size and variable-magnification copying, the circumferential speed of the photoconductor during variable-magnification copying is V (n) , and that during full-size copying is V ( 1) , the following relationship holds: E (n)・W (n) /V (n) = E (1)・W (1) /V (1) ……(4′).

上記式(2′),(3′)を(4′)に代入し、変倍複
写時における感光体の周速V(n)を求めると、 V(n)=E(n)/E(1)・E(n)/W(1)・V(1) =4m/(1+m)2・V(1) ……(5′) となる。即ち倍率mの時には等倍複写時の感光体
周速の4m/(1+m)2倍の周速で感光体を回動させれ ば等倍複写時と周一の露光量が得られるものであ
る。
Substituting the above equations (2') and (3') into (4') to find the circumferential speed V (n) of the photoreceptor during variable magnification copying, V (n) = E (n) /E ( 1)・E (n) /W (1)・V (1) =4m/(1+m) 2・V (1) ……(5′) That is, when the magnification is m, if the photoreceptor is rotated at a circumferential speed of 4 m/(1+m) twice the circumferential speed of the photoreceptor during full-size copying, the same exposure amount as during full-size copying can be obtained.

第1ミラー3の移動速度をU(n)とすると、前記
同様に U(n)=1/m・V(n) =4/(1+m)2・V(1) となる。
If the moving speed of the first mirror 3 is U (n) , then U (n) = 1/m·V (n) = 4/(1+m) 2 ·V (1) as above.

第2図の光学系においては式(5′)から明らか
なように 4m/(1+m)2≦1 (但し、m>0) となる。従つて感光体の周速V(n)は倍率に関係な
くV(n)≦V(1)となり、拡大・縮小変倍複写におい
て等倍複写の場合よりも感光体の周速が遅くなる
ので、後述する電位制御手数を併用することによ
つて変倍複写時において等倍複写時と同一の非常
に安定した画質を得ることができる。
In the optical system shown in Figure 2, as is clear from equation (5'), 4m/(1+m) 2 ≦1 (where m>0). Therefore, the circumferential speed of the photoconductor V (n) is V (n) ≦V (1) regardless of the magnification, and the circumferential speed of the photoconductor is slower in enlargement/reduction copying than in the case of full-size copying. By using the electric potential control procedure described later in combination, it is possible to obtain the same extremely stable image quality during variable-magnification copying as during full-size copying.

第4図は感光体10の周速変換機構を示すもの
で、等倍複写時には駆動モータ11の駆動力をク
ラツチ12および13を介してそれぞれドラム
9・転写紙搬送ローラ系14および第1,2ミラ
ー3,4移動用プーリ15に伝達する。変倍複写
時には上記クラツチ12および13を切り、他方
のクラツチ16および17を入れて、駆動モータ
11の駆動力を変速ギヤ列18を介してドラム9
等に伝達するものである。
FIG. 4 shows the circumferential speed conversion mechanism of the photoreceptor 10, in which the driving force of the drive motor 11 is transferred to the drum 9, the transfer paper conveying roller system 14, and the first and second The signal is transmitted to the pulley 15 for moving the mirrors 3 and 4. During variable-magnification copying, the clutches 12 and 13 are disengaged, and the other clutch 16 and 17 is engaged, so that the driving force of the drive motor 11 is transferred to the drum 9 via the variable speed gear train 18.
etc.

上記機構例においては、1つの変倍複写につい
て説明したが、倍率に応じて設定された変速ギヤ
列およびクラツチを多段に配設することによつて
複数倍率に対処し得るものである。
In the above example of the mechanism, one variable-magnification copying case has been described, but it is possible to cope with multiple magnifications by arranging variable speed gear trains and clutches in multiple stages, which are set according to the magnification.

第5図は各種画像形成プロセス要素を備えた複
写機を示すもので、ドラム9は図示しない装置本
体に軸19によつて回転可能に支持され、前記駆
動モータ11によつて矢示方向に回転する。感光
ドラム周面には導電性基層,光導電層,透明な表
面絶縁層からなる感光体10が設けられている。
感光体10はまずコロナ放電器20によつて残留
電荷を消去された後直流コロナ放電器21によつ
て一様に一次帯電され、次いで前記光学系によつ
て原稿0の画像をスリツト露光されると同時に除
電用交流または上記帯電と逆極性の除電用直流コ
ロナ放電器22によつてコロナ放電を受ける。こ
の放電器22には光速を通過させるためにスリツ
ト開口が設けられている。その後感光体10はラ
ンプ23によつて全面均一に照明され、原稿画像
に応じた高コントラストの静電潜像が形成され
る。この静電潜像はマグネツトブラシ式等の現像
器24によつてトナー画像として可視化され、次
いでそのトナー画像は感光体10の周速と同一速
度で感光体周面に搬送された転写機Pにコロナ放
電器25によつてトナーの電荷の逆極性のコロナ
放電を与えることによつて転写される。転写後の
転写紙Pは分離部26で感光体周面から剥離され
た後加熱,加圧ローラ等を有する定着器27に導
かれ、トナー画像を定着される。一方転写後の感
光体周面はゴムブレード等のクリーニング器28
によつて残留トナー画像を除去され、次の複写作
業に備えられる。転写紙Pは図示しない給紙カセ
ツトから1枚宛感光体周面に向けて搬送される。
FIG. 5 shows a copying machine equipped with various image forming process elements, in which a drum 9 is rotatably supported by a shaft 19 on the main body (not shown), and rotated in the direction of the arrow by the drive motor 11. do. A photoreceptor 10 consisting of a conductive base layer, a photoconductive layer, and a transparent surface insulating layer is provided on the circumferential surface of the photoreceptor drum.
The photoreceptor 10 is first erased of residual charges by a corona discharger 20, and then is uniformly and primarily charged by a DC corona discharger 21, and then the image of the original 0 is slit-exposed by the optical system. At the same time, it is subjected to corona discharge by an alternating current for static elimination or a direct current corona discharger 22 for static elimination having a polarity opposite to that of the above-mentioned charging. This discharger 22 is provided with a slit opening to allow the speed of light to pass therethrough. Thereafter, the entire surface of the photoreceptor 10 is uniformly illuminated by the lamp 23, and a high-contrast electrostatic latent image corresponding to the original image is formed. This electrostatic latent image is visualized as a toner image by a developing device 24 such as a magnetic brush type, and then the toner image is conveyed to the circumferential surface of the photoconductor P at the same speed as the circumferential speed of the photoconductor 10. The toner is transferred by applying a corona discharge with a polarity opposite to that of the toner charge by the corona discharger 25. The transfer paper P after the transfer is separated from the circumferential surface of the photoreceptor in a separating section 26 and then guided to a fixing device 27 having heating and pressure rollers, etc., where the toner image is fixed. On the other hand, the peripheral surface of the photoconductor after transfer is cleaned by a cleaning device 28 such as a rubber blade.
The residual toner image is removed by the printer and the copying machine is ready for the next copying operation. The transfer paper P is conveyed from a paper feed cassette (not shown) toward the circumferential surface of the photoreceptor for one sheet.

以上述べたような露光量調整装置を備えた複写
機には等倍複写時と変倍複写時とで感光体の周速
が変化しても感光体上に形成される静電潜像の明
部電位と暗部電位とが、同一の原稿に対して、等
倍複写時にも変倍複写時にも、それぞれ同じ規格
値になるように感光体の表面電位を制御する手段
を備えている。換言すれば、第5図におけるコロ
ナ放電器21,22と感光体間の電界強度を、選
択された感光体周速に対応した強度に変え、感光
体に与えるコロナ放電を制御することによつて、
感光体の周速が変換されても、即ちプロセス速度
が変換されても、常に同質の良好な複写像を得る
ものである。
Copying machines equipped with the exposure amount adjusting device as described above are capable of controlling the brightness of the electrostatic latent image formed on the photoconductor even if the circumferential speed of the photoconductor changes between full-size copying and variable-magnification copying. Means is provided for controlling the surface potential of the photoreceptor so that the partial potential and the dark potential of the same original become the same standard value both during full-size copying and variable-magnification copying. In other words, by changing the electric field intensity between the corona dischargers 21 and 22 and the photoreceptor in FIG. 5 to an intensity corresponding to the selected photoreceptor peripheral speed, and controlling the corona discharge applied to the photoreceptor. ,
Even if the circumferential speed of the photoreceptor is changed, that is, even if the process speed is changed, a good copy image of the same quality is always obtained.

この感光体表面電位制御手段及び方法について
は、既に特願昭53−103038号明細書において詳細
に開示したものが使用できるので、ここでは簡単
に説明するに留める。この制御方式は表面電位セ
ンサ29により感光体10の表面電位をドラムの
前回転時測定し、それをフイードバツクし、補正
することによつて原稿像が露光される時のドラム
の表面電位を一定の規格内におさめる方式であ
る。ここでドラム9の前回転とは、所望の原稿か
ら所望枚数の複写を行なうに当り、まず原稿を走
査しその像を感光体に投影露光する前にドラム9
を所定回回転させることであり、この前回転が終
了して原稿が設定回数を走査され、かつその像が
感光体に露光されて所望枚数の複写物が得られ
る。
As the means and method for controlling the surface potential of the photoreceptor, those already disclosed in detail in Japanese Patent Application No. 103038/1988 can be used, so only a brief explanation will be given here. This control method uses a surface potential sensor 29 to measure the surface potential of the photoreceptor 10 during the previous rotation of the drum, feeds it back, and corrects it to maintain a constant surface potential of the drum when the original image is exposed. This is a method to keep it within the standards. Here, the pre-rotation of the drum 9 means that when copying a desired number of sheets from a desired original, the drum 9 is rotated before scanning the original and projecting the image onto the photoreceptor.
After this pre-rotation is completed, the document is scanned a set number of times, and the image thereof is exposed on the photoreceptor to obtain the desired number of copies.

さて、第5図において、感光体10を選択され
た複写倍率に対応する周速で前回転させながら一
次帯電用コロナ放電器21および除電器用コロナ
放電器22に各々基準電流を流して感光体表面の
明部電位及び暗部電位を交互にセンサ29で測定
する。明部電位測定時にはブランク露光ランプ3
0を点燈し、暗部電位測定時には消燈する。セン
サ29で検出した明部電位および暗部電位の信号
は増幅回路31で増幅され演算制御回路32に入
力される。その演算制御回路32では予め設定さ
れた目標電位定数信号発生手段33と前記センサ
29で検出した信号とを比較し、その差を算出し
予め設定しておいた補正式に従つて算出した補正
電流を基準電流にプラスして、このプラスされた
電流が一次高圧電源34および除電用コロナ放電
器電源35を介してそれぞれ一次帯電用コロナ放
電器21および除電用コロナ放電器22に印加さ
れる。こうして基準電流に補正電流をプラスした
ものの内、暗部電位に相当するものが一次帯電用
コロナ放電器21に、明部電位に相当するものが
除電用コロナ放電器22に印加される。基準電流
に補正電流をプラスしたものが次回制御時(次回
ドラム前回転時)の基準電流となる。上述した制
御を前記ドラムの前回転中に繰返した後、最終的
には感光体10の表面電位は所定の規格内に入る
ようになる。この状態になつた後原稿の走査と選
択された倍率でのその像の感光体への投影が開始
される。
Now, in FIG. 5, while the photoreceptor 10 is rotated forward at a circumferential speed corresponding to the selected copying magnification, a reference current is applied to each of the primary charging corona discharger 21 and the static eliminator corona discharger 22, and the photoreceptor is rotated. The bright and dark potentials of the surface are alternately measured by the sensor 29. Blank exposure lamp 3 when measuring bright area potential
0 is lit and turned off when dark area potential is measured. Signals of bright potential and dark potential detected by sensor 29 are amplified by amplifier circuit 31 and input to arithmetic control circuit 32 . The arithmetic control circuit 32 compares a preset target potential constant signal generation means 33 with the signal detected by the sensor 29, calculates the difference, and calculates a correction current according to a preset correction formula. is added to the reference current, and the added current is applied to the primary charging corona discharger 21 and the static elimination corona discharger 22 via the primary high voltage power supply 34 and the static elimination corona discharger power supply 35, respectively. In this way, of the reference current plus the correction current, one corresponding to the dark potential is applied to the primary charging corona discharger 21, and one corresponding to the bright potential is applied to the static elimination corona discharger 22. The reference current plus the correction current becomes the reference current for the next control (the next time the drum front rotates). After the above-described control is repeated during the pre-rotation of the drum, the surface potential of the photoreceptor 10 finally comes to fall within a predetermined standard. After this state is reached, scanning of the original and projection of its image onto the photoreceptor at the selected magnification is started.

上記制御装置で目標電位定数信号発生手段33
の信号が、複写倍率に応じて変換される。即ち、
この信号は前述のように例えば感光体周速の遅く
なるような変倍複写時はコロナ放電器21,22
への印加電圧を等倍複写時よりも変倍率に対応し
た値だけ低減させるように変換される。
Target potential constant signal generation means 33 in the above control device.
The signal is converted according to the copy magnification. That is,
As mentioned above, this signal is transmitted to the corona dischargers 21 and 22 during variable magnification copying when the circumferential speed of the photoreceptor is slow.
The voltage applied to the image is converted so as to be reduced by a value corresponding to the magnification ratio compared to when copying at the same size.

このようにして等倍複写時にも変倍複写時に
も、同一原稿に対する潜像の明部電位は明部電位
で、また暗部電位は暗部電位でそれぞれ所定の規
格範囲内に入り、常に良好な複写像が得られる。
In this way, both when copying at the same size and when copying at variable magnification, the bright area potential of the latent image for the same original is the bright area potential, and the dark area potential is within the specified standard range, so that good copies are always obtained. An image is obtained.

また上記目標電位定数信号発生手段33の信号
を多種類設けておけば、多数段変倍率を有する複
写機に対してもそのまま適用し得るものである。
Furthermore, if a variety of signals are provided for the target potential constant signal generating means 33, the present invention can be applied directly to a copying machine having a multi-stage magnification ratio.

なお、本発明は前記光学系に限らず、ミラーと
ズームレンズ、ミラーとインミラーレンズで構成
される光学系の外、ミラーとインミラーレンズで
構成される光学系でレンズを全く焦点距離の異な
るレンズと置換し、共役長のみを変更する光学系
等公知の変倍光学系にも適用し得る。また本発明
は光学系移動でなく、原稿台移動型でスリツト露
光方式の複写機にも適用し得るものである。
Note that the present invention is not limited to the above-mentioned optical system; in addition to optical systems consisting of a mirror and a zoom lens, or a mirror and an in-mirror lens, the present invention is also applicable to optical systems consisting of a mirror and an in-mirror lens, in which the lenses have completely different focal lengths. It can also be applied to known variable magnification optical systems such as optical systems that replace lenses and change only the conjugate length. Furthermore, the present invention can also be applied to a copying machine that uses a moving document table and a slit exposure method instead of a moving optical system.

本発明によれば、従来感光体上の露光量が減少
する傾向にあつた拡大複写の場合に、感光体移動
速度を等倍複写時よりも低速に変更し、原稿走査
速度も等倍複写時よりも低速に変更したから、感
光体上の露光量低下を抑制し、従つて特別に高照
度の原稿照明用ランプを使用しなくても感光体へ
の露光量を安定的に一定に保つことが可能とな
る。
According to the present invention, in the case of enlarged copying, where the amount of exposure on the photoreceptor has conventionally tended to decrease, the photoreceptor moving speed is changed to a slower speed than when copying at the same size, and the document scanning speed is also changed when copying at the same size. Since the speed has been changed to a lower speed than the previous one, it is possible to suppress the drop in the exposure amount on the photoconductor, and therefore keep the exposure amount on the photoconductor stable and constant without using a special high-intensity document illumination lamp. becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光学系の一実施例の概略図、第2図は
光学系の他の実施例の同上図、第3図は第2図光
学系の投影領域を示す説明図、第4図は感光体の
周速変換機構の一実施例の概略図、第5図は各種
画像形成プロセス要素を備えた複写機の概略図で
ある。 0は原稿、2は照明ランプ、3は第1ミラー、
4は第2ミラー、5は結像レンズ、6は第3ミラ
ー、7は第4ミラー、8は露光スリツト、9はド
ラム、10は感光体、11は変速ギヤ列、16,
17は変速用クラツチ。
Fig. 1 is a schematic diagram of one embodiment of the optical system, Fig. 2 is the same diagram as above of another embodiment of the optical system, Fig. 3 is an explanatory diagram showing the projection area of the optical system in Fig. 2, and Fig. 4 is a schematic diagram of an embodiment of the optical system. FIG. 5 is a schematic diagram of an embodiment of a circumferential speed conversion mechanism of a photoreceptor, and FIG. 5 is a schematic diagram of a copying machine equipped with various image forming process elements. 0 is the original, 2 is the illumination lamp, 3 is the first mirror,
4 is a second mirror, 5 is an imaging lens, 6 is a third mirror, 7 is a fourth mirror, 8 is an exposure slit, 9 is a drum, 10 is a photoreceptor, 11 is a transmission gear train, 16,
17 is a gear shifting clutch.

Claims (1)

【特許請求の範囲】 1 原稿を走査する走査手段と、この走査手段に
より走査される原稿の画像を感光体に投影する、
レンズ及び感光体近傍に配設されたスリツトを有
する光学系と、を備えており、レンズを移動する
ことにより第1の倍率での複写と第1の倍率より
大きい第2の倍率での複写を選択可能としたスリ
ツト露光式変倍複写機に於いて、 第2の倍率での複写時には、第1の倍率での複
写時よりも感光体を低速で移動させ、且つ走査手
段も第1の倍率での複写時よりも低速で移動させ
ると共に、倍率mのときの感光体周速V(n)及び走
査手段の移動速度U(n)が、 V(n)=4/(1+m)2・V(1) U(n)=4/m(1+m)2・V(1) (ただし、V(1)は等倍複写時の感光体周速) を満たすことを特徴とするスリツト露光式変倍複
写機。 2 原稿を走査する走査手段と、この走査手段に
より走査される原稿の画像を感光体に投影する、
レンズ及び原稿を載置する原稿載置手段近傍に配
設されたスリツトを有する光学系と、を備えてお
り、レンズを移動することにより第1の倍率での
複写と第1の倍率より大きい第2の倍率での複写
を選択可能としたスリツト露光式変倍複写機に於
いて、 第2の倍率での複写時には、第1の倍率での複
写時よりも感光体を低速で移動させ、且つ走査手
段も第1の倍率での複写時よりも低速で移動させ
ると共に、倍率mのときの感光体周速V(n)及び走
査手段の移動速度U(n)が、 V(n)=4m/(1+m)2・V(1) U(n)=4/(1+m)2・V(1) (ただし、V(1)は等倍複写時の感光体周速) を満たすことを特徴とするスリツト露光式変倍複
写機。
[Scope of Claims] 1. A scanning means for scanning an original, and an image of the original scanned by the scanning means is projected onto a photoreceptor.
an optical system having a lens and a slit disposed near the photoconductor, and by moving the lens, copying at a first magnification and copying at a second magnification larger than the first magnification are performed. In a selectable slit exposure variable magnification copying machine, when copying at the second magnification, the photoreceptor is moved at a slower speed than when copying at the first magnification, and the scanning means also moves at the first magnification. The circumferential speed of the photoreceptor V (n) and the moving speed of the scanning means U (n) when the magnification is m are V (n) = 4/(1+m) 2・V (1) Slit exposure variable magnification characterized by satisfying U (n) = 4/m (1 + m) 2・V (1) (where V (1) is the circumferential speed of the photoreceptor during copying at the same size) Copy machine. 2. A scanning means for scanning an original, and projecting an image of the original scanned by the scanning means onto a photoreceptor;
The optical system includes a lens and an optical system having a slit disposed near the document placement means for placing the document, and by moving the lens, copying at a first magnification and copying at a second magnification larger than the first magnification are performed. In a slit exposure type variable magnification copying machine that allows copying at two magnifications to be selected, when copying at the second magnification, the photoreceptor is moved at a slower speed than when copying at the first magnification, and The scanning means is also moved at a slower speed than when copying at the first magnification, and the circumferential speed of the photoreceptor V (n) and the moving speed of the scanning means U (n) at the magnification m are V (n) = 4 m. /(1+m) 2・V (1) U (n) = 4/(1+m) 2・V (1) (where, V (1) is the circumferential speed of the photoconductor during copying at the same magnification). Slit exposure variable magnification copying machine.
JP13683979A 1979-04-24 1979-10-23 Exposure light quantity adjusting device of slit exposure type variable magnification copying machine Granted JPS5660462A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13683979A JPS5660462A (en) 1979-10-23 1979-10-23 Exposure light quantity adjusting device of slit exposure type variable magnification copying machine
US06/141,922 US4411514A (en) 1979-04-24 1980-04-21 Variable magnification electrophotographic copying apparatus
DE19803015820 DE3015820A1 (en) 1979-04-24 1980-04-24 Variable magnification photocopier with constant scanning speed - has variable speed photo-sensitive layer and corrected corona charging rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13683979A JPS5660462A (en) 1979-10-23 1979-10-23 Exposure light quantity adjusting device of slit exposure type variable magnification copying machine

Publications (2)

Publication Number Publication Date
JPS5660462A JPS5660462A (en) 1981-05-25
JPH0219954B2 true JPH0219954B2 (en) 1990-05-07

Family

ID=15184701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13683979A Granted JPS5660462A (en) 1979-04-24 1979-10-23 Exposure light quantity adjusting device of slit exposure type variable magnification copying machine

Country Status (1)

Country Link
JP (1) JPS5660462A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160967A (en) * 1982-03-19 1983-09-24 Matsushita Electric Ind Co Ltd Variable power copying machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898842A (en) * 1972-03-29 1973-12-14
JPS5010124A (en) * 1973-05-24 1975-02-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898842A (en) * 1972-03-29 1973-12-14
JPS5010124A (en) * 1973-05-24 1975-02-01

Also Published As

Publication number Publication date
JPS5660462A (en) 1981-05-25

Similar Documents

Publication Publication Date Title
US4416535A (en) Electrophotographic copying apparatus
EP0296308B1 (en) Electrostatic copying apparatus
US4411514A (en) Variable magnification electrophotographic copying apparatus
JPH0522223B2 (en)
JPH07122761B2 (en) Document image forming device
JPH0219954B2 (en)
JP2840147B2 (en) Image forming device
JPS6131458B2 (en)
US4630918A (en) Image compensating method in a copying machine
JPS633306B2 (en)
JP2000181159A (en) Image forming device
JPH0320762A (en) Image forming device
JPH0241027B2 (en)
JPS6337375B2 (en)
JPS59210433A (en) Copying machine
JPH0212167A (en) Method for adjusting image density
JP2970428B2 (en) Image forming apparatus and toner band forming method thereof
JPS6023843A (en) Exposing device for original
JPS5978330A (en) Copying machine
JPH02201468A (en) Image former having criscross anamophic expansion/reduction capacity
JPH031664B2 (en)
JPS62297861A (en) Image forming device
JPS59102221A (en) Variable power copying device
JPS5895365A (en) Electrophotographic copying device
JPH01235963A (en) Electrophotographic device