JPH0219908A - Shape memory alloy device - Google Patents

Shape memory alloy device

Info

Publication number
JPH0219908A
JPH0219908A JP63170421A JP17042188A JPH0219908A JP H0219908 A JPH0219908 A JP H0219908A JP 63170421 A JP63170421 A JP 63170421A JP 17042188 A JP17042188 A JP 17042188A JP H0219908 A JPH0219908 A JP H0219908A
Authority
JP
Japan
Prior art keywords
value
resistance value
memory alloy
shape memory
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63170421A
Other languages
Japanese (ja)
Other versions
JP2702973B2 (en
Inventor
Sakae Takehata
榮 竹端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP63170421A priority Critical patent/JP2702973B2/en
Publication of JPH0219908A publication Critical patent/JPH0219908A/en
Application granted granted Critical
Publication of JP2702973B2 publication Critical patent/JP2702973B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Endoscopes (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To improve the bend responsiveness and the bend force of a shape memory alloy SMA by detecting the periphery of the start and end points of a shape recovering action based on the displacement value of the SMA and increasing automatically the heating value. CONSTITUTION:A resistance value detecting circuit 10 detects the resistance value of an SMA4 and the displacement value of the SMA4 can be detected from its resistance value. The resistance values R0 and R3 obtained before the start and after the end of a shape recovering action respectively are already known. Therefore the periphery of the start and end points of the shape recovering action can be detected as long as the resistance value R1 slightly smaller than the value R0 is defined as a 1st threshold value together with the resistance value R2 slightly larger than the value R3 defined as a 2nd threshold value respectively. The comparators 12a and 12b compare the resistance value of the SMA4 with the values R1 and R2 respectively. A control part 11 controls an energizing circuit 13 so as to obtain the energization value larger than a normal level in case the resistance value of the SMA4 is larger than the R1 or smaller than the R2. With the above arrangement, it becomes possible to enhance the responsiveness and the bending of the SMA.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は形状記憶合金を利用する形状記憶合金装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a shape memory alloy device that utilizes a shape memory alloy.

〔従来の技術〕[Conventional technology]

従来、形状記憶合金の加熱時の形状回復動作を利用する
装置が種々開発されている。例えば、特開昭62−26
041号公報に記載の内視鏡がある。ここでは、形状記
憶合金への加熱方式としては、一定電圧、または一定電
流を印加する方式、あるいはパルス幅変1凋方式か採用
されている。この場合、パルス幅変調方式ではパルス幅
は可変できても、印加電圧の振幅はi+J変できない。
Conventionally, various devices have been developed that utilize the shape recovery operation of shape memory alloys when heated. For example, JP-A-62-26
There is an endoscope described in Publication No. 041. Here, as a heating method for the shape memory alloy, a method of applying a constant voltage or a constant current, or a method of varying the pulse width is adopted. In this case, in the pulse width modulation method, although the pulse width can be varied, the amplitude of the applied voltage cannot be varied by i+J.

何故ならば、通電時間が最大の状態で、継続的に通電し
ても、形状記憶合金の温度か過度にト昇しないように印
加電圧の振幅を設定しであるからである。
This is because the amplitude of the applied voltage is set so that the temperature of the shape memory alloy does not rise excessively even if the current is continuously applied when the current is applied for the maximum time.

このように、最大通電漬か制限されているので、応答性
や湾曲カニを一時的に増大することができなかった。こ
こで、湾曲力量とは、形状記憶合金に対して抵抗、負<
、:fが印加されていて、これら抵抗、負荷に逆らって
形状記憶合金が湾曲しようとする時に発生される力を指
す。従って、挿入部の湾曲を速やかに行ないたい場合や
、挿入部の湾曲部に体腔壁が当たった場合等に対処でき
ずに、操作性が悪いという欠点があった。
As described above, since the maximum energization is limited, it is not possible to temporarily increase responsiveness or bending. Here, the bending force is the resistance to the shape memory alloy, negative <
, :f is applied and refers to the force generated when the shape memory alloy tries to bend against these resistances and loads. Therefore, it is not possible to deal with cases where the insertion portion needs to be curved quickly or where the body cavity wall hits the curved portion of the insertion portion, resulting in poor operability.

また、これを解決するために本願出願人は実願昭02−
232gg号で、形状記憶合金に通常の通電電圧、また
は通電電流よりも大きな電圧、または電流を一時的に印
加する手段を提案している。
In addition, in order to solve this problem, the applicant of the present application
No. 232gg proposes a means for temporarily applying a voltage or current larger than a normal energizing voltage or energizing current to a shape memory alloy.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、実願昭62−28299号に記載の装置
では、応答性や湾曲力量の向上のためには、通常の湾曲
操作や挿入操作に加えて、通電スイッチを操作する等の
特別な操作が必要であり、操作が複雑である。
However, in the device described in Utility Model Application No. 62-28299, special operations such as operating an energization switch are required in addition to normal bending and insertion operations in order to improve responsiveness and bending force. , and the operation is complicated.

従って、この発明の目的は煩わしい操作を必要とせすに
形状記憶合金の湾曲応答性、湾曲力量を向上できる形状
記憶合金装置を提供することである。
Therefore, an object of the present invention is to provide a shape memory alloy device that can improve the bending response and bending force of the shape memory alloy without requiring troublesome operations.

〔課題を解決するための手段〕[Means to solve the problem]

この発明による形状記憶合金装置は形状記憶合金を加熱
する通電回路と、形状記憶合金の変位量を検出する抵抗
値検出回路と、形状回復動作の開始時の変位量を第1の
閾値とし、形状回復動作の終了時の変位はを第2の閾値
とし、検出した変位はを第11第2の閾値と比較する比
較器と、検出した変位量か第1の閾値乃至第2の閾値の
範囲外にある場合は、通電回路の加熱量を増加させる制
御部を具備する。
The shape memory alloy device according to the present invention includes an energizing circuit that heats the shape memory alloy, a resistance value detection circuit that detects the amount of displacement of the shape memory alloy, and a displacement amount at the start of the shape recovery operation as a first threshold value. The displacement at the end of the recovery operation is set as a second threshold, the detected displacement is compared with an eleventh second threshold, and the detected displacement is outside the range of the first threshold or the second threshold. In this case, a control unit is provided to increase the amount of heating of the energized circuit.

〔作用〕[Effect]

この発明によれば、形状記憶合金の変位量から形状回復
動作の開始点、または終了点付近であるかを検出し、そ
れらの場合は自動的に加熱量を増加することにより、煩
わしい操作を必要とせずに形状記憶合金の湾曲応答性、
湾曲力量を向上できる。
According to this invention, it is possible to detect whether the shape memory alloy is near the start or end point of the shape recovery operation based on the amount of displacement, and in such cases, the amount of heating is automatically increased, thereby eliminating the need for troublesome operations. Bending response of shape memory alloys, without and
Can improve bending strength.

〔実施例〕〔Example〕

以F図面を参照してこの発明による形状記憶合金装置の
実施例を説明する。ここでは、内視鏡の先端湾曲部を湾
曲させるために形状記憶合金を使った例を説明する。
Hereinafter, embodiments of the shape memory alloy device according to the present invention will be described with reference to drawings F. Here, an example will be described in which a shape memory alloy is used to curve the distal end curved portion of an endoscope.

第1図に内視鏡装置全体の構成を示す。この装置は内視
鏡本体1と光源装置9からなる。内視鏡本体1の挿入部
2の先端側の湾曲部3に、線材状あるいはバネ状の形状
記憶合金(以下、SMA:5bape Memory 
A11oyと称する)4が設けられている。5MA4と
しては、N i −T i合金、Cu −Z n −A
Ω合金等の熱弾性型マルテンサイト変態を示す材料が用
いられる。記憶させておく形状は破線で示すように上側
へ湾曲した形状とする。変態点は30〜8 (1’C5
例えば60℃に設定する。すなわち、5MA4は、常時
は、実線で示すように直線状であり、加熱されると、上
側に湾曲する。
FIG. 1 shows the overall configuration of the endoscope device. This device consists of an endoscope main body 1 and a light source device 9. A wire-shaped or spring-shaped shape memory alloy (hereinafter referred to as SMA: 5bape memory
A11oy) 4 is provided. As 5MA4, Ni-Ti alloy, Cu-Zn-A
A material exhibiting thermoelastic martensitic transformation, such as an Ω alloy, is used. The shape to be memorized is a shape curved upward as shown by the broken line. The transformation point is 30-8 (1'C5
For example, set it to 60°C. That is, 5MA4 is normally in a straight line as shown by the solid line, but when heated, it curves upward.

5MA4の両端はそれぞれリード線5a、5bの一端に
接続される。一方のリード線5aの他端は操作部7に設
けられた通電スイッチ6を介し、さらにユニバーサルコ
ード8内を挿通され、光源装置9内の通電回路13、抵
抗値検出回路10に接続される。他h゛のリード線5b
の他端はユニバーサルコード8内を挿通され、光源装置
9内の通電回路13、抵抗値検出回路10に接続される
Both ends of 5MA4 are connected to one end of lead wires 5a and 5b, respectively. The other end of one lead wire 5a is passed through the energization switch 6 provided on the operating section 7, and further through the universal cord 8, and connected to the energization circuit 13 and the resistance value detection circuit 10 in the light source device 9. Lead wire 5b of other h
The other end is inserted through the universal cord 8 and connected to the energizing circuit 13 and resistance value detection circuit 10 in the light source device 9 .

抵抗値検出回路10の検出値は第1、第2の比較器12
a、12bに供給されるとともに、制御部11にも供給
される。第1、第2の比較器12a、12bは検出値を
それぞれ第1、第2の閾値と比較する。制御部11には
第1、第2比較器12a、12bの比較結果も供給され
る。制御部11からの1しす御信号が通電回路13に供
給される。
The detected value of the resistance value detection circuit 10 is detected by the first and second comparators 12.
a, 12b, and is also supplied to the control section 11. The first and second comparators 12a and 12b compare the detected values with first and second thresholds, respectively. The control unit 11 is also supplied with the comparison results of the first and second comparators 12a and 12b. A single control signal from the control section 11 is supplied to the energization circuit 13.

次に、動作を説明する。通電スイッチ6をオンすると、
5MA4と通電回路13がリード線5a。
Next, the operation will be explained. When the power switch 6 is turned on,
5MA4 and the energizing circuit 13 are the lead wires 5a.

5bを介して接続され、通電回路13からの通電信号が
5MA4に供給される。5MA4は通電によるジュール
熱により加熱され、形状回復動作を開始する。
5b, and an energization signal from the energization circuit 13 is supplied to 5MA4. 5MA4 is heated by Joule heat due to the energization, and starts a shape recovery operation.

この通電信号はパルス信号であり、抵抗値検出回路10
は通電パルスの空き時間に5MA4の抵抗値を検出する
。この抵抗値よりS M A 4の変位、すなわち湾曲
角度を知ることができる。この検出した抵抗値を制御部
11に入力することにより、制御部11では所望の湾曲
角度が得られるように通電回路13からの通電信号量を
変化させ、湾曲角度を制御する。通電量制御は通電パル
スのパルス幅(デユーティ比)を変えることにより実現
される。すなわち、デユーティ比を抵抗値に応じて変え
ている。ただし、過大な通電によるS MA4の11μ
度が過度に1.昇するのを防雨するために最大デユーテ
ィ比D a+axが設定されている。
This energization signal is a pulse signal, and the resistance value detection circuit 10
detects the resistance value of 5MA4 during the idle time of the energization pulse. From this resistance value, the displacement of S M A 4, that is, the bending angle can be known. By inputting this detected resistance value to the control section 11, the control section 11 controls the bending angle by changing the amount of energization signal from the energization circuit 13 so as to obtain a desired bending angle. Control of the energization amount is achieved by changing the pulse width (duty ratio) of the energization pulse. That is, the duty ratio is changed depending on the resistance value. However, due to excessive energization, 11μ of SMA4
The degree is excessively 1. The maximum duty ratio Da+ax is set to prevent rain from rising.

ここで、一般に、5MA4を加熱した場合、その応答性
(変位速度)は形状回復動作の開始点と終了点付近は形
状回復動作中に比べて悪い。そのため、これらの時は通
電量を増加させて応答性を向上することが必要である。
Generally, when 5MA4 is heated, its response (displacement speed) is worse near the start and end points of the shape recovery operation than during the shape recovery operation. Therefore, in these cases, it is necessary to increase the amount of current to improve responsiveness.

第2図に通電パルスのデユーティ比りを0. 1〜0.
5まで0.1刻みで変化させた時の応答性の変化を示す
。第3図は通電パルスの電圧(振幅)を5V〜9Vまで
IV刻みで変化させた時の応答性の変化を示す図である
。これらの図から、通電パルスのデユーティ比、電圧を
増加することにより、応答性を向にできることがわかる
Figure 2 shows the duty ratio of the energizing pulse as 0. 1~0.
It shows the change in responsiveness when changing up to 5 in 0.1 increments. FIG. 3 is a diagram showing changes in responsiveness when the voltage (amplitude) of the energizing pulse is changed from 5V to 9V in IV increments. From these figures, it can be seen that the responsiveness can be improved by increasing the duty ratio and voltage of the energizing pulse.

次に、11シ状同復動作の開始点と終了点付近の検出を
説明する。第4図は5MA4の温度と抵抗値の関係を示
す図である。形状回復動作開始前の抵抗(J ROと、
形状回復動作終了後の抵抗値R3は既知であるので、R
Oよりも多少低い抵抗値R1を第1の閾値とし、R3よ
りも多少高い抵抗値R2を第2の閾値とすれば、形状回
復動作の開始点と終了点付近を検出できる。ここで、抵
抗値R1,R2の値は任意に設、定可能である。
Next, detection of the vicinity of the start point and end point of the 11-shape repeating operation will be described. FIG. 4 is a diagram showing the relationship between temperature and resistance value of 5MA4. Resistance before the start of shape recovery operation (JRO and
Since the resistance value R3 after the shape recovery operation is known, R
If the resistance value R1, which is slightly lower than O, is set as the first threshold value, and the resistance value R2, which is slightly higher than R3, is set as the second threshold value, the vicinity of the start and end points of the shape recovery operation can be detected. Here, the values of the resistance values R1 and R2 can be arbitrarily set.

第1、第2の比較器12a、12bはそれぞれ5MA4
の抵抗値をR1,R2と比較する。そして、制御部11
は5MA4の抵抗値がR1とR2との間にある場合は、
通常の通電を行い、R1以−1−1またはR2以下の場
合は、通常の通電よりも大きな通電ごになるように通電
回路13を制御することにより、応答性、湾曲力鑓を向
トすることができる。
The first and second comparators 12a and 12b each have a 5MA4
Compare the resistance value of R1 and R2. And the control section 11
If the resistance value of 5MA4 is between R1 and R2, then
Normal energization is performed, and if R1 or more -1-1 or R2 or less, the energization circuit 13 is controlled so that the energization is larger than normal energization, thereby improving responsiveness and bending force. be able to.

第5図に制御回路11による通電パルスの制御例を示す
。ここで、5MA4の抵抗値RR>R1は形状回復動作
開始前、R1≧R≧R2は形状回復動作中、R2>Rは
形状回復動作終了後を示す。
FIG. 5 shows an example of controlling the energizing pulse by the control circuit 11. Here, the resistance value RR>R1 of 5MA4 indicates before the shape recovery operation starts, R1≧R≧R2 indicates during the shape recovery operation, and R2>R indicates after the shape recovery operation ends.

第5図(a)の例は形状回復動作中は最大デユーティ比
以下でパルス幅変調を行い、R>R1。
In the example shown in FIG. 5(a), pulse width modulation is performed below the maximum duty ratio during the shape recovery operation, and R>R1.

R2>Rの場合には、この最大デユーティ沈思」二のパ
ルス幅を実現できるようにして、R1≧R≧R2の場合
に比べて通電パルスのパルス幅を大きくすることにより
通[mを増加する。
In the case of R2>R, the pulse width of the maximum duty cycle can be realized, and the pulse width of the energizing pulse is increased compared to the case of R1≧R≧R2. .

同図(b)の例はR>R1、R2>Rの場合には、イン
パルス的に大電力、大電流のパルスを供給することによ
り通電量を増加する。
In the example shown in FIG. 5B, when R>R1 and R2>R, the amount of current is increased by supplying pulses of large power and large current in an impulse manner.

同図(C)の例はインパルス的ではなく均一に通電パル
スの振幅を増加する。
In the example shown in FIG. 4C, the amplitude of the energization pulse is increased uniformly rather than impulsively.

同図(d)の例は形状回復動作中は一定のデユーティ比
の中でバースト波形を発生させ、R>R1、R2>Rの
場合には、そのバースト波のパルス数を増加するととも
に、振幅を増加する。
In the example shown in (d) of the same figure, a burst waveform is generated within a constant duty ratio during the shape recovery operation, and when R>R1, R2>R, the number of pulses of the burst wave is increased and the amplitude is increased. increase.

いずれの場合でも、R>RL 、R2>Hの場合には通
電量か増加する。
In either case, when R>RL and R2>H, the amount of current flowing increases.

このように第1実施例によれば、SAM4の変位量をそ
の抵抗値から検出し、形状回復動作の開始時、または終
了時を検出し、その際は自動的に通電はを増加させるこ
とにより、5MA4の温度をすばやく変化させることが
でき、応答性、湾曲力厘の向」−が可能となる。また、
常時、大電圧、大電流を5MA4に供給する方法に比べ
、記憶形状の喪失の可能性が少なくなる。
In this way, according to the first embodiment, the amount of displacement of the SAM 4 is detected from its resistance value, and the start or end of the shape recovery operation is detected, and at that time, the energization is automatically increased. , the temperature of 5MA4 can be changed quickly, and responsiveness and bending force can be improved. Also,
Compared to the method of constantly supplying large voltage and large current to 5MA4, the possibility of losing the memory shape is reduced.

次に、第2実施例を説明する。第2実施例は第]実施例
の光源装置9の変形に関するので、その部分のみのブロ
ック図を第9図に示す。抵抗値検出回路10の出力かメ
モリ14のアドレス端子に人力され、メモリ14の出力
が制御部11に供給される。
Next, a second embodiment will be described. Since the second embodiment relates to a modification of the light source device 9 of the second embodiment, a block diagram of only that part is shown in FIG. The output of the resistance value detection circuit 10 is input to the address terminal of the memory 14, and the output of the memory 14 is supplied to the control section 11.

この第2実施例では、予め、抵抗値に応じて印加するパ
ルス幅、または電圧をメモリ14に記憶させている。こ
の記憶データは形状回復の開始、あるいは終了の前後で
大きな通電口が得られるように決められている。
In this second embodiment, the pulse width or voltage to be applied according to the resistance value is stored in the memory 14 in advance. This stored data is determined so that a large energizing port can be obtained before and after the start or end of shape recovery.

第2実施例によっても、第1実施例と同様な効果が得ら
れる。なお、制御部1]でPID制御を用いた場合には
、形状回復の開始時、あるいは終了時の前後でパラメー
タPの値を大きくすること等によっても同様の効果が得
られる。
The second embodiment also provides the same effects as the first embodiment. Note that when PID control is used in the control section 1], the same effect can be obtained by increasing the value of the parameter P before and after the start or end of shape recovery.

上述の説明では、5MA4を加熱するのにパルス通電を
用いたが、これに限らず直流通電を用いてもよい。その
例を第7図に示す。
In the above description, pulse energization was used to heat the 5MA4, but the present invention is not limited to this, and direct current may also be used. An example is shown in FIG.

5MA4は1つに限らず複数個設けて、複数の方向に湾
曲を得ることも可能である。また、医療用の内視鏡以外
にも工業用の内視鏡やカテーテル処置具等の各種のアク
チュエータに適応してもよい。さらに、5MA4の変位
量を抵抗値により検出していたが、温度センサにより温
度を検出したり、歪みゲージ等により変位を検出し、各
変位量に’21、m2の閾値を設けてもよい。
It is also possible to provide not only one but a plurality of 5MA4s to obtain curvature in a plurality of directions. In addition to medical endoscopes, the present invention may be applied to various actuators such as industrial endoscopes and catheter treatment instruments. Furthermore, although the amount of displacement of 5MA4 is detected by the resistance value, the temperature may be detected by a temperature sensor, the displacement may be detected by a strain gauge, etc., and threshold values of '21 and m2 may be provided for each amount of displacement.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、形状記憶合金
の変位量から形状回復動作の開始点、または終了点付近
であるかを検出し、それらの場合は自動的に加熱量を増
加することにより、煩わしい操作を必要とせずに応答性
、湾曲力量を向−Eできる形状記憶合金装置が提供され
る。
As explained above, according to the present invention, it is possible to detect from the amount of displacement of the shape memory alloy whether it is near the start point or end point of the shape recovery operation, and to automatically increase the amount of heating in such cases. This provides a shape memory alloy device that can improve responsiveness and bending force without requiring troublesome operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による形状記憶合金装置の第1実施例
としての内視鏡装置を示す図、第2図は通電パルスのデ
ユーティ比を変化させた時の形状記憶合金の応答性を示
す図、第3図は通電パルスの電圧を変化させた時の形状
記憶合金の応答性の変化を示す図、第4図は形状記憶合
金の温度と抵抗値の関係を示す図、第5図は通電量の増
加のための制御例を示す信号波形図、第6図は第2実施
例のブロック図、第7図は直流通電の場合の通電量の制
御例を示す信号波形図である。 1・・・内視鏡、4・・・形状記憶合金、5a、5b・
・・リード線、9・・・光源装置、10・・・抵抗値検
出回路、11・・・制御部、12a、12b・・・比較
器、13・・・通電回路。
FIG. 1 is a diagram showing an endoscope device as a first embodiment of the shape memory alloy device according to the present invention, and FIG. 2 is a diagram showing the responsiveness of the shape memory alloy when the duty ratio of the energization pulse is changed. , Figure 3 is a diagram showing the change in responsiveness of the shape memory alloy when the voltage of the energizing pulse is changed, Figure 4 is a diagram showing the relationship between the temperature and resistance value of the shape memory alloy, and Figure 5 is a diagram showing the relationship between the temperature and resistance value of the shape memory alloy. FIG. 6 is a block diagram of the second embodiment, and FIG. 7 is a signal waveform diagram showing an example of controlling the amount of energization in the case of direct current flow. 1... Endoscope, 4... Shape memory alloy, 5a, 5b.
...Lead wire, 9...Light source device, 10...Resistance value detection circuit, 11...Control unit, 12a, 12b...Comparator, 13...Electrification circuit.

Claims (1)

【特許請求の範囲】[Claims] 形状記憶合金を加熱する手段と、形状記憶合金の変位量
を検出する手段と、形状回復動作の開始時の変位量を第
1の閾値とし、形状回復動作の終了時の変位量を第2の
閾値とし、前記検出した変位量を第1、第2の閾値と比
較する手段と、前記検出した変位量が第1閾値乃至第2
の閾値の範囲外にある場合は、前記加熱手段の加熱量を
増加させる制御手段を具備する形状記憶合金装置。
A means for heating the shape memory alloy, a means for detecting the amount of displacement of the shape memory alloy, the amount of displacement at the start of the shape recovery operation as a first threshold value, and the amount of displacement at the end of the shape recovery operation as a second threshold value. means for comparing the detected displacement amount with a first threshold value and a second threshold value;
A shape memory alloy device comprising: a control means for increasing the heating amount of the heating means when the temperature is outside the threshold value range.
JP63170421A 1988-07-08 1988-07-08 Shape memory alloy device Expired - Lifetime JP2702973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63170421A JP2702973B2 (en) 1988-07-08 1988-07-08 Shape memory alloy device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63170421A JP2702973B2 (en) 1988-07-08 1988-07-08 Shape memory alloy device

Publications (2)

Publication Number Publication Date
JPH0219908A true JPH0219908A (en) 1990-01-23
JP2702973B2 JP2702973B2 (en) 1998-01-26

Family

ID=15904612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63170421A Expired - Lifetime JP2702973B2 (en) 1988-07-08 1988-07-08 Shape memory alloy device

Country Status (1)

Country Link
JP (1) JP2702973B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231989A (en) * 1991-02-15 1993-08-03 Raychem Corporation Steerable cannula
JP2011080483A (en) * 2011-01-27 2011-04-21 Konica Minolta Opto Inc Actuator drive device
JP2013126506A (en) * 2011-12-19 2013-06-27 Olympus Medical Systems Corp Endoscope apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231989A (en) * 1991-02-15 1993-08-03 Raychem Corporation Steerable cannula
US5345937A (en) * 1991-02-15 1994-09-13 Raychem Corporation Steerable cannula
JP2011080483A (en) * 2011-01-27 2011-04-21 Konica Minolta Opto Inc Actuator drive device
JP2013126506A (en) * 2011-12-19 2013-06-27 Olympus Medical Systems Corp Endoscope apparatus

Also Published As

Publication number Publication date
JP2702973B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
EP1582165B1 (en) Operative instrument with heat-generating body
EP2303218B1 (en) Smart servo for a mechanical cpr system
US6395027B1 (en) Artificial heart with arrhythmia signalling
CN216497029U (en) Temperature self-adaptive adjustment radio frequency beauty instrument
JP2006525096A5 (en)
JPH01262373A (en) Shape memory actuator
WO2004019143A3 (en) Variable wattage control system
JPH0219908A (en) Shape memory alloy device
KR970011804A (en) Process for defining and announcing the remaining time of housekeeping program
JP7232188B2 (en) Intravascular blood flow measuring device, blood flow measuring system comprising said intravascular blood flow measuring device, method for controlling operation of said intravascular blood flow measuring device, computer program for executing said method
JP3381107B2 (en) Chopping energization control device
JPH04129695A (en) Curvature operation device
JPH07178042A (en) Shape memory alloy element actuator
JPH0655473A (en) Microgripper
JP3128069B2 (en) Actuator
JPS63279841A (en) Hyperthermia device
US20230017125A1 (en) Power control for an electrosurgical vessel sealer
JPH11235085A (en) Chopped current controller for electric motor
JPH0795995B2 (en) Endoscope
JPH0731189A (en) Motor protector
JPH0397428A (en) Curving operation device for tubular fitting tool
JP2843607B2 (en) Bending operation device
JPH08172794A (en) Chopping conduction controlling equipment
JPH0445681Y2 (en)
JPH0965686A (en) Current carrying controller of electric motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11