JPH0219905B2 - - Google Patents

Info

Publication number
JPH0219905B2
JPH0219905B2 JP193181A JP193181A JPH0219905B2 JP H0219905 B2 JPH0219905 B2 JP H0219905B2 JP 193181 A JP193181 A JP 193181A JP 193181 A JP193181 A JP 193181A JP H0219905 B2 JPH0219905 B2 JP H0219905B2
Authority
JP
Japan
Prior art keywords
mol
hydrogen atom
group
reagent
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP193181A
Other languages
Japanese (ja)
Other versions
JPS57116258A (en
Inventor
Mikio Kamyama
Kenichiro Okaniwa
Shozo Kikukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP193181A priority Critical patent/JPS57116258A/en
Publication of JPS57116258A publication Critical patent/JPS57116258A/en
Publication of JPH0219905B2 publication Critical patent/JPH0219905B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/525Multi-layer analytical elements

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水性液体中の成分を分析する為の多
層分析素子に関する。より詳しく述べれば、本発
明は試薬の保存性を改良した多層分析素子に関す
る。 従来、体液中に存在する特定の生化学的物質を
検出する分析素子が開発され、臨床試験等に使用
されている。これらは分析素子に含浸させた試薬
が検出対象となる物質と反応して呈色する現象を
利用するものである。最近特に、濾紙等に試薬を
含漬させた分析素子が広く使用されている。 例えば米国特許第3050373号、又は同第3061523
号等に記載されているように、濾紙の如き繊維質
多孔性層に試薬溶液を浸漬して乾燥して作られる
ものがある。更にそれを用いて検出する時に種々
の妨害をさける試みがなされている。 例えば特公昭50−39558号公報に記載されてい
るように、濾紙に試薬溶液を含浸させて乾燥させ
たものをエチルセルロースの如き溶液に浸漬し乾
燥することによつて半透性膜を被覆し、過剰の液
体試料の吸収を抑制したり、該液体試料の保持性
をコントロールしたり、或いは更に特公昭53−
6551号公報に記載されているように、試薬を含浸
させた濾紙の上に織物又はウエブ等の細かい網で
覆い、手の接触等による汚染から保護することが
行われている。 これらの分析素子はその取扱いが簡単であり且
直ちに結果が得られるが、しばしば分析素子を不
均一に呈色させ分析結果にバラツキを生じさせる
ため定量性が劣り、定性分析もしくは半定量分析
にとどまつている。これは濾紙の如き繊維質の多
孔質層においてはまずその構造上均一なものを得
ることが難しく、これに試薬を含浸させた場合に
も均一な試薬の分析が得られないのが普通であり
更には、繊維質の濾紙の如きものを用いる場合に
は所謂クロマトグラフ現象のため、試薬含有層の
中で分析サンプル成分又は反応試薬に過度の非均
一泳動が起こり局部的な高濃度化が起こるためで
ある。 これら従来の分析素子の欠点を改善し、かつ従
来のものに比べ、飛躍的にその定量性を向上した
ものとして、例えば、特公昭53−21677号公報の
如き多層分析素子が知られている。 しかしながら上記多層分析素子も、この担体中
に含まれる試薬が貯蔵期間中に重大な劣化を示
し、従つて分析の精度及び信頼性に著しく不利益
を与える。これらは多層分析素子を構成する素材
が、水性流体に対し透過性を有している為空気及
び水の影響を大きくうけ、分析素子に含まれる過
酸化水物が指示組成物を酸化するのに触媒作用を
示すペルオキシダーゼの活性を劣化させる事によ
る。 従つて水性流体の成分の濃度を正確かつ矛循な
く比例し検知可能な生成物を生成する事が妨害さ
れる。 上記保存性を改善する為に様々な試みがなされ
てきた。例えば米国特許第3630957号の如く、前
記担体を疎水性材料から製造する方法や、米国特
許第3212855号及び同第3598704号の如く、吸水性
担体に水溶性重合体もしくは親水性コロイドを添
加し、試薬を物理的に隔離する方法が開示されて
いる。しかしながら、いずれの方法も本質的な解
決にはつながつていない。 一方特開昭54−50393号公報では、或る種の水
分散性共重合体を該試薬層に添加することで、保
存性を向上させることが可能であるむねの記載が
ある。 しかしながら上記水分散性共重合体は、アニオ
ン性単量体を導入することが難しく、共重合体の
製造時に凝集を起こし、多層分析素子としての性
能を劣化させるという欠点を有している。 本発明は、上記欠点を解消することにある。す
なわち本発明の第1の目的は、試薬の保存性を改
良した多層分析素子を提供する事にある。本発明
の第2の目的は、定量性を有し、かつ熟練した操
作技術を必要とする事なく簡易に測定できる多層
分析素子を提供する事にある。 本発明のかかる目的及び、以下に述べる目的
は、光透過性支持体に、流体試料中の成分と反応
する少なくとも1種の試薬を含みかつ親水性コロ
イド物質を含む少なくとも一層の試薬層と、その
上方に多孔質担体層とを有する多層分析素子にお
いて、前記試薬層のうちの少なくとも一層に下記
一般式〔〕、〔〕又は〔〕で示される化合物
の少なくとも一つを主成分とする高分子界面活性
と、ビニル基を有する単量体とを乳化重合して成
る水分散性共重合体を少なくとも一種含有するこ
とを特徴とする多層分析素子によつて達成され
る。 一般式〔〕 式中、R1は置換又は未置換の2価の有機基、
M1は水素原子又は1価のカチオンを表わし、n
は30〜95mol%、mは70〜5mol%を表わす。 一般式〔〕 式中、R2、R3はそれぞれ水素原子、ハロゲン
原子、アルキル基、アリール基、シアノ基又は
COOR5基(R5はアルキル基を表わす。)を表わ
し、各々同一であつても異なつていてもよい。
R4は水素原子又は低級アルキル基を表わしM2
M3、M4、M5はそれぞれ水素原子、又は1価の
カチオンを表わし、aは30〜95mol%、bは70〜
0mol%、cは70〜0mol%である。但し、b+c
は70〜5mol%である。 一般式〔〕 式中、R6、R7は水素原子、ハロゲン原子、ア
ルキル基、アリール基、シアノ基又はCOOR9
(R9はアルキル基を表わす。)R8は水素原子又は
低級アルキル基を表わしM6、M7、M8、M9は、
それぞれ水素原子又は1価のカチオンを表わす。
xは30〜70mol%、yは5〜50mol%、zは70〜
5mol%を表わし、y+zは70〜30mol%である。 次に、本発明の高分子界面活性剤活性剤の代表
的具体例を以下に示すが、これらに限定されるも
のではない。
The present invention relates to a multilayer analytical element for analyzing components in an aqueous liquid. More specifically, the present invention relates to a multilayer analytical element with improved storage stability of reagents. BACKGROUND ART Analytical elements that detect specific biochemical substances present in body fluids have been developed and used in clinical trials and the like. These methods utilize the phenomenon in which a reagent impregnated into an analytical element reacts with a substance to be detected and develops a color. Recently, particularly, analytical elements in which filter paper or the like is impregnated with reagents have been widely used. For example, US Patent No. 3050373 or US Patent No. 3061523
As described in No. 1, etc., there are some that are made by soaking a fibrous porous layer such as filter paper in a reagent solution and drying it. Furthermore, attempts have been made to avoid various interferences when performing detection using this method. For example, as described in Japanese Patent Publication No. 50-39558, a semipermeable membrane is coated by impregnating filter paper with a reagent solution and drying it, then immersing it in a solution such as ethyl cellulose and drying it. To suppress the absorption of excess liquid sample, to control the retention of the liquid sample, or to further improve the
As described in Japanese Patent No. 6551, a filter paper impregnated with a reagent is covered with a fine mesh such as fabric or web to protect it from contamination due to contact with hands or the like. Although these analytical elements are easy to handle and provide immediate results, they often have non-uniform coloration, which causes variations in analytical results, resulting in poor quantitative performance and are limited to qualitative or semi-quantitative analysis. It's on. This is because it is difficult to obtain a uniform fibrous porous layer such as a filter paper due to its structure, and even when it is impregnated with a reagent, it is usually not possible to obtain a uniform analysis of the reagent. Furthermore, when using something like a fibrous filter paper, due to the so-called chromatographic phenomenon, excessive non-uniform migration of analysis sample components or reaction reagents occurs in the reagent-containing layer, resulting in local high concentration. It's for a reason. A multilayer analytical element, such as that disclosed in Japanese Patent Publication No. 21677/1983, is known as a device that has improved the drawbacks of these conventional analytical elements and has dramatically improved quantitative performance compared to conventional analytical elements. However, the multilayer analytical elements described above also exhibit significant deterioration of the reagents contained in the carrier during storage, thus significantly penalizing the accuracy and reliability of the analysis. Because the materials that make up the multilayer analytical element are permeable to aqueous fluids, they are greatly affected by air and water, and the peroxide contained in the analytical element oxidizes the indicator composition. This is due to the deterioration of the activity of peroxidase, which exhibits catalytic action. The ability to accurately and consistently proportion the concentrations of the components of an aqueous fluid to produce a detectable product is thus hindered. Various attempts have been made to improve the above storage stability. For example, as in US Pat. No. 3,630,957, the carrier is manufactured from a hydrophobic material, as in US Pat. Nos. 3,212,855 and 3,598,704, a water-soluble polymer or a hydrophilic colloid is added to a water-absorbing carrier, A method of physically isolating reagents is disclosed. However, none of these methods lead to an essential solution. On the other hand, JP-A-54-50393 discloses that the storage stability can be improved by adding a certain type of water-dispersible copolymer to the reagent layer. However, the water-dispersible copolymer described above has the disadvantage that it is difficult to introduce an anionic monomer and aggregation occurs during production of the copolymer, deteriorating the performance as a multilayer analytical element. The present invention aims to eliminate the above-mentioned drawbacks. That is, the first object of the present invention is to provide a multilayer analytical element with improved storage stability of reagents. A second object of the present invention is to provide a multilayer analytical element that has quantitative properties and can be easily measured without requiring skilled operating techniques. Such and the following objects of the present invention are to provide a light-transparent support with at least one reagent layer containing at least one reagent that reacts with a component in a fluid sample and containing a hydrophilic colloid material; In a multilayer analytical element having a porous carrier layer above, at least one of the reagent layers has a polymer interface containing at least one of the compounds represented by the following general formula [], [], or [] as a main component. This is achieved by a multilayer analytical element characterized by containing at least one type of water-dispersible copolymer obtained by emulsion polymerization of a monomer having a vinyl group and a monomer having a vinyl group. General formula [] In the formula, R 1 is a substituted or unsubstituted divalent organic group,
M 1 represents a hydrogen atom or a monovalent cation, and n
represents 30 to 95 mol%, and m represents 70 to 5 mol%. General formula [] In the formula, R 2 and R 3 each represent a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a cyano group, or
COOR represents 5 groups (R 5 represents an alkyl group), and each may be the same or different.
R 4 represents a hydrogen atom or a lower alkyl group, M 2 ,
M 3 , M 4 , and M 5 each represent a hydrogen atom or a monovalent cation, a is 30 to 95 mol%, and b is 70 to 95 mol%.
0 mol%, c is 70-0 mol%. However, b+c
is 70-5 mol%. General formula [] In the formula, R 6 and R 7 are a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a cyano group, or a COOR 9 group (R 9 represents an alkyl group). R 8 represents a hydrogen atom or a lower alkyl group, and M 6 , M 7 , M 8 , M 9 are
Each represents a hydrogen atom or a monovalent cation.
x is 30 to 70 mol%, y is 5 to 50 mol%, z is 70 to 70 mol%
It represents 5 mol%, and y+z is 70-30 mol%. Next, typical examples of the polymeric surfactant of the present invention are shown below, but the invention is not limited thereto.

【表】【table】

【表】 前記高分子界面活性剤及びこれを用いた水分散
性共重合体の合成法に関しては、特開昭55−
50240号公報に詳述されており、それらに準じて
容易に合成することができる。 本発明に用いられるビニル単量体は、疎水性を
有しラジカル重合が可能なものであれば、それら
を単独または二種以上用いる事は任意である。
又、疎水性ビニル単量体にアクリル酸の如き親水
性単量体を共重合させる事も可能である。 ビニル単量体として好ましいものとしては、共
重合可能なエチレン性不飽和ニトリル類、スチレ
ン類、アクリル酸エステル類、メタクリル酸エス
テル類、アクリルアミド類、メタクリルアミド
類、ビニル異節環化合物、架橋性単量体、ハロゲ
ン化ビニル類、ハロゲン化ビニリデン類、ビニル
エステル類、ビニルエーテル類、共役ジエン類、
を挙げることができる。 共重合可能なエチレン性不飽知ニトリルとして
は、例えばアクリロニトリル、メタクリロニトリ
ル、α−クロルアクリロニトリルを挙げることが
できる。 スチレン類としては例えば、スチレン、p−メ
チルスチレン、α−メチルスチレン、p−クロル
スチレン、クロルメチルスチレンを挙げることが
できる。 アクリル酸エステル類としては、例えばアクリ
ル酸メチル、アクリル酸エチル、アクリル酸−n
−ブチル、アクリル酸−n−プロピル、アクリル
酸−iso−ブチル、アクリル酸−sec−ブチル、ア
クリル酸−2−ヒドロキシエチル、アクリル酸−
2−ヒドロキシプロピルを挙げることができる。
メタクリル酸エステル類としては、例えばメタク
リル酸メチル、メタクリル酸エチル、メタクリル
酸−n−ブチル、メタクリル酸−2−ヒドロキシ
エチル、メタクリル酸−2−ヒドロキシプロピル
を挙げることができる。 アクリルアミド類としては例えばアクリルアミ
ド、ジアセトンアクリルアミド、メチロールアク
リルアミド、メチルアクリルアミドを挙げること
ができる。 メタアクリルアミド類としては例えばメタアク
リルアミド、ベンジルメタアクリルアミドを挙げ
ることができる。 ビニル異節環化合物としては、例えばN−ビニ
ルピロリドン、N−ビニルイミダゾール、ビニル
ピリジン類(例えば、4−ビニルピリジン、2−
ビニルピリジン等)を挙げることができる。 架橋性単量体としては、例えばジビニルベンゼ
ン、エチレングリコールジメタアクリレート、ト
リメチロールプロパントリアクリレート、ペンタ
エリトリツトトリメタアクリレートを挙げること
ができる。 ハロゲン化ビニル類としては、例えば、塩化ビ
ニル、フツ化ビニル等を挙げることができる。 ハロゲン化ビニリデン類としては、例えば、塩
化ビニリデン、フツ化ビニリデン等を挙げること
ができる。 ビニルエステル類としては、例えば、酢酸ビニ
ル、酪酸ビニル等を挙げることができる。 ビニルエーテル類としては、例えば、ビニルメ
チルケトン、共役ジエン類、としては例えば、
1,3−ブタジエン、イソプレン、2,3−ジメ
チル−1,3−ブタジエン等を挙げることができ
る。 更に、親水性ビニル単量体の例として、アクリ
ル酸、メタクリル酸、イタコン酸等の、カルボン
酸単量体及びその塩、3−メタクリロイルオキシ
プロパン−1−スルホン酸、2−アクリルアミド
−2−メチルプロパンスルホン酸等のスルホン酸
単量体及びその塩の如きものが挙げられる。 前述の高分子界面活性剤は上記のビニル単量体
に対して、0.01重量%から、90重量%用いる事が
できる。好ましくは、0.5重量%から80重量%を
用いる事ができる。 前述の如く種々のビニル単量体を単一又は二種
以上用いる事ができるが、好ましくは疎水性ビニ
ル単量体を50%以上99.5%以下用いる事ができ
る。好ましい疎水性ビニル単量体の例として、ア
クリル酸エステル、メタアクリル酸エステル類、
スチレン類を挙げる事ができる。 本発明に係る水分散性共重合体は、前述の如く
本発明の高分子界面活性剤を用い、ビニル単量体
を水溶性ラジカル重合開始剤を用いて、通常の乳
化重合法を用いて重合する事ができるが、必要に
応じて低分子界面活性剤(例えば、アニオン性お
よびノニオン性界面活性剤)を併用する事も可能
である。 例えば、撹拌装置、冷却管、温度計、窒素ガス
導入管付の1−四ツ口フラスコに、脱気蒸留水
600mlトラツクスH−45(日本油脂(株)製、界面活性
剤、有効成分30%)10ml化合物例(7)の高分子界面
活性剤7.79g、n−ブチルメタアクリレート43g
エチルアクリレート35.21gを加え、冷却水を流
しながら窒素気流下室温で、200rpmの回転数で
撹拌を行なう。 フラスコ内のモノマーが均一に乳化された所
で、内温を70℃に昇温し、過流酸カリウム、0.48
g、メタ重亜硫酸ナトリウム0.35gを各々20mlの
脱気蒸留水に溶解した水溶液を同時に加え、
300rpmの回転数で、温度70℃で6時間重合させ
た後に室温に冷却する。これによつてポリマー固
形分11.8%、重合率99.9%の高分子界面活性剤
(7)/n−ブチルメタアクリレート/エチルアクリ
レート=9/50/41(重量比)の水分散性共重合
体を得る事ができる。 他の高分子界面活性剤も同様の処方に準じモノ
マーを適宜選択して合成する事が可能である。 本発明の光透過性支持体(以下本発明の支持体
という。)は、液体不浸透性であればその種類を
問わない。支持体として使用する特定材料は重要
ではないが、例えば、酢酸セルロース、ポリエチ
レンテレフタレート、ポリカーボネート、又はポ
リスチレンのような種々の重合体材料がこの目的
に適す。支持体の厚さは任意であるが、代表的に
は約50ミクロンから約250ミクロンとする。 本発明に係る試薬層は直接本発明の支持体に被
覆することは可能であるが、場合によつては光透
過性下塗層を使用して試薬層と支持体との間の接
着性を高めることも可能である。試薬層を設ける
目的は、これに分析すべき成分と検知可能な生成
物を生成する反応を行なわせる試薬を含有させる
事にある。 1種又は2種以上の試薬を、結合剤として親水
性コロイド物質中に分散又は溶解させた被覆物が
好ましい。親水性コロイド物質としては天然又は
合成の物質が好ましいが、更に好ましくはゼラチ
ン、ゼラチン誘導体、親水性セルロース誘導体及
びデキストラン、アラビアゴム、アガロース等の
ような多糖類及び合成の親水性物質、例えば、ポ
リビニルアルコール及びポリビニルピロリドンの
水溶性ポリビニル化合物、水溶性アクリルアミド
重合体等が含まれる。これらの選択は、検知可能
な生成物の光学的性質等によつて一部依存するこ
ともあり得る。 本発明の水分散性共重合体は、該試薬層の親水
性コロイド物質に添加あるいは一部置換する事に
よつて前述の目的を達成する事ができる。これら
本発明の水分散性共重合体は該試薬層の総結合剤
量の約5〜約60%を含有する事ができ、更に好ま
しくは、約15〜約50%含有する事ができる。 これによつて前述の目的及び他の目的が達成さ
れる。他の目的の1つに、塗布膜のカールを軽減
する事があり、更に他の目的の1つに、塗布膜の
寸度安定性を向上する事がある。 上記目的は写真工業において周知の事ではある
が、多層分析素子の分野においても、これによつ
てより高い分析の信頼性を付与する事ができる。 更に予期せざる効果として、呈色反応の発色濃
度が上昇した事が挙げられる。分析反応における
発色濃度の上昇は即ち検出感度の上昇につなが
り、著しく有利なものとなる事は言うまでもな
い。 前述該試薬層中の試験試薬を適当に選択するこ
とによりグルコース、アルブミン、尿素窒素、ビ
リルビン、アンモニア、尿酸、コレステロール、
トリグリセリド、血清グルタミン酸オキザロ酢酸
トランスアミナーゼ、乳酸脱水素酵素、乳酸、ク
レアチニン、アミラーゼ、塩化物、カルシウムの
ような血液成分ならびに他の多くの成分の分析に
使用しうるように容易に構成することができる。 これらの試験試薬の保存性向上に対し、本発明
の水分散性共重合体を添加する事は有効である
が、特に好ましい例として予め決められた成分を
酸化するのに触媒作用を示す適当な酵素、および
ペルオキシダーゼの存在下で過酸化物と反応して
検知可能な生成物を産生することができる指示組
成物、PHを調整するための化合物等が挙げられ
る。西ドイツ公開報第2735690号にその例が数多
く挙げられている。このような具体例の1つとし
て、グルコースオキシダーゼ、ペルオキシダー
ゼ、7−ヒドロキシ−1−ナフトール、4−アミ
ノアンチピリン塩酸塩、PH6のリン酸緩衝液系か
らなるグルコース分析用試薬が挙げられる。 前述試薬層に対して多層分析素子を形成するた
めの多孔質担体層は、米国特許第3929158号及び
同4042335号に記載の如く、拡散層、反射層、遮
断層、下塗り層、濾過層、もしくはレジストレー
シヨン層を有する事ができる。 これらは、同上特許明細書記載の如く、種々の
白色顔料に二酢酸セルロースを良溶媒と貧溶媒の
共存下にスラリー状に分散せしめ、前述の試薬層
上に塗布するものであり、これによつて一定の孔
径及び高い空隙率を有する層を形成させた非繊維
質多孔質媒層と称せられるものである。これと同
種のものとして、ミリポアフイルターの商品名で
知られる、ミクロフイルターも有用である事は言
うまでもない。一方上述の層と同様に特開昭56−
24576号明細書に記載の如き、繊維質多孔性担体
も用いる事が可能である。 これらの層は、 (1) 一定容量の流体試料を単位面積当り一定容量
に試薬層内に均一に配布し (2) 流体試料中の分析反応を阻害する物質又は要
因を除去し、 (3) 分光光度分析を行う際に支持体を経て、透過
する測定光を反射する良好なバツクグラウンド
作用を行う という三つの機能を有する。 これら三つの機能は、場合に応じて別々の層で
行なう事も、一つの層で全て行う事も任意であ
る。又例えば、前記機能の内、反射バツクグラウ
ンド機能のみ一つの層を用い、他の二つの機能を
一つの層にうけもたせるような組合せも可能であ
る。 本発明で用いられる流体試料は、水溶液であれ
ば良いが、生物学的流体試料、例えば血液、リン
パ液、尿、などに適用される。血液は、通常全血
と呼ばれる血球成分(赤血球、白血球、血小板
等)を含むものも、これらをのぞいた血漿又は血
清を用いる事も可能である。 分析に用いられる流体試料の量は目的によつて
選択されるが、通常微量分析で用いられる約5〜
約50μが好ましく、更には約8〜約20μが好
ましい。 以上述べてきたように、本発明の素子は、それ
らを分析すべき流体試料と接触させ、かつ前記要
素内に生成された検知可能な生成物の濃度を種々
の分光学的測定方法により、測定する事から、前
記流体試料中の予め定められた成分の濃度を計算
する事により使用する。 本発明に従い、種々の異なる素子を製造でき、
そして臨床化学の分野に限る事なく、他の化学的
研究の分野に用いる事が可能である。 本発明の具体的態様及び、従来技術の分析素子
の比較を実施例を用いて述べるが、本発明がこれ
によつて限定されるものではない事は言うまでも
ない。 実施例 1 厚さ180μの透明なポリエチレンテレフタレー
ト支持体上に (1) 試薬層として 脱イオン化ゼラチン 160mg/dm2 高分子界面活性剤(7)/n−ブチルメタアクリレ
ート/エチルアクリレート=9/50/41(重量
比)から成るラテツクス 160mg/dm2 1,7−ジヒドロキシナフタレン 6.60mg/dm2 4−アミノアンチピリン塩酸塩 9.70mg/dm2 グルコースオキシダーゼ 244.1国際単位/dm2 ペルオキシダーゼ 248AAP単位/dm2 ジメドン 2.15mg/dm2 3,3−ジメチルグルタル酸 19.6mg/dm2 を有する乾燥膜厚約30μの試薬層 (2) 非繊維質多孔層として 酢酸セルロース 70.4mg/dm2 二酸化チタン 505.9mg/dm2 オクチルフエノキシポリエトキシエタノール
(非イオン界面活性剤;商品名トリトンX−
100,ロームアンドハース社製) 13.8mg/dm2 ポリウレタンポリマー 15.5mg/dm2 から成る乾燥膜厚約140μの非繊維質多孔性媒体
層 上記の本発明のグルコース分析用分析素子を分
析素子()とし、他に非繊維質多孔性担体層の
かわりに一対の加圧的に対持されたローラーの間
を通しカレンダー処理した濾紙(東洋濾紙(株)製No.
7)を試薬層上にはりつけたものを、分析素子
()とした。 一方、比較分析素子()として、本発明の水
分散性共重合体をゼラチンで置換したもの及び、
本発明の水分散性共重合体を特開昭54−50393号
記載の水分散性共重合体(メチルアクリレート/
3−アクリロイルオキシプロパンスルホン酸
Na/2−アセトアセトキシエチルアクリレート
=88.75/4.75/6.5)に置換したものを、比較分
析素子()とした。(但し、拡散層は非繊維質
多孔性担体層である。) 上記分析素子()、()及び、比較分析素子
()、()を5℃、暗所及び25℃、暗所で20週
間放置した後、540nmで反射濃度を測定し、放置
前の測定置との差から保存後の劣化度 Δ(%)={(DR−DRO)/DRO}×100 DR:20週間放置後の540nmでの反射濃度 DRO:放置前の540nmでの反射濃度) を求めた。
[Table] Regarding the above-mentioned polymeric surfactant and the synthesis method of water-dispersible copolymer using the same, please refer to JP-A-55-
It is described in detail in Japanese Patent No. 50240, and can be easily synthesized according to those documents. The vinyl monomers used in the present invention may be used alone or in combination as long as they are hydrophobic and capable of radical polymerization.
It is also possible to copolymerize a hydrophilic monomer such as acrylic acid with a hydrophobic vinyl monomer. Preferred vinyl monomers include copolymerizable ethylenically unsaturated nitriles, styrenes, acrylic esters, methacrylic esters, acrylamides, methacrylamides, vinyl heterocyclic compounds, and crosslinkable monomers. polymers, vinyl halides, vinylidene halides, vinyl esters, vinyl ethers, conjugated dienes,
can be mentioned. Examples of copolymerizable ethylenically unsaturated nitriles include acrylonitrile, methacrylonitrile, and α-chloroacrylonitrile. Examples of styrenes include styrene, p-methylstyrene, α-methylstyrene, p-chlorostyrene, and chloromethylstyrene. Examples of acrylic esters include methyl acrylate, ethyl acrylate, and acrylic acid-n.
-butyl, n-propyl acrylate, iso-butyl acrylate, sec-butyl acrylate, 2-hydroxyethyl acrylate, acrylic acid-
Mention may be made of 2-hydroxypropyl.
Examples of methacrylic acid esters include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl methacrylate. Examples of acrylamides include acrylamide, diacetone acrylamide, methylol acrylamide, and methyl acrylamide. Examples of methacrylamides include methacrylamide and benzylmethacrylamide. Examples of vinyl heterocyclic compounds include N-vinylpyrrolidone, N-vinylimidazole, vinylpyridines (e.g., 4-vinylpyridine, 2-vinylpyridine,
vinylpyridine, etc.). Examples of the crosslinkable monomer include divinylbenzene, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, and pentaerythritol trimethacrylate. Examples of vinyl halides include vinyl chloride and vinyl fluoride. Examples of vinylidene halides include vinylidene chloride and vinylidene fluoride. Examples of vinyl esters include vinyl acetate and vinyl butyrate. Examples of vinyl ethers include vinyl methyl ketone, and examples of conjugated dienes include:
Examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, and the like. Furthermore, examples of hydrophilic vinyl monomers include carboxylic acid monomers and salts thereof such as acrylic acid, methacrylic acid, and itaconic acid, 3-methacryloyloxypropane-1-sulfonic acid, and 2-acrylamido-2-methyl. Examples include sulfonic acid monomers such as propane sulfonic acid and salts thereof. The above-mentioned polymeric surfactant can be used in an amount of 0.01% to 90% by weight based on the vinyl monomer. Preferably, 0.5% to 80% by weight can be used. As mentioned above, various vinyl monomers can be used alone or in combination, but preferably 50% or more and 99.5% or less of hydrophobic vinyl monomers can be used. Examples of preferred hydrophobic vinyl monomers include acrylic esters, methacrylic esters,
Styrenes can be mentioned. As mentioned above, the water-dispersible copolymer of the present invention can be produced by polymerizing vinyl monomers using the polymeric surfactant of the present invention and a water-soluble radical polymerization initiator using a conventional emulsion polymerization method. However, it is also possible to use a low-molecular-weight surfactant (for example, anionic and nonionic surfactant) in combination, if necessary. For example, put degassed distilled water in a 1-4 neck flask equipped with a stirrer, cooling tube, thermometer, and nitrogen gas inlet tube.
600ml Trax H-45 (manufactured by NOF Corporation, surfactant, active ingredient 30%) 10ml 7.79g of polymeric surfactant of compound example (7), 43g of n-butyl methacrylate
Add 35.21 g of ethyl acrylate, and stir at 200 rpm at room temperature under a nitrogen stream while flowing cooling water. Once the monomers in the flask were uniformly emulsified, the internal temperature was raised to 70°C, and potassium persulfate, 0.48
Simultaneously add an aqueous solution of 0.35 g of sodium metabisulfite dissolved in 20 ml of degassed distilled water,
After polymerization for 6 hours at a rotation speed of 300 rpm and a temperature of 70° C., it is cooled to room temperature. This results in a polymeric surfactant with a polymer solid content of 11.8% and a polymerization rate of 99.9%.
A water-dispersible copolymer of (7)/n-butyl methacrylate/ethyl acrylate=9/50/41 (weight ratio) can be obtained. Other polymeric surfactants can also be synthesized by appropriately selecting monomers according to the same recipe. The light-transmitting support of the present invention (hereinafter referred to as the support of the present invention) may be of any type as long as it is liquid-impermeable. The particular material used as the support is not critical, but various polymeric materials are suitable for this purpose, such as cellulose acetate, polyethylene terephthalate, polycarbonate, or polystyrene. The thickness of the support is arbitrary, but typically is about 50 microns to about 250 microns. Although it is possible to coat the reagent layer according to the present invention directly onto the support according to the present invention, in some cases it is possible to use a light-transparent subbing layer to improve the adhesion between the reagent layer and the support. It is also possible to increase it. The purpose of the reagent layer is to contain reagents that cause a reaction with the component to be analyzed to produce a detectable product. Preferred are coatings in which one or more reagents are dispersed or dissolved in a hydrophilic colloid material as a binder. The hydrophilic colloid substances are preferably natural or synthetic substances, more preferably polysaccharides such as gelatin, gelatin derivatives, hydrophilic cellulose derivatives, dextran, gum arabic, agarose, etc. and synthetic hydrophilic substances, such as polyvinyl Included are water-soluble polyvinyl compounds of alcohol and polyvinylpyrrolidone, water-soluble acrylamide polymers, and the like. These choices may depend in part on the optical properties of the detectable product, etc. The water-dispersible copolymer of the present invention can achieve the above-mentioned purpose by adding or partially substituting the hydrophilic colloid substance in the reagent layer. These water-dispersible copolymers of the present invention can contain from about 5 to about 60%, more preferably from about 15 to about 50%, of the total amount of binder in the reagent layer. This achieves the aforementioned objectives and others. Another purpose is to reduce curling of the coating film, and yet another purpose is to improve the dimensional stability of the coating film. The above objective is well known in the photographic industry, but also in the field of multilayer analytical elements, it can provide higher analytical reliability. A further unexpected effect was that the color density of the color reaction increased. It goes without saying that an increase in color density in an analytical reaction leads to an increase in detection sensitivity, which is extremely advantageous. By appropriately selecting the test reagents in the aforementioned reagent layer, glucose, albumin, urea nitrogen, bilirubin, ammonia, uric acid, cholesterol,
It can be easily configured for use in the analysis of blood components such as triglycerides, serum glutamate oxaloacetate transaminase, lactate dehydrogenase, lactate, creatinine, amylase, chloride, calcium, as well as many other components. Although it is effective to add the water-dispersible copolymer of the present invention to improve the storage stability of these test reagents, a particularly preferred example is to add a suitable copolymer that exhibits catalytic action to oxidize a predetermined component. Enzymes and indicator compositions that can react with peroxide in the presence of peroxidase to produce a detectable product, compounds for adjusting PH, and the like. Many examples are given in West German Publication No. 2735690. One such specific example is a reagent for glucose analysis consisting of glucose oxidase, peroxidase, 7-hydroxy-1-naphthol, 4-aminoantipyrine hydrochloride, and a phosphate buffer system with a pH of 6. The porous carrier layer for forming a multilayer analytical element with respect to the reagent layer can be a diffusion layer, a reflective layer, a blocking layer, an undercoat layer, a filtration layer, or a layer as described in U.S. Pat. It can have a registration layer. As described in the above patent specification, these are made by dispersing cellulose diacetate in various white pigments in the form of a slurry in the coexistence of a good solvent and a poor solvent, and coating the slurry on the above-mentioned reagent layer. This is called a non-fibrous porous medium layer in which a layer having a constant pore diameter and high porosity is formed. Needless to say, a microfilter known by the trade name Millipore Filter is also useful. On the other hand, similar to the above-mentioned layer, JP-A-56-
Fibrous porous carriers, such as those described in US Pat. No. 24,576, can also be used. These layers (1) uniformly distribute a fixed volume of fluid sample at a fixed volume per unit area within the reagent layer, (2) remove substances or factors that inhibit analytical reactions in the fluid sample, and (3) It has three functions: it provides a good background effect by reflecting the measurement light that passes through the support during spectrophotometric analysis. These three functions can be performed in separate layers or all in one layer depending on the case. For example, it is also possible to use a combination of the above-mentioned functions, such as using one layer for only the reflective background function and having the other two functions in one layer. The fluid sample used in the present invention may be an aqueous solution, but the present invention is applicable to biological fluid samples such as blood, lymph fluid, urine, and the like. The blood may include whole blood containing blood cell components (red blood cells, white blood cells, platelets, etc.), or plasma or serum excluding these components. The amount of fluid sample used for analysis is selected depending on the purpose, but is usually about 5 to 5
About 50μ is preferred, and more preferably about 8 to about 20μ. As mentioned above, the elements of the invention can be used by bringing them into contact with a fluid sample to be analyzed and measuring the concentration of detectable products formed within said elements by various spectroscopic measurement methods. It is used by calculating the concentration of a predetermined component in the fluid sample. According to the invention, a variety of different devices can be manufactured,
And it can be used not only in the field of clinical chemistry but also in other chemical research fields. Specific embodiments of the present invention and comparisons of conventional analytical elements will be described using examples, but it goes without saying that the present invention is not limited thereto. Example 1 On a 180μ thick transparent polyethylene terephthalate support (1) Deionized gelatin 160mg/dm as reagent layer 2 Polymer surfactant (7)/n-butyl methacrylate/ethyl acrylate = 9/50/ Latex consisting of 41 (by weight) 160 mg/dm 2 1,7-dihydroxynaphthalene 6.60 mg/dm 2 4-aminoantipyrine hydrochloride 9.70 mg/dm 2 Glucose oxidase 244.1 international units/dm 2 Peroxidase 248 AAP units/dm 2 Dimedone 2.15 mg/dm 2 3,3-dimethylglutaric acid 19.6 mg/dm 2 Reagent layer of approximately 30 μ dry film thickness (2) Cellulose acetate as non-fibrous porous layer 70.4 mg/dm 2 Titanium dioxide 505.9 mg/dm 2 Octyl Phenoxypolyethoxyethanol (nonionic surfactant; trade name Triton X-
100, manufactured by Rohm and Haas) 13.8mg/dm 2 A non-fibrous porous media layer with a dry film thickness of approximately 140μ consisting of a polyurethane polymer 15.5mg/dm 2 The above analytical element for glucose analysis of the present invention is an analytical element () In addition, instead of the non-fibrous porous carrier layer, a filter paper (No.
7) was pasted onto the reagent layer to form an analytical element (). On the other hand, as a comparative analysis element (), one in which the water-dispersible copolymer of the present invention was replaced with gelatin;
The water-dispersible copolymer of the present invention is a water-dispersible copolymer (methyl acrylate/
3-Acryloyloxypropanesulfonic acid
The element substituted with Na/2-acetoacetoxyethyl acrylate = 88.75/4.75/6.5) was used as a comparative analytical element (). (However, the diffusion layer is a non-fibrous porous carrier layer.) The above analytical elements (), () and comparative analytical elements (), () were stored at 5°C in the dark and at 25°C in the dark for 20 weeks. After being left for storage, the reflection density was measured at 540 nm, and the degree of deterioration after storage Δ (%) = {(D R − D RO )/D RO } × 100 D R : 20 weeks from the difference from the measurement position before being left. The reflection density at 540 nm after standing ( DRO : reflection density at 540 nm before standing) was determined.

【表】 以上表−1に示した如く、本発明の分析素子
は、比較分析素子に比べ放置によるカブリ生成が
少ない良好なものである事が判る。 実施例 2 実施例1で用いた本発明のグルコース分析用分
析素子()及び()と比較分析素子()を
用いて、250mg/dl、350mg/dl、500mg/dlのグ
ルコースを含有するコントロール血清10μを用
いて、37℃ 7分間 インキユベーシヨンをした
後に、540nmの反射濃度を測定した。
[Table] As shown in Table 1 above, it can be seen that the analytical element of the present invention is a good one with less fogging due to neglect than the comparative analytical element. Example 2 Control serum containing glucose of 250 mg/dl, 350 mg/dl, and 500 mg/dl was prepared using the analytical elements for glucose analysis () and () of the present invention used in Example 1 and the comparative analytical element (). After incubation at 37° C. for 7 minutes using 10μ, the reflection density at 540 nm was measured.

【表】 表−2に示した如く本発明の分析素子は、比較
分析素子に比べ発色濃度が高く、かつ傾きが大き
く、感度が高い事が判る。
[Table] As shown in Table 2, the analytical element of the present invention has a higher color density and a larger slope than the comparative analytical element, indicating that it has high sensitivity.

Claims (1)

【特許請求の範囲】 1 光透過性支持体に、流体試料中の成分と反応
する少なくとも1種の試薬を含みかつ親水性コロ
イド物質を含む少なくとも一層の試薬層と、その
上方に多孔質担体層とを有する多層分析素子にお
いて、前記試薬層のうちの少なくとも一層に下記
一般式〔〕、〔〕又は〔〕で示される化合物
の少なくとも一つを主成分とする高分子界面活性
剤と、ビニル基を有する単量体とを乳化重合して
成る水分散性共重合体を少なくとも一種含有する
ことを特徴とする多層分析素子。 一般式〔〕 〔式中、R1は置換又は未置換の2価の有機基、
M1は水素原子又は1価のカチオンを表わし、n
は30〜95mol%、mは70〜5mol%を表わす。〕 一般式〔〕 〔式中、R2、R3はそれぞれ水素原子、ハロゲン
原子、アルキル基、アリール基、シアノ基又は
COOR5基(R5はアルキル基を表わす。)を表わ
し、各々同一であつても異なつていてもよい。
R4は水素原子又は低級アルキル基を表わし、
M2、M3、M4、M5はそれぞれ水素原子、又は1
価のカチオンを表わし、aは30〜95mol%、bは
70〜0mol%、cは70〜0mol%である。但し、b
+cは70〜5mol%である。〕 一般式〔〕 〔式中、R6、R7は水素原子、ハロゲン原子、ア
ルキル基、アリール基、シアノ基又はCOOR9
(R9はアルキル基を表わす。)R8は水素原子又は
低級アルキル基を表わしM6、M7、M8、M9は、
それぞれ水素原子又は1価のカチオンを表わす。
xは30〜70mol%、yは5〜50mol%、zは70〜
5mol%を表わし、y+zは70〜30mol%であ
る。〕 2 前記試薬が、前記流体試料中の成分を酸化し
て過酸化物にするのに触媒作用を果し得る酵素及
びペルオキシダーゼの存在下で前記過酸化水素に
よつて酸化され、検知可能な生成物を生成し得る
指示組成物を含んでなる特許請求の範囲第1項記
載の多層分析素子。
[Scope of Claims] 1. A light-transmissive support, at least one reagent layer containing at least one reagent that reacts with a component in a fluid sample and containing a hydrophilic colloid substance, and a porous carrier layer above the reagent layer. In the multilayer analytical element, at least one of the reagent layers contains a polymeric surfactant containing at least one of the compounds represented by the following general formula [], [], or [] as a main component, and a vinyl group. 1. A multilayer analytical element comprising at least one water-dispersible copolymer obtained by emulsion polymerization of a monomer having the following. General formula [] [In the formula, R 1 is a substituted or unsubstituted divalent organic group,
M 1 represents a hydrogen atom or a monovalent cation, and n
represents 30 to 95 mol%, and m represents 70 to 5 mol%. ] General formula [ ] [In the formula, R 2 and R 3 are each a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a cyano group, or
COOR represents 5 groups (R 5 represents an alkyl group), and each may be the same or different.
R 4 represents a hydrogen atom or a lower alkyl group,
M 2 , M 3 , M 4 , M 5 are each a hydrogen atom or 1
represents a valent cation, a is 30 to 95 mol%, b is
70-0 mol%, c is 70-0 mol%. However, b
+c is 70-5 mol%. ] General formula [ ] [In the formula, R 6 and R 7 are a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a cyano group, or a COOR 9 group (R 9 represents an alkyl group). R 8 represents a hydrogen atom or a lower alkyl group, and M 6 , M7 , M8 , M9 are
Each represents a hydrogen atom or a monovalent cation.
x is 30 to 70 mol%, y is 5 to 50 mol%, z is 70 to 70 mol%
It represents 5 mol%, and y+z is 70-30 mol%. 2. said reagent is oxidized by said hydrogen peroxide in the presence of an enzyme and peroxidase capable of catalyzing the oxidation of components in said fluid sample to peroxides, producing a detectable product. A multilayer analytical element according to claim 1, comprising an indicator composition capable of producing a product.
JP193181A 1981-01-09 1981-01-09 Multilayer analyzing element Granted JPS57116258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP193181A JPS57116258A (en) 1981-01-09 1981-01-09 Multilayer analyzing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP193181A JPS57116258A (en) 1981-01-09 1981-01-09 Multilayer analyzing element

Publications (2)

Publication Number Publication Date
JPS57116258A JPS57116258A (en) 1982-07-20
JPH0219905B2 true JPH0219905B2 (en) 1990-05-07

Family

ID=11515345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP193181A Granted JPS57116258A (en) 1981-01-09 1981-01-09 Multilayer analyzing element

Country Status (1)

Country Link
JP (1) JPS57116258A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899752A (en) * 1981-11-04 1983-06-14 Konishiroku Photo Ind Co Ltd Multi-layer analysis element
JPH0665987B2 (en) * 1982-11-19 1994-08-24 富士写真フイルム株式会社 Analysis element
US5286450A (en) * 1992-06-01 1994-02-15 Eastman Kodak Company Bilirubin assay using crosslinkable polymers

Also Published As

Publication number Publication date
JPS57116258A (en) 1982-07-20

Similar Documents

Publication Publication Date Title
JPH0219908B2 (en)
EP0140337B1 (en) Multizone element and method for analysis of whole blood
US4132528A (en) Analytical element for the analysis of liquids under high pH conditions
US5183741A (en) Integral multilayer element for glucose analysis
US5308767A (en) Method for control or calibration in a chemical analytical determination
SE443048B (en) SET AND ELEMENTS FOR DETERMINATION OF CAR CAR RUBIN
JPH0623745B2 (en) Test apparatus and method for component detection of liquid samples
JPH0219907B2 (en)
US4194063A (en) Method, composition and elements for the detecting of nitrogen-containing compounds
US4478944A (en) Analytical element containing a barrier zone and process employing same
JPH0219906B2 (en)
JP2611890B2 (en) Measurement method using dry analytical element and dry analytical element
US4567024A (en) Analytical element
US4803159A (en) Analytical element and method for determination of total lacate dehydrogenase
EP0116361A2 (en) Analytical element for dry analysis
EP0298473B1 (en) Analytical element for analysis of whole blood
JPH0219905B2 (en)
EP0137521B1 (en) Integral multilayer element for chemical analysis
WO1988009824A1 (en) Improvements in diagnostic test strips
US5547874A (en) Method for control or calibration in a chemical analytical determination
USH602H (en) Whole blood diluting solution
JPH0359458A (en) Multilayered analysis element
JPH0373818B2 (en)
JP2614124B2 (en) Integrated multilayer analytical element
JPS58123458A (en) Analyzing element