JPH02199046A - Fiber reinforced cement molded article - Google Patents

Fiber reinforced cement molded article

Info

Publication number
JPH02199046A
JPH02199046A JP1814989A JP1814989A JPH02199046A JP H02199046 A JPH02199046 A JP H02199046A JP 1814989 A JP1814989 A JP 1814989A JP 1814989 A JP1814989 A JP 1814989A JP H02199046 A JPH02199046 A JP H02199046A
Authority
JP
Japan
Prior art keywords
fiber
cement
sheath
composite fiber
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1814989A
Other languages
Japanese (ja)
Inventor
Seiji Miyawaki
宮脇 征史
Kenji Yamashita
憲司 山下
Yosuke Takai
庸輔 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Boseki KK
Daiwabo Co Ltd
Original Assignee
Daiwa Boseki KK
Daiwabo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Boseki KK, Daiwabo Co Ltd filed Critical Daiwa Boseki KK
Priority to JP1814989A priority Critical patent/JPH02199046A/en
Publication of JPH02199046A publication Critical patent/JPH02199046A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene

Abstract

PURPOSE:To obtain a fiber reinforced cement molded article having excellent strength by curing a cement molded article containing a sheath-core type composite fiber consisting of polymethylpentene sheath and PP core used as a reinforced fiber in an autoclave at high temperature. CONSTITUTION:A sheath-core type composite fiber each using PP as a core, polymethylpentene as a sheath covering the core is prepared. The composite fiber has preferably 6-30 denier, 3-30mm length and 50-1000 aspect ratio. Then cement slurry is blended with the above-mentioned composite fiber and the blend is molded by ordinary paper making, extrusion molding, etc. In this time, blending of the composite fiber is preferably carried out at an amount of 0.2-5wt.% based on the solid content in cement slurry. Then the above-mentioned composite fiber is cured at 150-170 deg.C to provide the aimed fiber reinforced cement. Furthermore, cross section of the sheath in the above-mentioned composite fiber is preferably 40-80%. The above-mentioned molded article can be cured at high temperature and has excellent flexural strength, impact strength and nail hammering characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセメント成形体、特に高温養生され、改良され
た強度を有する繊維強化セメント成形体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cement molded body, particularly a fiber-reinforced cement molded body cured at high temperatures and having improved strength.

〔従来の技術〕[Conventional technology]

従来より種々のセメント成形体が種々の産業分野、特に
建染関係の分1tで使用され−C劾り、このようなセメ
ント成形体の強度を向上するため種々のE 維が強化材
として使用されている。
Conventionally, various cement molded bodies have been used in various industrial fields, especially in the vat-dying industry, and various E fibers have been used as reinforcing materials to improve the strength of such cement molded bodies. ing.

代表的な繊維強化材料として例えば石綿が知られており
、このものは安価で、不燃性であり、―(熱性、耐アル
カリ性にすぐれているため従来より広く使用されて来た
。しかしながら石綿は人体に有害であるため石綿の使用
は好ましくない。このため石綿に代る繊維として種々の
無機及び合成!!に維の使用が提案され【いる。
Asbestos, for example, is known as a typical fiber-reinforcing material, and it has been widely used because it is inexpensive, nonflammable, and has excellent heat and alkali resistance. However, asbestos The use of asbestos is undesirable because it is harmful to humans.Therefore, the use of various inorganic and synthetic fibers has been proposed as an alternative to asbestos.

例えば特開昭49−98424号、特開昭49−104
917号、特開昭49−104918号、特開昭61−
86452号、特開昭62−171952号等にはガラ
ス繊維、ポリエステルZ設維、ビニロン繊酊1ポリプロ
ピレン繊維、芳香族ポリアミド繊f(Lwアクリルa!
維の使用が教示されている。
For example, JP-A-49-98424, JP-A-49-104
No. 917, JP-A-49-104918, JP-A-61-
86452, JP-A No. 62-171952, etc., glass fiber, polyester Z fiber, vinylon fiber 1 polypropylene fiber, aromatic polyamide fiber f (Lw acrylic a!
The use of fibers is taught.

これらの強化繊維を用い、通常の方法例えば抄造成形、
押出成形又は注型成形によって成形したセメント成形体
は、その強度を向上させるため養生が行われている。こ
の養生には自然養生及びオートクレーブ養生があるが、
自然養生では20日以上という長期間の養生が必要で工
業的生産には効率的でない。このためこれに代るものと
して強制養生であるオートクレーブ養生が行われズいる
Using these reinforcing fibers, conventional methods such as paper forming,
Cement molded bodies formed by extrusion molding or cast molding are cured to improve their strength. This curing includes natural curing and autoclave curing,
Natural curing requires long-term curing of 20 days or more and is not efficient for industrial production. For this reason, autoclave curing, which is forced curing, is no longer used as an alternative.

このオートクレーブ養生においては、強アルカリ性であ
るセメントマトリックス中で上述した種々の強化繊維は
通常80℃〜160℃の温度で16〜48時間の処理を
受けることになる。特にセメントの種1’<によっては
、例えばケイ酸カルシウムセメントの場合には所望の強
度を得るためには180℃〜200℃という高温での養
生が必要である。
In this autoclave curing, the various reinforcing fibers described above in a highly alkaline cement matrix are typically treated at temperatures of 80°C to 160°C for 16 to 48 hours. In particular, depending on the type of cement 1', for example, in the case of calcium silicate cement, curing at a high temperature of 180 DEG C. to 200 DEG C. is required in order to obtain the desired strength.

一般にセメント成形体は養生温度を高くすればする程そ
の強度は大となることが知られており、又養生時間を短
くすることができることも知られ【いる。このため最近
ではオートクレーブ養生温度を高くすると即ち170℃
〜210℃とL、養生時間も12〜18時間にして生産
性の向上を計ると共にセメント成形体の強度増大が計ら
れるようになって来ている。
It is generally known that the higher the curing temperature of a cement compact, the greater its strength, and it is also known that the curing time can be shortened. For this reason, recently the autoclave curing temperature has been increased to 170℃.
-210°C and a curing time of 12 to 18 hours are being used to improve productivity and increase the strength of cement molded bodies.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらセメント啼トリックスのアルカリ性条件下
、上述した高温での養生では、ポリエステル′a維、ビ
ニロンm at 、ポリアミド繊維、アクリル繊維は分
解等の化学変化を受けて脆化L、強化繊維としての機能
が失われてしまう。
However, under the alkaline conditions of cement matrix and curing at the high temperatures mentioned above, polyester 'a' fibers, vinylon mat, polyamide fibers, and acrylic fibers undergo chemical changes such as decomposition, become brittle, and lose their function as reinforcing fibers. It will be lost.

又通常のガラス繊維は勿論、耐アルカリ性ガラス(&維
でも上述した高温での養生を受けると脆化して強化繊維
としての機能は失われるか、著しく低減してしまう。又
耐アルカリ性であり、上述した高温に耐える繊維として
ポリメチルペンテン繊維が知られているが、この繊維は
非常に高価であって通常のセメント成形体の製造には実
用的でなく、又ポリメチルペンテンは一般に軟質である
ため、セメント成形体の強化繊維としては充分でない。
In addition to normal glass fibers, even alkali-resistant glass fibers become brittle and lose or significantly reduce their function as reinforcing fibers when cured at the high temperatures mentioned above. Polymethylpentene fiber is known as a fiber that can withstand high temperatures, but this fiber is very expensive and is not practical for manufacturing ordinary cement molded bodies, and polymethylpentene is generally soft. , are not sufficient as reinforcing fibers for cement molded bodies.

ポリプロピレン繊維は耐アルカリ性の点ではすぐれてお
り、セメント成形体の強化横維として好ましいのである
が、ポリプロピレンは通常170℃までの温度に耐えら
れるのみで、この温度を越えるとポリプロピレン繊維で
もその強化a能は失われてしまう。
Polypropylene fibers have excellent alkali resistance and are preferred as reinforcing transverse fibers for cement molded bodies, but polypropylene can usually only withstand temperatures up to 170°C, and beyond this temperature even polypropylene fibers lose their strength. ability will be lost.

従って本発明の目的は170〜210℃という高温で養
生して、すぐれた強度を有するセメント成形体を提供す
ることにある。
Accordingly, an object of the present invention is to provide a cement molded body having excellent strength when cured at a high temperature of 170 to 210°C.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は成形され、次いでオートクレーブ養生された鐵
維仁化セメント成形t−ドにおいて、強化i 177と
してポリメチルペンテンを育1とL、ポリプロピレンを
芯とした鞘芯型1m合徹維を使用したセメント成形体で
ある。
In the present invention, polymethylpentene was used as reinforcing I 177 in a steel molded cement molded t-do which was molded and then autoclaved. It is a cement molded body.

本発明のセメント成形体の形成に使用する強化繊維は、
芯にポリプロピレンを使用L、これを覆う鞘としてポリ
メチルペンテンを使用する。
The reinforcing fibers used to form the cement molded body of the present invention are:
Polypropylene is used for the core, and polymethylpentene is used for the sheath that covers it.

かかる鞘芯型複合゛屯維のtl造法自体は従来より知ら
れている鞘芯型複合!に誰の製造法に従って製造L、延
伸することができる。
The TL manufacturing method of such sheath-core type composite fibers is a conventionally known sheath-core type composite fiber! Manufactured according to anyone's manufacturing method, it can be stretched.

上記鞘とL”C使用するポリメチルペンテンとしては、
4−メチルペンテン−1のホモポリマー、又は他の共重
合しうる単(,1体、例えばエチレン、プロピレン、ブ
テン−1、へ午セン−1゜オクテン−11デセン−11
テトラデセン−1゜オクタデセン−1等の炭素数2〜2
0、好ましくは3〜5のα−オレフィンどのコポリマー
を使用できる。尚コポリマーの場合4−メチルペンテン
−1を通常90モル%以上含むのが好ましい。かかる4
−メチルペンテン−1のホモポリマー及びコポリマーは
通常230℃−240℃の融点を有し後述する養生温度
例えば170℃〜210℃の温度に耐えることができ、
またセメントマトリックスのアルカリ性にも耐えること
ができる。
As for the polymethylpentene used in the above sheath and L”C,
Homopolymers of 4-methylpentene-1 or other copolymerizable monopolymers, such as ethylene, propylene, butene-1, hemocene-1°octene-11decene-11
Tetradecene-1゜octadecene-1 etc. with 2 to 2 carbon atoms
Any copolymer of 0, preferably 3 to 5 α-olefins can be used. In the case of a copolymer, it is preferable that it contains 4-methylpentene-1 in an amount of usually 90 mol% or more. It takes 4
- Homopolymers and copolymers of methylpentene-1 usually have a melting point of 230°C to 240°C and can withstand the curing temperatures described below, for example temperatures of 170°C to 210°C,
It can also withstand the alkalinity of the cement matrix.

また本発明で複合礒雑の芯とし【便用するポリプロピレ
ンは公知のポリプロピレンであることができる。
In addition, the polypropylene used as the core of the composite powder in the present invention can be a known polypropylene.

本発明で使用する複合繊維においては、上述したポリメ
チルペンテンはその断面積の少なくとも40%を占める
ようにする。この断面積が40%未満になるとポリメチ
ルペンテン祉が少なくなりすぎ、芯のポリプロピレンが
露出することがあり完全な鞘芯型複合繊維を得ることが
困難になるため好ましくない、またポリメチルペンテン
の割合が大になればなる程複合、俄維の耐熱性は良好に
なるが、ポリプロピレン成分の割合が少なくなりすぎ、
複合1維の製造が困賎になると共にポリメチルペンテン
樹脂が高価であるため経済性が悪くなるので通常80%
までにするとよい。
In the composite fiber used in the present invention, the above-mentioned polymethylpentene should occupy at least 40% of its cross-sectional area. If this cross-sectional area is less than 40%, the polymethylpentene strength will be too small, and the core polypropylene may be exposed, making it difficult to obtain a complete sheath-core type composite fiber, which is undesirable. The higher the proportion, the better the heat resistance of the composite and fiber, but the proportion of the polypropylene component becomes too small.
It is difficult to manufacture composite fibers, and polymethylpentene resin is expensive, making it uneconomical, so it is usually 80%.
It is best to do so by.

上述した複合懺維は、通常使用される繊維と同様6〜3
0デニール、長さ3〜300、アスベクHt、50〜1
000のものを使用するとよい。
The above-mentioned composite fibers are similar to commonly used fibers, with 6 to 3
0 denier, length 3-300, asbec Ht, 50-1
000 is recommended.

本発明で使用するセメントとしては通常のポ〃トランド
セメント、特殊ポルトランドセメント、アルミナセメン
ト、高炉スラグセメント等任意のセメントが使用できる
、特に一般に高い養生温度を必要とするケイ酸カルシウ
ムセメントも使用できる。
As the cement used in the present invention, any cement can be used, such as ordinary Portland cement, special Portland cement, alumina cement, blast furnace slag cement, etc. In particular, calcium silicate cement, which generally requires a high curing temperature, can also be used.

本発明のセメント成形体を製造するに当っては、セメン
トスラリーに前述した本発明による複合繊維を混合して
通常の抄造成形、郡山成形又は注型成形法によって成形
する。このとき上記複合繊維はセメントスラリー中の固
形分全体に対して通常の如<0.2〜smgk%の割合
で使用するとよい。
In producing the cement molded article of the present invention, the composite fiber according to the present invention described above is mixed with a cement slurry, and the mixture is molded by ordinary paper forming, Koriyama molding, or cast molding. At this time, the composite fibers are preferably used in a usual proportion of <0.2 to smgk% based on the total solid content in the cement slurry.

上述した方法で成形した後、この成形体は次いでオート
クレーブ養生を行う。オートクレーブ養生は通常実施さ
れ【いる如く160℃〜170℃で8〜15時圓で行う
ことができることは勿論であるが、本発明の複合繊維を
用いることによって170℃〜210℃という高温で1
2〜18時間という養生条件を使用することができる。
After being molded in the manner described above, the molded body is then cured in an autoclave. Of course, autoclave curing can be carried out at a temperature of 160°C to 170°C for 8 to 15 hours, as is normally done, but by using the composite fiber of the present invention, curing can be carried out at a high temperature of 170°C to 210°C for 1 hour.
Curing conditions of 2 to 18 hours can be used.

〔作用〕[Effect]

本発明のセメント成形体は、その強化繊維としてポリメ
チルペンテンを鞘とL、ポリプロピレンを芯とした鞘芯
型複合繊維を用いているため、ポリプロピレン繊維のみ
では溶融してしまい強化機能を果たすことができなくな
ってしまう170〜210℃という高い養生温度でも、
ポリメチルペンテンの鞘があるため、芯のポリプロピレ
ンが溶融してポリメチルヘンテンので・岩から溶出して
いわゆるすっぽ抜けを生ずることがない。このため養生
処理後の完成品セメント成形体におけるポリプロピレン
繊維による強化繊維としての機能を充分に発揮する作用
を有する。そし−C養生温度を高<L、養生時間を短く
することができる。
The cement molded article of the present invention uses a sheath-core type composite fiber with a polymethylpentene sheath and L and a polypropylene core as reinforcing fibers, so polypropylene fibers alone will melt and cannot perform the reinforcing function. Even at high curing temperatures of 170 to 210 degrees Celsius,
Because it has a polymethylpentene sheath, the polypropylene core will not melt and the polymethylpentene will leach out of the rock and cause so-called slip-through. Therefore, the polypropylene fibers have the effect of fully exhibiting their function as reinforcing fibers in the finished cement molded product after curing treatment. So-C The curing temperature can be set to high <L, and the curing time can be shortened.

〔実施例〕〔Example〕

以下に本発明セメント成形体に使用する鞘芯型複合繊維
の製造例及びセメント成形体の実施例を示す。
Examples of manufacturing the sheath-core composite fibers used in the cement molded product of the present invention and examples of the cement molded product are shown below.

製造例 1 メルトフローレート50J710分(加重21699.
270℃)、融点240℃のポリメチルペンテン(PN
P )を鞘成分とL、メルトフローレート20Ii/1
0分(加重2169 II。
Production example 1 Melt flow rate 50J710 minutes (weighted 21699.
270℃), polymethylpentene (PN) with a melting point of 240℃
P) with the sheath component and L, melt flow rate 20Ii/1
0 minutes (weighted 2169 II.

230℃)、i点163℃のポリプロピレン(pp)を
芯成分とL、複合比(断面積比であり、PP / PM
ff表わす) 50150で孔数120の紡糸口金より
310cd/分の吐出量、紡糸温度280℃で溶融複合
紡糸L、未延伸状態で繊度42デニールの同心鞘芯型複
合穢惟を得た。
230℃), polypropylene (PP) at point i at 163℃, core component and L, composite ratio (cross-sectional area ratio, PP/PM
A concentric sheath-core type composite fiber having a fineness of 42 denier in an unstretched state was obtained by melt spinning L at a spinning temperature of 280° C. and a discharge rate of 310 cd/min from a spinneret with a diameter of 50150 and 120 holes.

この繊維を次いで140℃で7倍乾式延伸L、繊度6,
6デニールの複合繊維を得た。この繊維の乾強度(g/
D )、乾伸度(%)及びヤング率(kg/d)を表1
に示す。
This fiber was then dry-stretched 7 times at 140°C, with a fineness of 6,
A composite fiber of 6 denier was obtained. The dry strength of this fiber (g/
D ), dry elongation (%) and Young's modulus (kg/d) are shown in Table 1.
Shown below.

上述した繊維の耐アルカリ性試験を次の如くし【行った
An alkali resistance test of the above-mentioned fibers was carried out as follows.

内径20龍、長さ150關のステンレスパイプの一端を
プラグで閉じ、この中に上述した如くして作った腹合1
o!維109を入れ、更にセメント1重q部と水9重量
部を混合して作ったセメント含有水の上澄液を入れ、気
泡が全く入らぬようにして、開口をプラグで閉じた。こ
のようにして作った試験試料2個をそれぞれ電気乾燥機
中で180℃で16時間、又は200℃で16時時間−
た。
Close one end of a stainless steel pipe with an inner diameter of 20mm and a length of 150mm with a plug, and insert the bellows 1 made as described above into this pipe.
o! A supernatant liquid of cement-containing water prepared by mixing 1 part by weight of cement and 9 parts by weight of water was added, and the opening was closed with a plug to prevent any air bubbles from entering. The two test samples thus prepared were each placed in an electric dryer at 180°C for 16 hours or at 200°C for 16 hours.
Ta.

冷却後各俄椎試料を取り出L、これらのjIL維試料に
ついて乾強度(9/D )、乾伸度(%)及び繊維形伏
を測定した結果を表1に示す。
After cooling, each vertebra sample was taken out, and the dry strength (9/D), dry elongation (%), and fiber shape of these jIL fiber samples were measured. Table 1 shows the results.

製造例 2 製造例1と同様にして繊度27デニールの未延伸同心鞘
芯型複合繊維を作り、この繊維を次いで95℃の温水中
で4.5倍温水延伸して繊度6.6デニールの複合識惟
を得た。この繊維の乾強度、乾伸度及びヤング率を表1
に示す。
Production Example 2 An undrawn concentric sheath-core composite fiber with a fineness of 27 denier was produced in the same manner as in Production Example 1, and this fiber was then stretched 4.5 times in warm water at 95°C to produce a composite fiber with a fineness of 6.6 denier. I gained wisdom. Table 1 shows the dry strength, dry elongation, and Young's modulus of this fiber.
Shown below.

又この繊維の耐アルカリ試験を製造例1に記載した如く
行い、得られた結果を表1に示す。
This fiber was also subjected to an alkali resistance test as described in Production Example 1, and the results are shown in Table 1.

製造例 3〜4 製造例1の方法に従って、表1にそれぞれ示す複合比で
表1に示す未延伸糸を作り、これらの繊維を製造例1と
同様に7倍乾式延伸してそれぞれ11.6デニー/I/
(製造例3)及び7.0デニール(!J1造例4)の延
伸複合繊維を作り、これらの繊維の乾強度、乾伸度及び
ヤング率を測定した、その結果を表1に示す。
Production Examples 3 to 4 According to the method of Production Example 1, the undrawn yarns shown in Table 1 were made at the composite ratios shown in Table 1, and these fibers were dry-stretched 7 times in the same manner as Production Example 1 to give 11.6 Denny/I/
(Production Example 3) and 7.0 denier (!J1 Production Example 4) drawn composite fibers were produced, and the dry strength, dry elongation, and Young's modulus of these fibers were measured. The results are shown in Table 1.

これらの各繊維について製造例1に記載した如く耐7/
L/カリ性試験を行った結果を表1に示す。
As described in Production Example 1, each of these fibers has a resistance of 7/
Table 1 shows the results of the L/potash test.

比較製造(、#考)例 1 12造例1において、ポリプロピレンの代りにメルトフ
ローレート40,9710分(加重2169.9,26
0℃)のポリエチレンテレフタレート(PET )を用
い、これを芯成分として用い、実抽例1のPNPを鞘成
分とし−C4!造例1と同様にして複合比50150,
36デニールの未延伸同心鞘芯型複合繊維を作り、次い
で140℃で6倍乾式延沖して、繊度9.6デニールの
複合繊維を得た。この繊維の乾強度、乾坤度及びヤング
率を表1に示す。
Comparative Production Example 1 12 In Production Example 1, melt flow rate 40,9710 min (weighted 2169.9, 26 min) was used instead of polypropylene.
Using polyethylene terephthalate (PET) (0°C) as the core component and the PNP of Actual Drawing Example 1 as the sheath component -C4! In the same manner as Example 1, the composite ratio was 50150,
An undrawn concentric sheath-core type conjugate fiber of 36 denier was produced, and then dry-rolled 6 times at 140°C to obtain a conjugate fiber of 9.6 denier. Table 1 shows the dry strength, dry strength, and Young's modulus of this fiber.

又この繊維について実施例1に記載した如く耐アルカリ
性試%1を行った結果を表1に示す。
Table 1 shows the results of an alkali resistance test of %1 performed on this fiber as described in Example 1.

比較製造(参考)例 2〜3 参考のため、下表1に示すポリプロピレン(PP)及び
レーヨンについての乾強度、乾伸度、耐アルカリ試いの
結果も表1に示す。
Comparative Production (Reference) Examples 2 to 3 For reference, the results of dry strength, dry elongation, and alkali resistance tests for polypropylene (PP) and rayon shown in Table 1 below are also shown in Table 1.

(秦)O外観を保っている:×り維形状を保っていない
:へ芯が抜はストロ−状 実施例 l ポルトランドセメント20重量部、ケイ砂31j「置部
、生石灰311重部、バーライ)15Ii量部、バルブ
(NBKP ) 22111部及び製造例1で作った鞘
芯型複合繊維1型景部を混合L、この混合物1重量部に
対し【水9重量部を加え、更にこれに少量の凝集剤を加
えて混合し【抄造液を作った。
(Qin) Maintains O appearance: × Does not maintain fiber shape: Core is straw-shaped Example l 20 parts by weight of Portland cement, 31 parts by weight of silica sand, 31 parts by weight of quicklime, barley) 15Ii parts by weight, 22111 parts by valve (NBKP) and 1 part by weight of the sheath-core composite fiber made in Production Example 1 were mixed in L. [9 parts by weight of water was added to 1 part by weight of this mixture, and a small amount of A flocculant was added and mixed to make a papermaking solution.

この抄造液を用いて抄造成形によってセメント成形体を
成形L、これを室温で24時間静置して固化した後18
5℃で16時間オートクレーブ養生を行った。得られた
成形体について曲げ強度、衝撃強度及び釘打ち特性につ
いて評価を行った。これらの結果を表2に示す。
Using this papermaking liquid, form a cement molded body by papermaking L, leave it at room temperature for 24 hours to solidify, and then
Autoclave curing was performed at 5°C for 16 hours. The obtained molded body was evaluated for bending strength, impact strength, and nailing characteristics. These results are shown in Table 2.

実施例 2〜3 実施例1において、鞘芯型複合繊維としてそれぞれ製造
例3(実施例2)又は4(実施例3)の繊維を用いた以
外は実施例1と同様にしてセメント成形体を作り、曲げ
強度、f19強度、釘打ち特性を評価した。結果を表2
に示す。
Examples 2 to 3 A cement molded body was produced in the same manner as in Example 1, except that the fibers of Production Example 3 (Example 2) or 4 (Example 3) were used as the sheath-core composite fibers, respectively. The construction, bending strength, f19 strength, and nailing characteristics were evaluated. Table 2 shows the results.
Shown below.

比較例 1〜2 実施例1におい【、鞘芯型複合繊維の代りにそれぞれ1
3101部の比較製造例1の複合繊維(比較例1)又は
レーヨン繊維(比較例2)を用いた以外は実施例1と同
様にしてセメント成形体を作り、曲げ強度、@撃強度、
釘打ち特性を評価した。結果を表2に示す。
Comparative Examples 1 to 2 In Example 1 [, 1 in place of the sheath-core composite fiber
A cement molded body was made in the same manner as in Example 1 except that 3101 parts of the composite fiber of Comparative Production Example 1 (Comparative Example 1) or rayon fiber (Comparative Example 2) was used, and the bending strength, @impact strength,
The nailing characteristics were evaluated. The results are shown in Table 2.

比較例 3 実施例IK#いて、強化繊維を含有させず、バルブを2
i量部の代りに31屋部用いて実施例1と同様にしてセ
メント成形体を作り、その曲げ強度、衝撃強度及び釘打
ち特性を評価した。
Comparative Example 3 Example IK#, no reinforcing fibers, and 2 valves.
A cement molded body was made in the same manner as in Example 1 using 31 parts instead of i parts, and its bending strength, impact strength, and nailing characteristics were evaluated.

その結果を表2に示す。The results are shown in Table 2.

比較例 4 ポルトランドセメン)20@瓜部、ケイ砂25重頃部、
生石灰25重低部、パーライト15玉教部、バルブ5重
量部、アスベスト10重世部を用いて実施例1と同(&
にしてセメント成形体を作り、その曲げ強度、衝撃強度
及び釘打ち特性を評価した。結果を表2に示す。
Comparative example 4 Portland cement) 20 @ melon part, silica sand 25 part,
Same as Example 1 (&
Cement molded bodies were made and their bending strength, impact strength, and nailing properties were evaluated. The results are shown in Table 2.

尚曲げ強度、衝撃強度及び釘打ち特性は下記の如く測定
した。
The bending strength, impact strength and nailing properties were measured as follows.

曲げ強度: 長さ120朋、厚さ5ガ、幅50龍のセメント成形板を
スパン間隔70富臆の支点上に載置L、JIS A 1
408の方法に準じて測定した(単位に9t/cd)。
Bending strength: A cement molded plate with a length of 120 mm, a thickness of 5 mm, and a width of 50 mm is placed on a fulcrum with a span interval of 70 mm L, JIS A 1.
It was measured according to the method of No. 408 (9t/cd per unit).

衝撃強度: A法;厚さを5flとしてJIS B 7722 (シ
ャルピー衝撃試験法)に準じ【行った (単位に9f/α)。
Impact strength: Method A: Conducted according to JIS B 7722 (Charpy impact test method) with a thickness of 5 fl (unit: 9 f/α).

方法;厚さ5鵡としてJIS B 7723 (アイゾ
ツ)f!iff試験法)に準じて行った(単位に41f
/信)。
Method: JIS B 7723 (Izotsu) f! iff test method) (unit: 41f)
/ faith).

釘打ち特性: 第1図に示す如く厚さ5tlのセメント成形体1の角3
から両辺に沿ってX(’IIIとった四角形の角3の対
角部に直径2.6鴫の釘を打ちつけ、釘打ち可能(即ち
亀裂又は破壊しない)な距離xを測定した(単位cR)
Nailing characteristics: Corner 3 of cement molded body 1 with a thickness of 5 tl as shown in Fig. 1
A nail with a diameter of 2.6 mm was nailed to the diagonal of corner 3 of the rectangle taken along both sides from
.

〔発明の効果〕〔Effect of the invention〕

上記表1及び2のデータから明らかなように本発明によ
る複合繊維を用いたセメント成形体は高い温度での養生
を行うことができ、すぐれた曲げ強度、衝撃強度及び釘
打ち特性を有する。
As is clear from the data in Tables 1 and 2 above, the cement molded product using composite fibers according to the present invention can be cured at high temperatures and has excellent bending strength, impact strength, and nailing properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は釘打ち特性測定の説明図である。 1−m−セメント成形体、2−一一釘。 手 続 補 正 書 第 図 2゜ 発明の名称 繊維強化セメン ト成形体 3゜ 補正をする者 事件との関係 FIG. 1 is an explanatory diagram of nailing characteristics measurement. 1-m-cement molded body, 2-11 nails. hand Continued Supplementary Positive book No. figure 2゜ name of invention fiber reinforced cement molded body 3゜ person who makes corrections Relationship with the incident

Claims (1)

【特許請求の範囲】 1、成形され、次いでオートクレーブ養生された繊維強
化セメント成形体において、強化繊維としてポリメチル
ペンテンを鞘とL、ポリプロピレンを芯とした鞘芯型複
合繊維を使用したことを特徴とするセメント成形体。 2、ポリメチルペンテンが複合繊維の断面積の少なくと
も40%を占める請求項1記載のセメント成形体。
[Claims] 1. In a fiber-reinforced cement molded article that is molded and then cured in an autoclave, a sheath-core type composite fiber having polymethylpentene as the sheath and L and polypropylene as the core is used as the reinforcing fiber. Cement molded body. 2. The cement molded article according to claim 1, wherein polymethylpentene occupies at least 40% of the cross-sectional area of the composite fiber.
JP1814989A 1989-01-27 1989-01-27 Fiber reinforced cement molded article Pending JPH02199046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1814989A JPH02199046A (en) 1989-01-27 1989-01-27 Fiber reinforced cement molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1814989A JPH02199046A (en) 1989-01-27 1989-01-27 Fiber reinforced cement molded article

Publications (1)

Publication Number Publication Date
JPH02199046A true JPH02199046A (en) 1990-08-07

Family

ID=11963556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1814989A Pending JPH02199046A (en) 1989-01-27 1989-01-27 Fiber reinforced cement molded article

Country Status (1)

Country Link
JP (1) JPH02199046A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011217A1 (en) * 1990-12-20 1992-07-09 Marley Building Materials Limited Fibre-reinforced materials
US6649671B2 (en) 2000-03-13 2003-11-18 Dow Global Technologies Inc. Concrete and process to make same
US6844065B2 (en) 2001-12-27 2005-01-18 Dow Global Technologies, Inc. Plastic fibers for improved concrete
WO2009075609A3 (en) * 2007-12-10 2009-08-06 Obschestvo S Ogranichennoi Otv Man-made mineral fibre for three-dimensional reinforcement of a cement product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011217A1 (en) * 1990-12-20 1992-07-09 Marley Building Materials Limited Fibre-reinforced materials
US6649671B2 (en) 2000-03-13 2003-11-18 Dow Global Technologies Inc. Concrete and process to make same
US6844065B2 (en) 2001-12-27 2005-01-18 Dow Global Technologies, Inc. Plastic fibers for improved concrete
WO2009075609A3 (en) * 2007-12-10 2009-08-06 Obschestvo S Ogranichennoi Otv Man-made mineral fibre for three-dimensional reinforcement of a cement product
US8912250B2 (en) 2007-12-10 2014-12-16 Obschestvo S Ogranichennoi Otvetstvennostiu C Airlaid Synthetic fiber for three-dimensional reinforcement of a cement product

Similar Documents

Publication Publication Date Title
DE60034674T2 (en) POLYMER CEMENT COMPOSITES AND METHOD OF MANUFACTURING THE SAME
FI105912B (en) Fiber-reinforced moldings
US4781994A (en) Fiber-reinforced cement material and molded article comprising hardened product thereof
JP5770091B2 (en) Fiber-cement product compositions and shaped products obtained therefrom
JP2018500466A (en) IMPROVED POLYPROPYLENE FIBER, ITS MANUFACTURING METHOD, AND ITS USE IN PRODUCTION OF FIBER CEMENT PRODUCT
EP0484283B1 (en) Manufacturing of fibrocement articles without asbestos fibre
JPH02199046A (en) Fiber reinforced cement molded article
JP2835806B2 (en) Reinforced polypropylene fiber and fiber reinforced cement molding
US20170217835A1 (en) Stretched polyolefin fibers
MXPA98009822A (en) Mixture for producing glass fibre-reinforced concrete mouldings and process and equipment for producing such mouldings.
JPS6232144B2 (en)
JPS5857385B2 (en) Alkali-resistant inorganic fiber reinforced cement products
JPS61136950A (en) Manufacture of excelsior fiber cement moldings
JPH0474741A (en) Fiber reinforcing material for hydraulic substance and production thereof
JPS58185474A (en) Fiber reinforced hydraulic moldings
JP2614274B2 (en) Building material and manufacturing method thereof
JPS6251906B2 (en)
JPH05310463A (en) Production of fiber-reinforced cement plate
JP4364343B2 (en) Kneaded molded hydraulic material reinforcing material and kneaded molded body
JPS6221743B2 (en)
JPH0524104B2 (en)
KR101854131B1 (en) Fiber Reinforced Mortar Composition Containing Basalt Fiber and Natural Hydraulic Lime And Manufacturing Method Thereof
JP2604220B2 (en) Fiber reinforced cement molding
JP2618098B2 (en) Manufacturing method of fiber reinforced cement board
Grebenişan et al. A REVIEW CONCERNING COMPOSITE MATERIALS USED IN CONSTRUCTION FIELD